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Abstract

Vision-language models (VLMs) have shown
to be effective at image retrieval based on sim-
ple text queries, but text-image retrieval based
on conversational input remains a challenge.
Consequently, if we want to use VLMs for
reference resolution in visually-grounded di-
alogue, the discourse processing capabilities
of these models need to be augmented. To ad-
dress this issue, we propose fine-tuning a causal
large language model (LLM) to generate defi-
nite descriptions that summarize coreferential
information found in the linguistic context of
references. We then use a pretrained VLM to
identify referents based on the generated de-
scriptions, zero-shot. We evaluate our approach
on a manually annotated dataset of visually-
grounded dialogues and achieve results that, on
average, exceed the performance of the base-
lines we compare against. Furthermore, we
find that using referent descriptions based on
larger context windows has the potential to
yield higher returns.

1 Introduction

Visually-grounded dialogues are conversations in
which participants make references to the visual
world. Referring in conversation is understood to
be a collaborative process, with shared responsi-
bility for ensuring the successful identification of
the referent (Clark and Wilkes-Gibbs, 1986). It
is not uncommon for a definite reference to be es-
tablished over multiple turns, with each separate
contribution unlikely to be a minimally distinguish-
able description of the referent. Taken out of their
use context, these referring expressions may be dif-
ficult, if not impossible, to resolve. Consider the
example dialogue in Figure 1. The underspecified
description “the shiny one” leads to a clarification
question, “Do you mean that red one?”. To resolve
the expression “that red one” to its referent, we
need information from earlier in the conversation
to understand that “one” is a proform of “apple”.

Figure 1: Example dialogue in which two participants
discuss fruits. Expressions that denote one or more
images are underlined.

Without this linguistic context, the red strawberry
and the red apple are equally likely referents.

We can break the problem of reference resolu-
tion in visually-grounded dialogue down into three
subproblems: (1) mention detection, or finding the
expressions that can be grounded in the visual con-
text (“that red one”); (2) aggregation of referent-
specific information (linking “apple”, “the shiny
one”, and “that red one”); and (3) referent iden-
tification, or the grounding of language (finding
the referent that is best described by the three ex-
pressions from among a set of candidate referents).
This final step requires bridging the gap between vi-
sion and language. For this purpose, we can turn to
pretrained vision-language models (VLMs), which
have shown to be effective at zero-shot text-image
retrieval when given a description of an image (e.g.,
Radford et al., 2021; Jia et al., 2021; Li et al., 2023).
However, current VLMs lack the discourse pro-
cessing capabilities necessary for reference reso-
lution in visually-grounded dialogue. Although
some VLMs may correctly identify the red apple
as the referent given the entire dialogue of Figure
1, dialogues are often vastly more complex than
this hypothetical exchange. Take, for instance, the
dialogue in Appendix A: with multiple mentions of
different referents within the same utterance, such
a brute-force method would immediately fail. It
is clear that if we want VLMs to be effective for
this purpose, their discourse processing capabilities
need to be augmented.
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To this end, we propose fine-tuning a causal large
language model (LLM) for the task of referent de-
scription generation. Referent description genera-
tion can be regarded as a special case of referring
expression generation with the goal of always gen-
erating the most complete expression possible. For
a given mention, the model is trained to generate a
definite description that summarizes all information
that has been explicitly disclosed about the referent
during a conversation. For example, for the men-
tion “that red one” in Figure 1 we would want the
model to generate the description “the shiny red
apple”. We will refer to the fine-tuned model as
the conversational referent description generator
(CRDG). The description generated by the CRDG
is then used by a pretrained VLM to identify the
referent, zero-shot. Our approach can be seen as an
exploration of the limits of depending on linguistic
context alone for generating referent descriptions,
as the discourse processing and eventual grounding
of the descriptions are entirely disjoint.

For the experiments presented in this paper we
use data from the collaborative image ranking task
A Game Of Sorts (Willemsen et al., 2022). Refer-
ents are represented by separate, but visually sim-
ilar images from a shared entity category. Due to
their largely unrestricted nature and with a focus
on the collaborative referential process, the col-
lected dialogues form a challenging test bed for
visually-grounded language understanding in con-
versation. We manually annotate the dialogues by
marking mention spans and aligning the spans with
the images they denote, and provide both manu-
ally constructed and automatically derived “ground
truth” referent descriptions based on our manual
annotations for all marked mentions.

Our main contributions are as follows:

• We present a generative approach to reference
resolution in visually-grounded dialogue that
frames the discourse processing side of the
task as a causal language modeling problem;

• We show that it is possible to fine-tune a causal
LLM to generate referent descriptions from
dialogue to be used by a pretrained VLM for
referent identification, zero-shot;

• We release the discussed materials, including
our annotations for A Game Of Sorts (Willem-
sen et al., 2022)1.

1https://github.com/willemsenbram/

2 Background

Visually-grounded language understanding is fun-
damental for conversational agents that engage in
dialogue involving references to the visual world.
Researchers have introduced a variety of tasks that
provide data for development and frameworks for
evaluation of visually-grounded dialogue models.
These tasks often take the form of goal-oriented,
dyadic interactions but differ in terms of, for ex-
ample, the visual stimuli used, e.g. abstract figures
or realistic photos; the roles assigned to partici-
pants, e.g. whether symmetric or asymmetric; con-
straints on message content, e.g. a fixed vocabulary;
and the nature of the task, e.g. navigation, iden-
tification, ranking, and multi-turn visual question
answering (e.g. Das et al., 2017; De Vries et al.,
2017; Shore et al., 2018; Ilinykh et al., 2019; Haber
et al., 2019; Udagawa and Aizawa, 2019; Willem-
sen et al., 2022). It has been noted that the task
configuration can significantly impact the extent to
which certain dialogue phenomena, such as coref-
erences and clarification requests, are represented
in the collected data, if at all (Agarwal et al., 2020;
Haber et al., 2019; Ilinykh et al., 2019; Schlangen,
2019; Willemsen et al., 2022). Tasks that heavily
constrain the interactions do not reflect the com-
plex nature of dialogue to the same degree as tasks
that have been designed for these phenomena to
naturally emerge as part of the discourse, such as
A Game Of Sorts (Willemsen et al., 2022), which
we use in this paper.

The terms referring expression comprehension
(e.g. Yu et al., 2016), referring expression ground-
ing (e.g. Zhang et al., 2018), referring expression
recognition (e.g. Cirik et al., 2018), and reference
resolution (e.g. Kennington et al., 2015) have been
used interchangeably to describe the problem of
mapping the language that denotes a referent to a
representation of that referent in the visual modal-
ity. Prior work noted the importance of referring
expressions to conversation, but often modeled the
problem independent of the dialogue (e.g. Cirik
et al., 2018; Schlangen et al., 2016; Yu et al., 2016;
Zhang et al., 2018). The granularity at which
grounding occurs may differ between works, as
the language may be mapped to bounding boxes
of individual objects (Cirik et al., 2018; Schlangen
et al., 2016; Yu et al., 2016; Zhang et al., 2018),
objects or larger image regions represented by seg-
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mentation masks (Liu et al., 2017), or entire images
altogether (Haber et al., 2019; Takmaz et al., 2020).

To address the problem computationally, both
modalities must in some way be encoded. En-
gineered visual feature representations and sim-
ple language models such as those based on n-
grams (e.g. Kennington et al., 2015; Kennington
and Schlangen, 2017; Shore and Skantze, 2018)
have been mostly replaced with more powerful
learned representations that embed the images and
text in high-dimensional vector spaces (Haber et al.,
2019; Takmaz et al., 2020). This has made it pos-
sible to resolve references by computing represen-
tational similarity between an encoding of the text
that contains a mention and the embeddings of the
candidate referents, where the candidate that has
the highest matching score is assumed to be the
referent (Haber et al., 2019; Takmaz et al., 2020).

Recent work on multimodal representation learn-
ing has shown that jointly embedding text and
images can work at scale. Trained using a con-
trastive objective, maximizing representational sim-
ilarity between true pairings of images and text
while simultaneously minimizing similarity of false
pairs, vision-language models (VLMs) such as
CLIP (Radford et al., 2021), ALIGN (Jia et al.,
2021), BLIP (Li et al., 2022), and BLIP-2 (Li et al.,
2023), have shown to be effective zero-shot clas-
sifiers, outperforming the previous state-of-the-art
on various benchmarks without the need for fur-
ther fine-tuning on specific tasks. However, despite
their noteworthy image-text matching performance
based on simple text queries, these VLMs lack the
discourse processing capabilities required for ref-
erence resolution in visually-grounded dialogue.
Even a simplified example, such as shown in Fig-
ure 1, illustrates a fundamental challenge, namely
that of coreference resolution. The interpretation
of anaphoric pronouns, such as “it”, is dependent
on their antecedents. Without resolving its coref-
erences first, identifying the referent based on the
pronoun alone leads to a random guess.

To improve downstream performance on dis-
course processing tasks involving coreference,
prior work has approached the problem as one of
transforming the original input based on linguistic
context. This was done either via substitution, such
as in Bhattacharjee et al. (2020) where pronouns
were substituted for more descriptive mentions of
the same referent, or via generation, such as in
Quan et al. (2019) where entire utterances were

reconstructed in a pragmatically complete manner
with coreferences and ellipses resolved. To the
best of our knowledge, this approach has not yet
been applied to reference resolution in visually-
grounded dialogue.

Most contemporary natural language process-
ing (NLP) works use Transformer-based language
models (Vaswani et al., 2017). For text generation
tasks, it is common to use (unidirectional) autore-
gressive, or causal, language models such as GPT
(Radford et al., 2018). While processing sequences,
causal language models mask the future, allowing
the model to only attend to the current and previous
tokens while predicting the next token. A persistent
trend has been to scale up language models, both in
terms of their parameter count and the size of their
training datasets. These increasingly larger models,
such as GPT-3 (Brown et al., 2020), OPT (Zhang
et al., 2022), PaLM (Chowdhery et al., 2022), and
LLaMa (Touvron et al., 2023), have been dubbed
large language models (LLMs). The current lead-
ing paradigm to modeling downstream NLP tasks
is based on transfer learning, where a pretrained
LLM is fine-tuned for a specific task on a smaller,
domain-specific dataset.

3 Method

We treat visually-grounded reference resolution as
a text-image retrieval task, where referents are rep-
resented by images. We leave finer-grained ground-
ing of words and phrases to image regions or indi-
vidual entities or parts thereof for future work.

3.1 Proposed Framework

We frame the discourse processing side of the task
as a causal language modeling problem. Figure 2
shows a visualization of the proposed framework.
Task Definition We denote the dialogue as D =
(u1, u2, ..., un), where each ui represents an utter-
ance. Each utterance consists of an ordered se-
quence of tokens. An utterance may contain one or
more mentions, denoted as M . A mention is an or-
dered subsequence of tokens from an utterance. A
mention has an exophoric referent, denoted as R. A
mention is embedded in what we call its linguistic
context, denoted as L. As an ordered subsequence
of D, the linguistic context of a given mention con-
sists of the utterance in which it is contained and
all preceding utterances. The number of preceding
utterances, hereafter referred to as the dialogue his-
tory, may be capped if a finite size context window
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Figure 2: The proposed visually-grounded reference resolution framework. With the CRDG we generate a referent
description for a marked mention, to be used by a (frozen) pretrained VLM for referent identification.

is defined. The aim of visually-grounded reference
resolution is to resolve a reference to its referent,
i.e. to identify R for a given M , from a set of can-
didate referents, denoted as C, such that R ⊆ C;
|R| = 1 for single-image referents, |R| > 1 for
multi-image referents, and R = C if M refers to
all members in C.
Referent Description Generation We propose to
generate a definite description, denoted as Y , for
a given mention M that summarizes all that has
been disclosed in L about the referent R. For this
purpose, we fine-tune a causal LLM that learns to
generate Y conditioned on L. Y is a sequence of
tokens expected to be largely constructed from to-
kens that appear, or are some derivative of tokens
that appear, in the coreference chain of R, which is
contained in L. We refer to the fine-tuned model as
the conversational referent description generator
(CRDG). For an example of the context depen-
dency of referent description content, see Figure 4
in Appendix B.
LLM Input We mark M in ui by inserting posi-
tional markers as special tokens to indicate the be-
ginning and end of the mention span. We prepend
each utterance in L with a speaker token to indicate
the source of the contribution. When D is task-
oriented, we update L by prepending task instruc-
tions, i.e. a special token followed by a sequence
of tokens describing the task performed by the dia-
logue participants. For an example of the input to
the LLM, see Figure 5 in Appendix B.
Text-Image Retrieval We use a pretrained VLM
to identify R from C based on Y , zero-shot. We
use the text encoder of the VLM to encode Y into
an n-dimensional feature vector, denoted as v. We
use the image encoder of the VLM to encode each
candidate referent of C into an n-dimensional fea-
ture vector, which gives a |C| × n matrix, denoted
as A. We then compute their matrix-vector product.
For single-image referents, i.e. when |R| = 1, we
take the referent to be R = argmax(Av).

In order to produce accurate referent descrip-
tions, the CRDG must implicitly learn to perform
coreference resolution as we do not provide explicit
supervision for this subtask. In each sample, only
the current mention for which we want the model to
generate a description is marked; none of its coref-
erences are in any way indicated. A principal ad-
vantage of our model is that it can resolve multiple
mentions, even when they have different referents,
appearing in the same utterance, including nested
mentions. Note that for the purpose of this study,
we assume mention detection to be solved. As it
stands, using this framework in production requires
a separate model to propose candidate mentions at
the span level.

3.2 Baseline Models

As a lower bound, we report random chance per-
formance. In addition, we compare performance of
our approach to baselines based on simple heuris-
tics and a coreference resolution model.

3.2.1 Heuristics
Mention We evaluate the image retrieval perfor-
mance when the VLMs are presented with just the
marked mentions.
Substitution We improve upon the mention-only
baseline by substituting proforms, e.g. pronouns
such as “it”, and mentions without descriptive con-
tent, e.g. phrases such as “the one you mentioned”,
with the most recent mention that does not belong
to either category. This is expected to be a rela-
tively strong baseline when mentions are specific
and anaphora have mostly local antecedents.

3.2.2 Coreference Resolution
We opt for an off-the-shelf2 span-based corefer-
ence resolution model (coref) originally presented
in Lee et al. (2018), but that has since been updated

2https://github.com/allenai/
allennlp-models/tree/main/allennlp_
models/coref

https://github.com/allenai/allennlp-models/tree/main/allennlp_models/coref
https://github.com/allenai/allennlp-models/tree/main/allennlp_models/coref
https://github.com/allenai/allennlp-models/tree/main/allennlp_models/coref
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to use SpanBERT (Joshi et al., 2020) instead of
the original GloVe embeddings (Pennington et al.,
2014). For each mention, we use the model to re-
solve its coreference links and aggregate all corefer-
ential information in its cluster based on the given
context window.

We experiment with two different representa-
tions of the referent descriptions from this model,
those being (1) a concatenation of all of the men-
tion’s coreferences and (2) an ordered set-of-words
representation that contains only the unique lexi-
cal items in the cluster. To offset that this model
was not specifically trained to handle coreference
in conversation, we provide it with the contents of
the span of the mention when it does not manage
to detect the mention itself and, consequently, not
connect it to any of its coreferences. For partial
matches, in addition to adding all tokens from the
cluster associated with the match, we also add the
missing tokens from the span to the description.

4 Experiments

4.1 Data

We use the dialogues from the collaborative image
ranking task A Game Of Sorts (AGOS, Willemsen
et al., 2022) for our experiments. In AGOS, two
players are asked to rank a set of images based on
a given sorting criterion. They see the same set of
images, but the position of the images on the screen
is randomized for each player. Through a largely
unrestricted conversation, and without being able
to see the perspective of the other player, the play-
ers need to agree on how to rank the images given
the sorting criterion. Sorting criteria are embedded
in scenarios that are intended to create a discussion,
leading to mixed-initiative interactions with both
parties contributing to the discourse. Each interac-
tion takes place over four rounds with the same set
of nine images, effectively guaranteeing repeated
references. The image sets used for the game cover
five different image categories. Each set contains
nine images with each image representing an entity
from one of these categories as its main subject.
Willemsen et al. (2022) collected three interactions
per image set for a total of 15 dialogues.
Ground Truth Our formulation of the visually-
grounded reference resolution problem requires
span-based annotations of mentions aligned with
the image(s) they denote. These annotations are the
basis of what we will refer to as our “ground truth”
references used for both training and evaluation.

We follow Willemsen et al. (2022) regarding the
marking of mentions in AGOS, in that we only an-
notate those that are either singletons or are part of
an identity relation with other mentions that have an
exophoric referent that is part of the visual context,
i.e. regardless of form, any referring expression
that is meant to denote one or more of the images.
During the game, players were asked to provide
self-annotations: for each message they sent they
were asked to indicate which image(s), if any, they
were referring to. We use these self-annotations,
post-edited where necessary, to manually mark the
spans of mentions that can be grounded in the vi-
sual context.

We create three different representations of the
“ground truth” referent descriptions. Two are auto-
matically extracted from the marked mentions and
are similar in structure to the labels of the coref
baseline, i.e. (1) an incremental concatenation of
the reference chain and (2) an incremental ordered
set of words consisting of the unique lexical items
in the cluster. The third are manually constructed
labels that summarize reference chains as definite
descriptions. For each representation, the context
window dictates which references are considered
for the label.

4.2 Model Specifications

For pointers to implementations, we refer the reader
to our repository1.

4.2.1 LLMs
We fine-tune two LLMs, GPT-2 (Radford et al.,
2019) and GPT-3 (Brown et al., 2020), for con-
versational referent description generation. For
hyperparameters, see our Supplementary Material.
GPT-2 We fine-tune the 1.5 billion parameter GPT-
2 model.
GPT-3 We fine-tune the 175 billion parameter
davinci base model using the OpenAI API.

4.2.2 VLMs
We evaluate the zero-shot text-image retrieval per-
formance of several pretrained VLMs for our task,
those being CLIP (Radford et al., 2021), ALIGN
(Jia et al., 2021), BLIP (Li et al., 2022), and BLIP-2
(Li et al., 2023).
CLIP We evaluate two variants of CLIP, CLIP ViT-
B/32 and CLIP ViT-L/14.
ALIGN We use the COYO-ALIGN implementa-
tion trained from scratch on COYO-700M.
BLIP We use the BLIP base model.
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BLIP-2 We use the BLIP-2 model that was fine-
tuned on the Karpathy and Fei-Fei (2015) training
set split of MS COCO (Lin et al., 2014).

4.3 Evaluation

We perform (nested) five-fold cross-validation by
partitioning the AGOS dataset along the five image
sets. To avoid leakage, for each run we use the
three dialogues from one image set as the held out
test set and train on the twelve dialogues from the
four other image sets. To evaluate how dialogue
history affects results, we report performance of
the different methods for two context windows, 3
and 7. In addition, we examine whether increas-
ing the size of the context window further would,
in principle, lead to greater returns, by assessing
ground-truth performance for windows of 13 and
the full dialogue context. Finally, we conduct an
error analysis of the generated descriptions.

Note that because we do not incorporate game
state information with respect to the visual context
during training, we make a simplifying assumption
with regard to the images and reduce the candidate
set, at test time, as the game progresses. A suc-
cessfully ranked image is no longer considered part
of the visual context for that round. Although this
does mean that the models will not be able to iden-
tify the referent for references to ranked images, as
they will not be part of the candidate set, such refer-
ences are an extremely rare occurrence, as players
must discuss the unranked images to progress with
the task. For the sake of completeness, we will also
report results for the unchanged candidate set.

4.3.1 Metrics
We measure task success for visually-grounded ref-
erence resolution in terms of text-image retrieval
performance. In addition, we estimate the quality
of the generated referent descriptions by compar-
ing them to the manually constructed ground truth
labels using text similarity metrics.
Text-Image Retrieval We estimate the image re-
trieval performance based on accuracy [0, 1], mean
reciprocal rank (MRR) [0, 1], and normalized dis-
counted cumulative gain (NDCG) [0, 1]. We limit
our evaluation to single-image referents. Accuracy
is top-1 accuracy.

For our random lower bound, we can calculate
the expected values for accuracy and MRR. For
top-1 accuracy we take 1 over the size of the set
of candidate images per item, averaging over all
items. For MRR we take 1 over the size of the

set of candidate images, divided by two per item,
averaging over all items. Calculating an expected
value for NDCG of a random model is intractable
due to its dependence on relevancy scores.
Text Generation We evaluate the output from the
CRDGs by comparing the generated descriptions
to the manually constructed ground truth labels
using metrics to quantify similarity. We use the
Jaccard index [0, 1] to assess vocabulary overlap.
We use BLEU [0, 1] (Papineni et al., 2002) to as-
sess similarity based on n-gram overlap (unigrams
to four-grams). We use the longest common sub-
sequence variant of ROUGE [0, 1] (Lin, 2004), i.e.
ROUGE-L, as a further indication of the preser-
vation of word order. In addition, we opt for an
embedding-based metric as a proxy for semantic
equivalence between the predicted and reference
sequences. For this purpose, we compute cosine
similarity [0, 1] between text embeddings.

4.3.2 Human
We conduct two different human subject experi-
ments to assess human performance for this task.
We provide additional details about the experimen-
tal setup in the Supplementary Material.
Independent We conduct an experiment aimed at
comparing VLM and human performance on the
task where every trial is independent. Participants
are given a referent description and are asked to se-
lect from a set of candidate images the image they
believe is best described by the label. The images
and labels are presented to the participants indepen-
dent of the dialogue. Note that we evaluate with the
reduced candidate set. The referent descriptions are
the manually constructed ground truth labels based
on the full dialogue context. To collect data for
all labels, ensuring independence of observations,
we recruited 354 participants via crowdsourcing.
The crowdworkers were financially compensated
for their contributions.
Holistic We conduct an experiment in which men-
tions are shown to participants within the context
of the dialogue. For each mention, the participants
are presented with the dialogue leading up to and
including the message which contains the reference.
The start and end of the span of the mention that
the participant is asked to resolve are visually in-
dicated. For each marked mention, the participant
is asked to select which image or images are refer-
enced. As they progress with the task, participants
will have access to increasingly more of the dia-
logue history. For each mention the participants



463

Accuracy MRR NDCG
3 7 3 7 3 7

Random .22 .22 .43 .43 - -
Mention .59 .59 .73 .73 .79 .79
Substitution .68 .68 .80 .80 .85 .85
coref, chain .65 .66 .78 .79 .83 .84
coref, set .66 .66 .78 .79 .84 .84
GT, chain .73 .74 .83 .85 .87 .88
GT, set .73 .75 .84 .85 .87 .89
GT, manual .72 .74 .83 .84 .87 .88
GPT-2 .64 .60 .77 .74 .83 .80
GPT-3 .69 .71 .81 .82 .86 .86

Table 1: Cross-validated image retrieval performance
averaged over five folds for single-image referents. Note.
Scores shown are of VLM that averaged best perfor-
mance (BLIP-2). Scores are rounded to the nearest
hundredth. GT = ground truth.

are presented with all images, but with a visual in-
dication of their status, i.e. for each image whether
the players had managed to successfully rank it
at that point in the interaction. We recruited 23
participants via crowdsourcing. For each of the 15
AGOS dialogues we collected data from two differ-
ent participants. Each participant was allowed to
provide data for at most one dialogue per image set.
The crowdworkers were financially compensated
for their contributions.

5 Results

5.1 Text-Image Retrieval

Table 1 shows, for context windows 3 and 7, the
zero-shot text-image retrieval performance results
for the VLM that averaged best performance over
the five folds, which was BLIP-2. For the text-
image retrieval accuracy achieved by the other
VLMs, performance on the not reduced candidate
set, and accuracy per fold for BLIP-2, see Ap-
pendix C.

As can be seen from the results presented in
Table 1, we achieve best performance with a fine-
tuned GPT-3 as the CRDG and BLIP-2 for zero-
shot text-image retrieval. In addition to outperform-
ing the baselines, we find that GPT-3 is a more per-
formant discourse processor for this task than GPT-
2. This result is consistent between the VLMs.

Results generally show a slight increase in per-
formance when increasing the context window
from 3 to 7. Performance on the ground truth
reference descriptions for context windows 13 and
the full dialogue shows this trend persists, with
BLIP-2 achieving approximately 75% and 83% ac-
curacy, respectively. A plot of the performance for

GPT-2 GPT-3
3 7 3 7

BLEU .55 .47 .75 .70
ROUGE-L .71 .65 .86 .83
Jaccard .44 .35 .70 .63
Cosine .88 .85 .96 .95

Table 2: Text generation metrics evaluation results
averaged over five folds for single-image referents. Note.
Scores are rounded to the nearest hundredth.

the four context windows is shown in Figure 6 in
Appendix C. This result suggests that the size of
the context window may have a significant impact
on performance, with an 11% increase in accu-
racy from 3 to full. Furthermore, the VLMs do
not seem overly sensitive to the composition of
the referent descriptions, as performance is largely
comparable between the automatically generated
and the manually constructed ground truth labels.

We find that BLIP-2 is on par with human text-
image retrieval performance in terms of top-1 ac-
curacy for the manually constructed ground truth
referent descriptions based on the full dialogue
history for single-image referents, as our human
participants averaged roughly 80% accuracy in the
independent setup. However, when we compare
these results with the single-image referent text-
image retrieval performance in the holistic setup,
we see that the upper bound for this task when ref-
erences are resolved within the combined linguistic
and extralinguistic dialogue context is likely con-
siderably higher as our human participants aver-
aged approximately 91% accuracy (average of best
performance per dialogue is roughly 93%).

5.2 Text Generation

Table 2 shows the text generation metric results
averaged over the five folds, providing an indica-
tion of the extent to which the fine-tuned LLMs
managed to generate referent descriptions that ap-
proximate the manually constructed ground truth
labels. We observe that an increase in context win-
dow size results in a decrease in scores, which is
consistent across metrics. Interestingly, we did not
find such a decrease with respect to text-image re-
trieval performance. We do again find GPT-3 to
be more performant than GPT-2, here in terms of
approximating the ground truth.

5.3 Error Analysis

Examining the output from the fine-tuned GPT-3
model, we observe a number of recurring errors.
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The most notable errors are those where the
model fails to link a mention to (all of) its corefer-
ences that are present in the dialogue segment, or
links mentions that denote different referents. For
example, for one mention the ground truth label
is “the sheep dog”, but the generated label was

“the sheep dog with a leash”; the model incorrectly
attributed the prepositional phrase to the mention
as it was actually a descriptor for a different ref-
erent. Related, since the CRDGs function at the
message level, a mention can have both anaphoric
and cataphoric coreferences when there are multi-
ple mentions of the same referent in an utterance
An example of such an utterance is “Good question.
I think the angry one also looks a little wild. So that
could be an option as well. I mean the one with
white nose and forehead”, where “the angry one”,

“that”, and “the one with white nose and forehead”
are all mentions of the same referent with the same
ground truth label “the angry dog with a white nose
and forehead”. The model generates this correctly
for the latter two, but not the former one for which
only “the angry dog” was generated, meaning it
correctly substituted the proform but did not link
the mention with its cataphoric coreferences.

Finally, some generated referent descriptions dif-
fer from the ground truth in terms of lexical choice
or syntax, but not in terms of information content.
This negatively affects scores of text generation
metrics based on overlapping content in particular,
but these are otherwise not meaningful errors as
there are multiple ways to construct semantically
similar descriptions, e.g., “the big dog which looks
scary” versus “the big scary-looking dog”.

6 Discussion

We have presented an approach to visually-
grounded reference resolution that frames the dis-
course processing side of the task as a causal lan-
guage modeling problem. By fine-tuning an LLM
to generate referent descriptions for marked men-
tions in dialogue segments from the collaborative
image ranking task A Game Of Sorts (Willemsen
et al., 2022), we demonstrate the possibility of treat-
ing referent identification as a zero-shot text-image
retrieval problem by using pretrained VLMs for
the grounding of the generated labels. As we have
not in any way indicated coreferential relations in
the fine-tuning training data, our results imply that
certain pretrained LLMs, here GPT-3, may learn to
resolve coreferences implicitly without the need for

explicit supervision for this fundamental subtask.

In this work, we have treated the processing
of the discourse as entirely disjoint of the visual
modality. As such, it has inherent limitations. The
mentions we find in the dialogues have not been
produced void of the extralinguistic context. The
dialogue participants could rely on co-observed vi-
sual stimuli to help resolve otherwise ambiguous
language use. From linguistic context alone, some
ambiguities, such as prepositional phrase attach-
ment, may be impossible to resolve. It is, therefore,
noteworthy that the downstream zero-shot text-
image retrieval performance using the generated
descriptions from our unimodal approach far ex-
ceeds chance level accuracy, with the potential for
results to improve further given access to the full
dialogue history, as we found that the ground truth
labels based on larger context windows achieve
greater text-image retrieval performance. However,
the results from our holistic human evaluation sup-
port the notion that a multimodal approach should
ultimately prove even more effective.

We found that a decrease in text generation met-
ric scores did not necessarily indicate a similar
decrease in text-image retrieval performance, sug-
gesting that the generated descriptions captured
sufficiently discriminative information about the
referents and achieved similar grounding accuracy
despite not approximating the ground truth labels
to the same extent. It is also important to note that
mentions may not have a single, canonical ground
truth referent description due to lexical and syntac-
tic variations between referring attempts.

Despite the relatively small size of the dataset
collected by Willemsen et al. (2022), we were
still able to fine-tune GPT-3 to perform the task
with greater accuracy than the baselines, which
speaks to the sample efficiency of (certain) pre-
trained LLMs. In comparison, we find that the
much smaller GPT-2 is prone to intrusions from
the fine-tuning training data and more often fails
to resolve the coreferences correctly. Although the
complexity of the discourse warrants the use of
more powerful models, it is, nevertheless, likely
that any LLM used for the task would benefit from
a larger fine-tuning dataset. Related, benchmarking
performance on other visually-grounded dialogue
tasks would provide insights into the generalizabil-
ity of the method.

In addition to pursuing a multimodal approach,
finer-grained grounding, and evaluating our method
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on other datasets, possible avenues for future work
include expanding the annotations to include coref-
erential relations other than identity relations, ad-
dressing multi-image referents, and unifying the
method with a mention proposal system.
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Appendices

A Dialogue Excerpt

Figure 3: Excerpt of an AGOS dialogue with references to single-image referents underlined; the color indicates
the referent. Note. The two images that have been ranked successfully at this point in the interaction have a faded
appearance.

B Model Input

Figure 4: Excerpt of an AGOS dialogue with messages paired with manually constructed ground truth referent
descriptions. Mentions are in purple and made bold for illustrative purposes. Ground truth labels for the referent
denoted by the mention in green.

Figure 5: Sample input to LLM, deconstructed for demonstration purposes (the sample is otherwise a flat sequence
of tokens). Left (text in purple): explanation of input; right (text in black): input. Note. The ground truth is only
available to the model during training, not during inference.

C Additional VLM Results

CLIP-B CLIP-L ALIGN BLIP
3 7 3 7 3 7 3 7

Random .11 .11 .11 .11 .11 .11 .11 .11
Mention .36 .36 .44 .44 .44 .44 .40 .40
Substitution .42 .42 .51 .51 .52 .52 .50 .50
coref, chain .42 .42 .49 .49 .47 .46 .47 .46
coref, set .42 .41 .48 .48 .49 .48 .47 .47
GT, chain .45 .47 .54 .56 .53 .53 .52 .54
GT, set .46 .48 .54 .56 .54 .54 .53 .55
GT, manual .47 .48 .53 .55 .58 .59 .55 .57
GPT-2 .41 .38 .46 .43 .49 .44 .47 .43
GPT-3 .44 .45 .52 .52 .54 .55 .52 .52

Table 3: Cross-validated image retrieval accuracy averaged over five folds for single-image referents (candidate set
not reduced). Note. Scores are rounded to the nearest hundredth. GT = ground truth; CLIP-B = CLIP ViT-B/32;
CLIP-L = CLIP ViT-L/14.
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CLIP-B CLIP-L ALIGN BLIP
3 7 3 7 3 7 3 7

Random .22 .22 .22 .22 .22 .22 .22 .22
Mention .49 .49 .55 .55 .56 .56 .54 .54
Substitution .56 .56 .62 .62 .64 .64 .64 .64
coref, chain .54 .54 .61 .61 .60 .60 .61 .61
coref, set .54 .53 .60 .60 .61 .61 .61 .61
GT, chain .58 .59 .66 .67 .66 .67 .66 .68
GT, set .58 .60 .66 .68 .67 .67 .66 .69
GT, manual .59 .60 .64 .66 .69 .70 .69 .70
GPT-2 .53 .49 .58 .54 .61 .58 .60 .58
GPT-3 .57 .58 .63 .63 .66 .66 .67 .67

Table 4: Cross-validated image retrieval accuracy averaged over five folds for single-image referents (candidate set
reduced). Note. Scores are rounded to the nearest hundredth. GT = ground truth; CLIP-B = CLIP ViT-B/32; CLIP-L
= CLIP ViT-L/14.

Cars Dogs Paintings Pastries Phones
3 7 3 7 3 7 3 7 3 7

Random .22 .22 .22 .22 .22 .22 .22 .22 .22 .22
Mention .52 .52 .62 .62 .60 .60 .61 .61 .58 .58
Substitution .63 .63 .70 .70 .70 .70 .68 .68 .67 .67
coref, chain .59 .60 .69 .69 .66 .67 .67 .68 .63 .63
coref, set .60 .57 .68 .68 .69 .68 .69 .70 .62 .62
GT, chain .66 .66 .76 .78 .72 .74 .75 .78 .71 .69
GT, set .66 .65 .74 .77 .73 .78 .76 .80 .73 .73
GT, manual .64 .63 .75 .78 .77 .80 .70 .72 .74 .74
GPT-2 .62 .62 .67 .62 .67 .62 .63 .61 .57 .50
GPT-3 .63 .63 .75 .78 .70 .70 .68 .72 .70 .69

Table 5: Cross-validated image retrieval accuracy per fold for single-image referents (candidate set reduced). Note.
Scores shown are of VLM that averaged best performance (BLIP-2). Scores are rounded to the nearest hundredth.
GT = ground truth.

Accuracy MRR NDCG
3 7 3 7 3 7

Random .11 .11 .22 .22 - -
Mention .47 .47 .63 .63 .72 .72
Substitution .55 .55 .71 .71 .78 .78
coref, chain .53 .51 .69 .68 .76 .76
coref, set .53 .51 .69 .68 .77 .76
GT, chain .60 .61 .75 .76 .81 .82
GT, set .60 .62 .75 .77 .81 .83
GT, manual .63 .64 .76 .78 .82 .83
GPT-2 .54 .48 .69 .65 .77 .73
GPT-3 .60 .60 .74 .74 .80 .81

Table 6: Cross-validated image retrieval performance
averaged over five folds for single-image referents (can-
didate set not reduced). Note. Scores shown are of VLM
that averaged best performance (BLIP-2). Scores are
rounded to the nearest hundredth. GT = ground truth.
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Figure 6: Text-image retrieval accuracy as a function
of the size of the context window. Results are shown
for BLIP-2 on the manually constructed ground truth
referent descriptions based on their respective windows.
We show results for both the reduced candidate set and
the not reduced candidate set.


