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Abstract
Schema-guided dialogue state trackers can gen-
eralise to new domains without further training,
yet they are sensitive to the writing style of the
schemata. Augmenting the training set with hu-
man or synthetic schema paraphrases improves
the model robustness to these variations but can
be either costly or difficult to control. We pro-
pose to circumvent these issues by grounding
the state tracking model in knowledge-seeking
turns collected from the dialogue corpus as well
as the schema. Including these turns in prompts
during finetuning and inference leads to marked
improvements in model robustness, as demon-
strated by large average joint goal accuracy and
schema sensitivity improvements on SGD and
SGD-X1.

1 Introduction

Task-oriented dialogue (TOD) agents provide natu-
ral language interfaces that users can interact with
to access a wide variety of services, from airline
search (Seneff and Polifroni, 2000) to complex cus-
tomer service applications (Chen et al., 2021). To
enable this, agents track key information commu-
nicated by the user as the conversation progresses.
This is known as dialogue state tracking (DST).
Commonly, the dialogue state is represented as a
sequence of task-specific slot-value pairs2.

A common DST assumption is that the set of
slots and values a user may communicate, the do-
main ontology, is known at design time. Hence,
extensive data collection and annotation is needed
to support new domains, which hinders the scalabil-
ity of this approach. Rastogi et al. (2020) address
this issue by creating the schema-guided dialogue
dataset (SGD). In SGD, the information available
to a TOD agent is organised as schemas3 describ-
ing services with which users can interact. Each

1Our code will be released upon publication.
2For example, for a restaurant booking a sequence could

be day=friday, time=7pm, guests=1, restaurant=nandos.
3See schema examples here: https://bit.ly/3RJ6u4l.

service has user intents representing the tasks users
can complete by interacting with the agent (e.g.
find restaurants). Several slots are associated with
each intent and the schema provides a natural lan-
guage description for each intent and slot. The
insight motivating description-driven DST is that
these descriptions alone can be used in tracking
the dialogue state in a form close to natural lan-
guage. This has emerged as a powerful approach
for few-shot and zero-shot DST (Jacqmin et al.,
2022) and benefits from recent advances in lan-
guage modelling. For example, Zhao et al. (2022)
finetune T5 (Raffel et al., 2020) to generate the
dialogue state conditioned on the dialogue history
and a descriptive prompt containing all intent and
slot descriptions in a service schema. The use of
natural language in the descriptive prompt enables
the underlying language model to generalise to new
services, whose schemas are not seen in training.

While the reliance on natural language is a
strength, Lee et al. (2022a) show that state-of-the-
art (SOTA) schema-guided DST models are not
robust to the style of descriptive prompts: in SGD,
the training schema contains a single description
per slot or intent, and models trained with prompts
composed from this schema alone are prone to
overfitting. Lee et al. (2022a) show this limita-
tion can be mitigated by increasing prompt diver-
sity. They use a large number of human annotators
alongside expert curation to create diverse schema
paraphrases that are used for model robustness im-
provement. This is a costly process that is not easily
scalable.

As an alternative to additional human annotation
of the schema, we show that the SGD training di-
alogues themselves exhibit sufficient diversity of
expression such that they can be used to overcome
the lack of diversity in the SGD schema descrip-
tions. We ground DST prompts in the dialogue
context by concatenating the schema descriptions
with dialogue turns extracted from the SGD cor-

https://bit.ly/3RJ6u4l
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Figure 1: D3ST input and target format. On the left, we show a schema excerpt, where slot and intent names, in
bold face, are followed by their natural language description. The encoder input, represented in the centre, is a
string, the concatenation of two elements: the prompt which describes what information should be output and the
dialogue context from which the information should be extracted. On the right we show the target dialogue state.

pus based on similarity to the dialogue state. We
find that this approach is more effective than using
synthesised prompts and even outperforms or is
comparable to the highly-curated human-written
prompts used by Lee et al. (2022a), when evaluated
with medium and large language models. We eval-
uate our methods using the SOTA D3ST prompting
scheme (Zhao et al., 2022) on the SGD and SGD-X
(Lee et al., 2022a) datasets.

2 Related work

Neural classification is effective for DST when
the domain ontology is fixed and known at design
time (Mrksic et al., 2017). Adapting such mod-
els to track new slots and domains requires anno-
tated conversational data and thus data scarcity is
a long-standing issue in DST research (Jacqmin
et al., 2022). Scarcity has been addressed by copy-
enhanced generation (Wu et al., 2019), reading
comprehension (Gao et al., 2019) and adapting
pretrained language models to generate the state
given the dialogue context alone (Peng et al., 2020;
Hosseini-Asl et al., 2020). These were improved
upon by transfer learning from question-answering
tasks (Lin et al., 2021a), which in turn was out-
performed by schema-guided models (Lee et al.,
2021; Zhao et al., 2022; Lin et al., 2021b). Re-
cently, Gupta et al. (2022) apply in-context tuning
(Min et al., 2022) to DST, creating training prompts
which contain a dialogue and its target state se-
quence. Their model thus learns from DST task
demonstrations.

Lee et al. (2022a) investigate the robustness of
SOTA schema-guided dialogue state trackers to
schema changes. This is a new line of research,
as previous work concerns other robustness issues
that generally affect DST, such as variations in the

conversational data distribution, noise, and adver-
sarial perturbations (Jacqmin et al., 2022). Through
extensive, crowdsourced4, schema paraphrase col-
lection, Lee et al. (2022a) report that DST perfor-
mance degrades substantially when models trained
on one set of prompts are evaluated on manually
paraphrased prompts. By contrast, Cao and Zhang
(2021) report little degradation in DST with back-
translated prompts, suggesting that backtranslation
is a weak proxy for actual human variability. Lee
et al. (2022a) perform data augmentation (DA) for
robust DST, finding that prompts obtained via auto-
matic paraphrasing lag in quality relative to manual
paraphrases. Ours is the first work to address the
gap between synthetic methods, such as backtrans-
lation, and manual paraphrasing. We show that the
gains from manual paraphrasing can be achieved
by mining the existing annotated dialogues used
for training the DST model in the first place.

3 Robust DST with grounded prompts

We review D3ST, a SOTA description-driven DST
model (Section 3.1). We then describe our ground-
ing method that extracts turns from the corpus (Sec-
tion 3.2) and uses them to design prompts for robust
DST with D3ST (Sections 3.3 & 3.4).

3.1 Description-driven dialogue state tracking
Figure 1 shows the inputs and outputs of D3ST
(Zhao et al., 2022). The model is implemented with
T5, an encoder-decoder language model (Raffel
et al., 2020). The encoder input, represented in
the centre, comprises a prompt describing what
information should be tracked by the DST model,
and the dialogue context, a conversation between

4The SGD schema were rewritten by over 400 annotators
and curated by dialogue experts, over the course of one month.
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a user and an agent from which slot-value pairs
should be extracted. The prompt is a concatenation
of slot and intent descriptions, extracted from the
service schema (on the left). Each description is
prefixed by a randomly assigned index prior to
concatenation. Zhao et al. (2022) motivate their use
of random indices to replace slot and intent names
because names convey little semantic information
and may be ambiguous5. In this paper, we will
refer to this prompt format as D3ST.

The model is trained to output index-value pairs
for all slots mentioned in the conversation (i.e. the
active slots) as well as an index representing the
active intent. These are represented on the right
in Figure 1. The slot-value pairs mentioned in the
conversation can be recovered by replacing the pre-
dicted indices with their corresponding slot names.
The user active intent is found by replacing the
predicted index with the name of the intent.

3.2 Mining turns for prompt design

1. REQUEST(restaurant_name)
SYS: Where do you want to dine?
2. INFORM(restaurant_name=Nandos)
USR: I want Nando’s.
3. INFORM_INTENT(find event)
USR: What shows are on?
4. OFFER_INTENT(buy ticket)
SYS: Want tickets?

Table 1: Sample semantic annotations

We now discuss how to extract turns from the
corpus to design better prompts. Our approach
involves an automatic step that uses the semantic
annotations in the corpus followed by a verification
step to ensure that the turns selected are diverse.

Each turn in SGD is semantically annotated with
one or more dialogue actions which describe what
is being communicated (Table 1). We focus on
knowledge-seeking turns (KSTs). These are anno-
tated with a single REQUEST dialogue act and as-
sociated with a single slot, without a value mention
(Table 1, line 1). Selecting turns annotated with a
single slot allows us to unambiguously associate
them with slots in the D3ST prompt. We do not
mine informational turns (labelled with INFORM)
since these mention a specific, known value, often
without reference to the underlying slot (Table 1,
line 2). Such turns could be combined with schema
information to form exemplar-based prompts as

5For example, the location slot name may be used to refer
to both a city name and an address across different services.

done by (Figure 1 in Gupta et al. (2022)), a more
complex approach which we discuss in Section 5.5.

To select turns for a given slot, s, we filter the
corpus to get all the knowledge-seeking turns relat-
ing to it. We manually select 5 of these, repeating
this process for each slot in every service in the
training data. See examples in Table 2. In a similar
fashion, we select 5 turns from those labelled with
a single INFORM_INTENT or OFFER_INTENT
act (Table 1) for every intent in the training schema.

Index Selected Knowledge-seeking Turn
1 Which event are you looking to book
2 Do you have any particular show in mind
3 And what is the event
4 What event do you wish to see
5 What is the event you are looking for

Table 2: Selected turns of the event name slot

We opt to select the turns manually because our
goal is prompt diversity. Our SGD analysis re-
vealed that the knowledge-seeking turns tend to
be biased towards specific vocabulary and syntac-
tic patterns. For example, among the 173 turns in
which the user requests the price of a rental car,
71.1% contain the word cost, 42.8% contain the
word total and, 27.7% contain total cost. In con-
trast, price appears in just 11.0% of the turns.

All turns were mined by one student in one day,
despite SGD being the largest schema-guided TOD
corpus. In practice, schemas are induced by devel-
opers from unlabelled conversation databases (Yu
et al., 2022). The turns could be collected as part of
this process with negligible overhead. We handle
slots with few KSTs as described in Appendix A.

3.3 Grounding prompts
To ground a schema description in its conversa-
tional use, we concatenate it with randomly se-
lected knowledge-seeking turns from the mined
collection (Figure 2). In the example shown, the
sampled knowledge-seeking turns for the city and
date slots are In which location should I check?
and Forecast for when?, respectively. These are
concatenated with the original SGD schema de-
scriptions name of the city and date for the weather
to ground the prompt. We concatenate the turns and
descriptions in random order, to prevent the model
learning to attend preferentially to one source of
information over another. We refer to D3ST trained
with prompts grounded in knowledge-seeking turns
as D3ST-Turn in what follows.
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Figure 2: Visual representation of D3ST-Turn prompting. Underlined knowledge seeking turns are those chosen at
random for inclusion in the sample D3ST-Turn prompt shown.

Slot names may provide additional information
about the meaning of a slot, so we propose to
ground the prompt both in knowledge-seeking turns
and slot names. We refer to D3ST trained with
prompts grounded in knowledge-seeking turns and
slot names as D3ST-TurnSlot.

3.4 Grounded prompt ensembling
Multiple knowledge-seeking turns are available for
decoding, enabling us to create multiple prompt
variants. A given model generates the dialogue
state when conditioned on each of these prompt
variants, in turn. The state hypothesis is the most
commonly predicted string when our single model
is prompted with the prompt variants. We call this
technique grounded prompt ensembling (GPE).

4 Experiments

4.1 Datasets and metrics
SGD (Rastogi et al., 2020) The training set contains
21, 106 dialogues across 16 domains. The test set
contains 4, 201 conversations, 77% of which have
a turn span where the user talks to the agent to
access a service unseen in training. 6 schemas are
seen in training whereas 15 are unseen. Hence,
this benchmark primarily tests the ability of DST
models to accommodate values, slots, prompts and
domains it has not been trained on.

SGD-X Lee et al. (2022a) created SGD-X be-
cause they found the linguistic patterns of the SGD
unseen services schemata to be too similar to those
of the seen schemata6. They use crowdsourcing
and dialogue experts to create five schema variants7

which are increasingly stylistically and lexically di-
vergent from the SGD schema. A schema variant
describes the same services as the SGD schema

6For example, descriptions of slots with "true" or "false"
values always start with Boolean flag indicating.

7See examples here: https://bit.ly/3Ev0KrV.

but with increased linguistic variation. The vari-
ants are ordered by the Jaccard distance between
the descriptions of the original SGD schemas and
the schema variant descriptions. The v1 variant is
the closest while v5 is the most dissimilar to SGD.
Ideally, a robust model should output the correct
state regardless of which schema variant is used for
prompting.

Metrics Joint goal accuracy (JGA)8 is the per-
centage of turns where all the slot-value pairs from
a given service are correctly predicted. On SGD,
it is computed over seen and unseen services. The
presence of the unseen services measures the abil-
ity of the DST model to make correct predictions
for unseen slots and values and to interpret descrip-
tions unseen at training time (Rastogi et al., 2020).

For SGD-X, we report the JGA broken down
by seen and unseen services and their combination.
The JGA coefficient of variation across the five
schema variants is termed sensitivity (SS). It mea-
sures how well the model accommodates linguistic
variation. Evaluation on the seen portion involves
prompting with paraphrases of schemata seen in
training. Performance decreases if the model over-
fits to the training descriptions. In evaluation on
the unseen portion, the model is prompted with
five distinct human-written prompts of increasing
dissimilarity to the original SGD. This evaluates if
generalisation is robust to linguistic variation.

4.2 DST models

Our baselines are three D3ST models9 trained with
large augmented datasets. For every training ex-
ample that uses the D3ST prompt format (Figure
1) linearised from the SGD schema, k additional
training examples are created either using synthetic
prompts or the k = 5 SGD-X schemata. We create

8We use the offical evaluator: https://bit.ly/3B7jD1c
9We use T5-base (220M) for all models except in Sec. 5.6

https://bit.ly/3Ev0KrV
https://bit.ly/3B7jD1c


448

augmented datasets using three methods, explained
below. See Appendix B for implementation details.

1. Backtranslation We follow Lee et al. (2022a)
to create k = 3 schema variants by backtranslating
the SGD schema via Chinese, Japanese and Korean
with Google Translate. The augmented dataset is 4
times larger than SGD ( 703, 120 examples).

2. Easy Data Augmentation (EDA) (Wei and
Zou, 2019) We create k = 5 schema variants by ap-
plying word-level perturbation to the SGD schema
(EDA). Synonym replacement is applied with prob-
ability 0.25 whereas random insertion, deletion
and substitution are applied with probability 0.05.
There are 1, 054, 680 training examples.

3. SGD-X We create 1, 054, 680 training ex-
amples using the k = 5 human-written SGD-X
schemata. Unlike the other baselines, SGD-X-
trained models see the human-written paraphrases
of the seen test services during finetuning. In all
other experiments, none of the SGD-X test prompts
are seen during training, and so we refer to this ex-
periment as an oracle, following Lee et al. (2022a).

Contemporaneous to our work, Coca et al.
(2022) propose a tree-ranking approach for im-
proving paraphrasing. While they show signifi-
cant gains compared to the state-of-the-art back-
translation baseline we compare to in our work,
we contribute to the body of knowledge on robust
state tracking by showing novel augmentation and
prompting techniques that achieve significant fur-
ther improvements.

Grounded D3ST Instead of augmentation, we
propose to ground D3ST in knowledge-seeking
turns by finetuning T5 with the Turn (D3ST-Turn)
and TurnSlot (D3ST-TurnSlot) prompts (Section
3.3) on a dataset containing 175, 780 examples
(SGD size). At decoding, the same turns ground-
ing the training prompts are used for seen services.
For unseen services, we select five turns per slot
as described in Section 3.2. For each test example,
we construct a prompt with the same format as in
training using knowledge seeking turns selected at
random, per slot, from the mined collection. This
tests model’s ability to interpret additional task-
relevant information.

5 Results and discussion

5.1 Robustness via data augmentation

Augmenting the finetuning dataset with the SGD-X
prompts leads to a 13.2% improvement in D3ST
SGD-X JGA (#1 vs #4, Table 3). In contrast, aug-

# Model SGD SGD-X Seen Unseen SS ↓
1 D3ST 69.8 56.5 73.6 50.8 70.1
2 D3ST + Backtrans. DA 72.1 62.2 84.0 54.9 53.1
3 D3ST + EDA DA 71.4 62.3 83.3 55.3 53.2
4 D3ST + SGD-X DA (oracle) 73.8 69.7 92.5 62.1 27.9
5 D3ST-Turn (ours) 75.9 69.5 88.5 63.2 36.6
6 D3ST-TurnSlot (ours) 74.7 72.0 90.7 65.6 23.7

Table 3: Grounded D3ST models outperform strong
baselines in both JGA and SS. Seen and unseen num-
bers decompose the SGD-X JGA (Section 4.1), oracle
indicates a model trained on SGD-X. "+" marks data
augmentation (DA) during finetuning, and is followed
by augmentation method name. Column maximum is in
bold. In all tables, numbers are averages of three runs.

Schema v1 v2 v3 v4 v5
Backtranslation 97.5 96.5 95.9 - -

EDA 99.1 98.5 96.6 93.2 86.4
SGD-X 89.7 88.0 88.4 86.8 87.5

Table 4: Semantic similarity of SGD and schema vari-
ants, measured by entailment (Narayan et al., 2022)

mentation with synthetic prompts obtained through
backtranslation or word-level augmentation im-
proves performance by just 5.6%. On SGD, human-
written prompts outperform the best performing
synthetic ones (#2) by a margin of 1.7%.

Gains obtained with synthetic prompts reflect
some degree of lexical and syntactic diversity in
the generated paraphrases. For example, a back-
translation of The amount of money to transfer is
Amount to be remitted and The account type of the
user is backtranslated as User’s account type. The
entailment scores (Table 4) show that backtransla-
tion largely preserves the semantic content of the
prompts. Meanwhile, if more edit operations are
applied via EDA, the synthetic prompts are less
faithful, as demonstrated by the sharp entailment
decrease for the v4 & v5 variants. Robustness did
not improve when we experimented with a larger
backtranslation-augmented dataset (Appendix C).

The SGD-X schemata "do not fully semantically
overlap with the input as traditional paraphrasing
requires" (Lee et al., 2022a). This is consistent
with SGD-X schema variants attaining lower en-
tailment compared to backtranslated ones (Table
4). The annotators used the wider context of the
service and common-sense knowledge to create di-
verse, high quality, schemas. Meanwhile, D3ST
learns to identify slots using the uniform linguistic
patterns of the SGD schema and it is not robust to
the wide variety of styles annotators used in SGD-
X. D3ST trained with augmented data via EDA
or backtranslation improves compared to D3ST



449

trained on SGD alone, but the large performance
gap to human-written prompts indicates that strict
paraphrasing introduces less diverse, task-relevant,
cues in the prompt compared to humans.

5.2 Prompt grounding with turns

Compared to D3ST, D3ST-Turn achieves absolute
gains of 13% and 6.1% on SGD-X and SGD, re-
spectively (#1 vs #5, Table 3). D3ST + SGD-X
DA outperforms D3ST-Turn on the seen services
because it has been trained with these prompt para-
phrases, whereas our model does not see these
prompts during training. Our model generalises
more robustly as demonstrated by the 1.1% (#4 vs
#5) JGA improvement on unseen SGD-X services.

Our results show that grounding the model in
knowledge-seeking turns, communicated before a
slot is mentioned, addresses weaknesses of data
augmentation (DA) with synthetic prompts. Such
turns reflect how humans use the language in con-
versation when they communicate slot values, and
may help the model more readily identify the
relevant context for value extraction. This ap-
proach generalises well to unseen domains and is
robust: we outperform all baselines on SGD and
closely match the performance of augmentation
with human-written paraphrases on SGD-X.

Descriptions and knowledge-seeking turns are
complimentary: the latter can be thought of as an
example that could help the model interpret descrip-
tions unseen at training time. Concretely, consider
the messaging domain, unseen in training. To ex-
tract the name of a location sharing recipient, a
model evaluated on SGD-X (v5) is prompted with
the description Name from address book. Because
T5 is pre-trained in a self-supervised way, without
domain-specific finetuning, it may fail to identify
that the aforementioned description refers to the
name of a person: address book never appears in
the SGD training corpus. By attending over Who
is the sharing recipient and the description jointly,
the model could interpret the description as refer-
ring to a person name. During training, the model
has learned to identify names, for example, when
predicting the value of the slot stylist name. Indeed,
the D3ST-Turn JGA in this domain is 41.8% while
the oracle model achieves just 28.5%. Our positive
results may thus arise due to knowledge-seeking
turns facilitating knowledge sharing between slots
seen in training and unseen ones.

5.3 Prompt grounding with turns and slots

D3ST-TurnSlot achives a 2.5% gain on SGD-X
compared to D3ST-Turn, outperforming the human-
written prompts (# 4 vs #5, Table 3). We posit that
this is due to the high quality annotations SGD-
X provides. This hypothesis is motivated by our
empirical observation that slot names in SGD-X
can contain more information compared to SGD
ones. For example, the slot private visibility in
SGD is annotated as private visibility yes or no
in SGD-X (v5), which cues the model on which
values should be generated for this slot. Also, in
SGD-X, the slot names and descriptions may be
complimentary. For example, the slot clock time of
alarm is described as Time for which the alarm is
set (SGD-X), whereas in SGD the equivalent slot
name, alarm time, is described as Time of the alarm.
On its own, the SGD description could refer to both
an alarm to be created or an existing alarm, whereas
the SGD-X description unambiguously identifies
the slot as referring to an existing alarm.

D3ST-TurnSlot outperforms D3ST + SGD-X DA
by 0.9% on SGD (#4 vs #6, Table 3) but lags be-
hind D3ST-Turn by 1.1%. This confirms our earlier
observation that, in SGD, unlike in SGD-X, slot
names may not provide information about the slot
that is not already contained in the description. We
also find that there are slot name ambiguities across
the SGD train and test sets. For example, the loca-
tion slot in the training set refers to cities, whereas
in the test set it refers to addresses. This finding
correlates with the study of Zhao et al. (2022), the
D3ST authors, who find that lack of information
in slot names and ambiguity lead to degraded JGA
(on both SGD and SGD-X) of slot-name driven
models compared to D3ST10. Our positive results
on SGD-X show that combining the two sources of
information can improve model robustness if they
are complimentary and unambiguous.

5.4 Grounded prompt ensembling

We apply GPE by running three inference calls
with distinct but semantically equivalent grounded
prompts. We take the most common generation
as the prediction. Table 5 shows significantly im-
proved robustness compared to single-prompt de-
coding. Interestingly, D3ST-TurnSlot is improved

10A slot-driven model uses slot names instead of descrip-
tions. For our example in Figure 1 the equivalent prompt
is 0=name, 1=city, i1) get weather. We refer the reader to
Sections 4.3, 4.4 and 4.6 in Zhao et al. (2022) for detailed com-
parisons of the effectiveness of these competing approaches.
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Model SGD SGD-X Seen Unseen SS ↓
D3ST-Turn 77.2 1.4 71.7 2.2 90.8 2.3 65.4 2.2 28.1 8.5

D3ST-TurnSlot 75.0 0.3 72.8 0.8 91.4 0.7 66.6 1.0 19.2 4.5

Table 5: GPE improves SGD/SGD-X performance.
Faded numbers are absolute improvements relative to
the single pass models in Table 3 in rows # 5 & # 6.

Model SGD SGD-X Seen Unseen SS ↓
T5DST 70.0 50.4 58.5 47.7 87.0

MT-SGDST 80.1 60.8 72.5 56.9 69.5
SDT-Seq 76.3 - - - -
SDT-Ind 78.2 - - - -

D3ST-Turn (ours) 75.8 69.5 88.5 63.2 36.6
D3ST-TurnSlot (ours) 74.7 72.0 90.7 65.6 23.7

Table 6: SOTA DST models on SGD and SGD-X. Bot-
tom rows repeated from Table 3 for easy comparisons.

less compared to D3ST-Turn on both SGD and
SGD-X owing to its significantly smaller prompt
sensitivity (23.7 compared to 36.6, Table 3, # 5 vs
#6). This shows that slot names increase the con-
fidence of the model in its predictions, which may
explain why we found D3ST-TurnSlot to slightly
outperform D3ST-Turn (Section 5.3).

5.5 Comparison with other models
We compare D3ST-Turn/TurnSlot with SOTA DST
models (Table 6). T5DST (Lee et al., 2022a) gen-
erates a slot value when prompted with a dialogue
concatenated with a single description. The state
is predicted iteratively by prompting the model
with each description. MT-SGDST (Kapelonis
et al., 2022) uses semantic annotations, state his-
tory and handcrafted features with a multi-head
BERT model for iterative prediction. SDT-Seq
(Gupta et al., 2022) grounds the state tracker in a
prompt containing a dialogue and its target state
sequence and, like D3ST, predicts the entire state
in a single pass. SDT-Ind is an iterative version of
SDT-seq, using annotated turns as prompts.

Grounding prompts in knowledge-seeking turns
makes D3ST competitive with SOTA approaches,
significantly outperforming T5DST. MT-SGDST
is better on the SGD but degrades significantly
on SGD-X. Because it uses state histories and se-
mantic annotations instead of system turns, this
model suffers from large performance variability
(Appendix B.2): the difference between max and
min SGD-X JGA across three runs is 11.8% for
this model but just 1.1% for D3ST-Turn. While not
fully closing the gap on the SGD benchmark, we
demonstrate comparable performance and signifi-
cantly improved robustness.

Model SGD SGD-X Seen Unseen SS ↓
D3ST 76.0 69.2 86.8 63.3 38.5

D3ST + SGD-X DA 77.4 75.6 93.2 69.7 19.8
D3ST-TurnSlot (ours) 77.4 76.0 92.6 70.5 20.5

Table 7: Prompt grounding improves T5-large D3ST.

D3ST-Turn achieves 75.8% on SGD, which is
comparable with SDT-Seq (76.3%). Our model is
faster to train and decode owing to reduced prompt
lengths and predicting a shorter state sequence11.
SDT-Ind is better because it is prompted to return
the value of each slot iteratively, with an example of
how that typical slot occurs in conversation. GPE is
cheaper and reduces the performance gap between
SDT-Ind and D3ST-Turn to just 1.0%.

In terms of human effort, our approach is more
scalable than, or comparable to, recent work SDT
uses entire annotated dialogues or annotated turns
as prompts (Figure 1, Gupta et al. (2022)). These
are defined by developers for unseen services,
which is comparable to writing turns for each slot.
Zero-shot transfer learning (Campagna et al., 2020)
requires knowledge-seeking turns for generating
synthetic dialogues12 used to bootstrap DST mod-
els for new services. However, constraining entire
dialogue generation is non-trivial and handcrafted
grammars are required for each domain. This is
very difficult to apply to the setting we consider,
due to the large number of domains and complex
multi-domain dialogue flows. We show that robust
generalisation to new services can be achieved with
few knowledge-seeking turns per slot which can be
selected from the training corpus during finetuning
and written by the developers for new services.

5.6 Scaling behaviour

Larger models have enhanced language understand-
ing and common sense knowledge (Raffel et al.,
2020; Zhou et al., 2021), reflected in the 12.7%
improvement of the baseline T5-large D3ST perfor-
mance on SGD-X compared to its T5-base coun-
terpart (#1, Tables 3 and 7). Exposing the model
to diverse prompts is still important, as demon-
strated by the improved JGA of D3ST + SGD-X
DA. We find that D3ST-TurnSlot matches the SGD
performance and achieves a slight improvement on
SGD-X (0.6%), demonstrating that our approach
scales to larger language models.

11SDT predicts all slots, including inactive ones.
12The direct questions defined by Campagna et al. (2020)

are KSTs. See examples here: https://bit.ly/3yvgGqi.

https://bit.ly/3yvgGqi
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k=1,...,5
m=1

0=where would you like the weather
checked 1=what date are we talking
about i1) What is the atmospheric
condition here [usr] what's the
weather like tomorrow? [sys] where
are you? [usr] in london.

0=in which location should i
check 1=for what day i1) what's
it like outside [usr] what's the
weather like tomorrow? [sys]
where are you? [usr] in london.

KST DA training examples
1 schema-guided training example

5 KST training examples

0=name of the city 1=date for the
weather i1) get the weather of a
certain location on a date [usr]
what's the weather like tomorrow?
[sys] where are you? [usr] in london.

slots
  city: name of the city
  date: date for the weather 
 Training 

Corpus

Seq2Seq
(T5)

[state] 0=london
1=tomorrow
[intent] i1)

Target Dialogue States

D3ST

intents: 
GetWeather: Get the
weather of a certain
location on a date 

What's it like outside? 
 Date for the weather? 

 On any particular date? 
  Forecast for when? 

 What is the condition here?

1.
2.
3.
4.
5.

m       Mined Turn 

In which location should I check? 
Which city's weather? 

 On any particular date? 
  Forecast for when? 

 Where were you like the weather

1.
2.
3.
4.
5.

m       Mined Turns    city

For what day? 
 Date for the weather? 

 On any particular date? 
  Forecast for when? 

 What date are we talking about?

1. 
2. 
3. 
4. 
5.

m       Mined Turns    date

Turn Mining

GetWeatherWeather_1
schema

slot-wise  
concatenation

Figure 3: Data preprocessing pipeline for KST augmentation. KST training examples share the conversation with
the schema-guided training example, and concatenated KSTs, underlined, replace the schema-guided prompt.

# Decoding Prompt SGD SGD-X Seen Unseen SS ↓
1 Turn [GPE] 74.9 [76.7] 71.7 [73.9] 91.9 [92.1] 65.0 [67.7] 30.7 [22.6]
2 TurnSlot [GPE] 73.8 [75.3] 71.0 [72.9] 91.0 [91.7] 64.3 [66.6] 31.2 [23.1]
3 D3ST 74.4 66.7 88.8 59.4 43.4

Table 8: JGA of D3ST with KST augmentation decoded
with different prompt formats. GPE further improves
these models (improvements inside brackets).

5.7 Data augmentation or prompt grounding?

In Section 5.2, we discussed that knowledge-
seeking turns may facilitate knowledge sharing be-
tween seen and unseen slots. We now investigate
whether jointly encoding the turn and description
by including them in the same prompt is the only
way to impart this property or whether this can
be achieved by augmenting the training data with
prompts containing only knowledge-seeking turns.

Figure 3 shows our experimental setup for aug-
mentation with knowledge-seeking turns. We sort
the mined turn lists for each slot from Section
3.2 according to their Jaccard distance to the cor-
responding SGD schema description. We create
k = 5 increasingly diverse prompts by replacing
all the slot descriptions in a schema-guided training
example with the kth knowledge-seeking turn. The
resulting finetuning set is the same size as SGD-X.

Comparing the performance of augmented and
grounded models (#5 & #6, Table 3 vs #1 & #2,
Table 8) shows that grounding D3ST is slightly
more effective on SGD.

On SGD-X, decoding the KST-augmented D3ST
with TurnSlot prompt format causes a small (1%)
regression with respect to D3ST-TurnSlot, possibly
due to mismatch between the train and test prompt
formats. "Turn" decoding slightly improves over
D3ST-Turn. Hence, both grounding and data aug-
mentation with knowledge-seeking turns are effec-
tive for robust DST. Training with augmented data,
converges slower and is resource intensive. More-

# Model SGD SGD-X Seen Unseen SS ↓
1 D3ST-TurnSlot 77.4 76.0 92.6 70.5 20.5
2 D3ST + KST DA/D3ST 76.3 72.8 92.5 66.3 26.0
3 D3ST + KST DA/Turn 76.1 74.6 93.4 68.4 26.0
4 D3ST + KST DA/TurnSlot 75.8 73.6 92.2 67.4 28.2

Table 9: Grounding prompts (#1) is more effective com-
pared to KST-augmentation (#2 - #4) for robust DST
with T5-large (770M parameters).

over, we find that grounding is more effective for
larger language models (Table 9).

5.8 Why is grounding more effective?
Decoding the KST-augmented model with the
SGD/SGD-X schemata alone (i.e., without ground-
ing) leads to a decrease in the unseen performance
(#1 & #2 vs #3, Table 8). Grounding the prompt
in KSTs at decoding time is crucial for improved
robustness. As discussed in Section 5.2, these turns
facilitate knowledge sharing between seen and un-
seen slots. Without them, the model cannot access
knowledge encoded in its weights, and robustly
predict the dialogue state when the prompts are too
dissimilar to the training schemata (Table 10).

SGD SGD-X (avg) v1 v2 v3 v4 v5
0.43 5.03 1.07 0.67 3.35 11.3 8.76

Table 10: JGA difference between KST-augmented mod-
els decoded with Turn and D3ST prompt formats (#1 &
#3, Table 8). SGD-X JGA broken down by variant. v5
schema is the most dissimilar to the SGD test schema.

6 Conclusion

Grounding D3ST and data augmentation with
knowledge-seeking turns are effective for robust
schema-guided DST. Both improve D3ST robust-
ness by a large margin compared to strong base-
lines and yield similar benefits as training on large,
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diverse collection of human-written prompts. Our
proposed approach is competitive with or outper-
forms other SOTA DST models on SGD and SGD-
X. We have also showed how prompt engineering
can be applied to boost model robustness through
grounded prompt ensembling, a novel technique
that uses a single model for ensembling.

7 Limitations

One limitation of our approach is our decision to
select the turns from the training data manually
rather than automatically. Selecting k-diverse turns
automatically is possible but requires efficient im-
plementations given the size of the corpus and the
quadratic complexity of the naive algorithm in the
number of candidate turns. Implementing such
algorithms requires far more expertise and time
commitment compared to ensuring the selected
turns are diverse manually. Such an approach is
described by Lee et al. (2022b). However, in a
follow-up study, we have confirmed the general-
ity of our approach by replicating our experiments
with large-language model generated data or sam-
pling randomly from large dialogue corpora during
the first epoch of training. This allays concerns
regarding the vulnerability of our method to human
bias.

While not an issue for SGD or other large scale
corpora, the diversity of the training corpus may
influence the performance of our approach as ex-
tracting lower diversity turns is expected to limit
robustness improvements. However, knowledge-
seeking turns existing in small corpora can be used
to query large, possibly unlabeled, conversational
databases to ensure prompt diversity. We left a
detailed study of the impact of prompt diversity to
DST robustness to future work.

Finally, for practically implementing our ap-
proach for unseen services, we require the develop-
ers to provide few examples of knowledge-seeking
turns. Our currently in progress work explores gen-
eration of such turns automatically with very large
language models.
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A Turn mining details

For 31 out of the 214 slots there are no knowledge-
seeking turns or there are less than 5 distinct knowl-

edge seeking turns13 in the dialogue corpus. These
includes result slots which are communicate by the
agent upon user query, such as the name or time of
an existing alarm in the Alarms_1 service. These
slots do not appear in state annotations. Moreover,
SGD dialogue flows are generated by semantic-
level interaction between two machines modelled
using push-down automata (Rastogi et al., 2020).
As such, not all dialogue flows are covered. For
example, in the Alarm_1 service the user always
states the name of a new alarm and the time they
want to set it for so the system never asks for what
time the new alarm should be set.

We circumvent these issues with two simple
strategies, which are applied depending on whether
a slot has knowledge-seeking turns in other ser-
vices or not. The majority of the slots fall in the
former case.

Turn copy The only knowledge seeking turn
for the fare slot in Buses_1 service is Thanks
for that, how much did it cost?. However, price
is a generic concept which appears in other ser-
vices (e.g. Events_1) so instead of reducing
prompt diversity by always using this turn, we copy
knowledge-seeking turns from other services. In
this instance, How much did it cost?, Ticket fare
for each passenger?, Price per ticket? and What
price? are copied. This strategy is applied to all
slots that appear in other services.

Span selection For just 8 slots, a relevant span
appearing before or after the slot value is selected
from turns annotated with actions INFORM(s=v)
or CONFIRM(s=v) where s is a slot for which
no knowledge-seeking turns exist and v is its
value. For example, there are no turns where
the system or user ask for the seating class of
an airline ticket. We select the span class flight
ticket instead of a full turn from the system turn
Please confirm an Economy class flight ticket to
NY, tomorrow.. The semantic annotation of this
turn is CONFIRM(destination=NY),
CONFIRM(date=tomorrow),
CONFIRM(seating_class=Economy),
CONFIRM(passengers=1).

B Experimental details

B.1 D3ST implementation
We process the data as described by Zhao et al.
(2022) with the following differences, which were

13Only 25 of these slots are unique as some slots repeat
across services.
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indicated by the paper authors upon private com-
munication: (1) the indices are separated by the =
symbol in both the inputs and the targets, (2) for
categorical slots which take the dontcare special
value, our output contains slot_index: dontcare sub-
string and we do not include the special value in
the prefix and (3) we lowercase inputs and targets.

The examples are truncated to the last 1, 024
tokens on the input side for the baseline and dis-
carded altogether for Turn/TurnSlot prompt for-
mats14. We optimise with the Adafactor optimizer
and effective batch size 32, starting from the initial
weights google/t5-v1_1-base published by
huggingface (Wolf et al., 2019). We interpo-
late the learning rate linearly between 0 and 10−4

over the first 1000 steps and keep it constant there-
after. We select the model by evaluating the devel-
opment set joint goal accuracy (JGA) every 5000
gradient updates, stopping the training if said met-
ric fails to improve after 3 consecutive evaluations.

All results in Section 5 are averages of three
runs initialised with different random seeds. For all
experiments, we used the same hyperparameters
and stopping criteria as just described, with the
exception of training the D3ST + SGD-X DA and
D3ST + KST DA experiments for T5-large (rows
2 in Table 7 and last three lines in 9) where we
allow all runs 1 epoch of augmented data (each
SGD conversation is seen 6 times) due to limited
computational budget.

B.2 MT-SGD implementation

The numbers presented are averages of three runs.
The first SGD run (JGA of 83.2%) is based upon
a metric file received from the authors. We could
only reproduce 82.7% of the quoted number, but
we include the higher number in our average. We
trained the model using the publicly available
code15 twice more obtaining to obtain 77% and
80.2%. On SGD-X the JGA range is between
54.6% and 66.4% across three runs. We selected
the best checkpoint as indicated in the reposi-
tory’s instructions.

C Backtranslation experiment

We experiment with larger backtranslation datasets
to see if finetuning D3ST on a dataset the same size
as the SGD-X dataset (Section 4.2) can improve
results. We created two more variants by backtrans-

14This is just around 0.05% of the data.
15See it here: bit.ly/3j8sPwj

Size SGD SGD-X Seen Unseen SS
4x 72.1 62.2 84.0 54.9 53.1
6x 71.5 61.0 82.5 53.8 54.4

Table 11: SGD and SGD-X JGA with backtranslation
datasets of different size. We repeat line 2 from Table 3
in the top row, for easy comparison

Metric Method v1 v2 v3 v4 v5

BLEU Backtranslation 4x 36.4 26.01 18.9 - -
Backtranslation 6x 51.3 37.2 29.5 23.4 18.2

self-BLEU Backtranslation 4x - 49.3 41.7 - -
Backtranslation 6x - 55.3 49.7 44.6 39.6

Table 12: Lexical diversity metrics of backtranslated
prompts. self-BLEU measures diversity of n sentences

lating the SGD schema via French and Russian, as
done by Huang et al. (2021).

Augmenting with these additional examples neg-
atively impacts model robustness (Table 11). This
may arise because increasing the number of train-
ing examples significantly (Table 12) does not in-
crease the prompt diversity by a large margin, and
so the training distribution of the prompts is closer
to the training data. Creating a diverse collection of
paraphrases via backtranslation is thus challenging,
as it requires access to translation systems to high-
difficulty languages. This is necessary, since, as
shown in Table 12 (BLEU, column 2) translating
to high-resourced languages such as French yields
paraphrases that are lexically more similar to the in-
put and are not as effective in improving the model
robustness. Meanwhile, translation to difficult lan-
guages leads to semantic errors which may harm
DST. For example, Station where the bus is leav-
ing from is backtranslated to Bus departure/arrival
station and Station where the bus is going to is
backtranslated as bus station (via Japanese).

By grounding the model in turns collected from
the corpus, not only do we create diverse inputs,
but we guarantee that these correctly represent fine
grained semantics and by-pass the issues encoun-
tered when constructing prompts via paraphrasing.

D SGD results

In the main body we report the SGD JGA accu-
racy as an upper bound for the D3ST model ro-
bust accuracy. To make our tables readable, we
do not include SGD performance breakdown by
seen/unseen services in Section 5. We include it in
Table D to facilitate future comparisons

bit.ly/3j8sPwj
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Model SGD SGD-Seen SGD-Unseen
D3ST 69.8 92.8 62.2

D3ST + SGD-X DA 73.8 92.7 67.5
D3ST-Turn 75.8 92.9 70.1

D3ST-TurnSlot 74.7 92.8 68.7
D3ST + KST DA/Turn 74.9 92.6 69.0

D3ST + KST DA/TurnSlot 73.8 92.5 67.6
D3ST + KST DA/D3ST 74.4 92.8 68.3

Table 13: Breakdown on SGD JGA into seen and unseen
services JGA for models reported Tables 3 and 8.


