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Abstract

Understanding uncertainty plays a critical role
in achieving common ground (Clark et al.,
1983). This is especially important for mul-
timodal AI systems that collaborate with users
to solve a problem or guide the user through
a challenging concept. In this work, for the
first time, we present a dataset annotated in col-
laboration with developmental and cognitive
psychologists for the purpose of studying non-
verbal cues of uncertainty. We then present an
analysis of the data, studying different roles of
uncertainty and its relationship with task dif-
ficulty and performance. Lastly, we present a
multimodal machine learning model that can
predict uncertainty given a real-time video clip
of a participant, which we find improves upon
a baseline multimodal transformer model. This
work informs research on cognitive coordina-
tion between human-human and human-AI and
has broad implications for gesture understand-
ing and generation. The anonymized version
of our data and code will be publicly available
upon the completion of the required consent
forms and data sheets.

1 Introduction

Recognizing uncertainty in interlocutors plays a
crucial role in successful face-to-face communica-
tion, and it is critical to achieving common ground
(Clark et al., 1983). To accurately identify uncer-
tainty signals, human listeners learn to rely on fa-
cial expressions, hand gestures, prosody, or silence.
AI systems that aim to collaborate and coordinate
with users in a human-like manner also need to
understand these signs of uncertainty. To this end,
in this paper, we introduce a multimodal, annotated
dataset for uncertainty detection in young children.

As a multimodal communicative sign, identify-
ing uncertainty is an important and challenging
task for AI systems. Especially because it varies
across different ages and demographics; it is some-
times verbalized and sometimes not (Blanco and

Figure 1: A diagram of our multimodal machine learn-
ing model. After identifying uncertainty cues in the
multimodal transformer, the model passes the cues onto
a final multilayer perceptron classifier to output whether
the child is expressing uncertainty or not.

Sloutsky, 2021); it brings in different modalities,
and it is subtle. Although it is critical, uncertainty
signal recognition is understudied in younger chil-
dren. In this work, we study detecting uncertainty
in the setting of a counting game for children ages
4-5. We first identify potential cues of uncertainty
presented in different modalities (e.g., spontaneous
verbal responses, hand gestures, facial expressions,
hesitation) and specifically examine the relation-
ship between task difficulty, task performance, and
exhibited levels of uncertainty. We then use these
cues to inform an ensemble model, which first iden-
tifies these cues from multimodal data and then
uses them to predict uncertainty (Figure 1).

This work informs research on cognitive coordi-
nation between human-human and human-AI col-
laboration. With this paper, we contribute an anno-
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tated multimodal dataset of uncertainty in children
(Section 3 provides details about the dataset, an-
notation protocol, and analyses of the dataset); we
analyze the performance of multimodal transformer
models in identifying uncertainty on this dataset
(Sections 4 and 5); and finally we present a case
study on how children express uncertainty based
on their age.

2 Related Work

We cover related works of uncertainty in two sec-
tions: datasets and protocols for studying uncer-
tainty in children, the Approximate Number Sys-
tem, and uncertainty in human-AI interactions.

2.1 Datasets and Protocols for Studying
Uncertainty in Children

Adults are generally more direct and communicate
their uncertainty via explicit verbal cues. Children,
however, lack this insight into their own uncer-
tainty, making uncertainty detection more difficult
from an outsider’s perspective. As such, detecting
uncertainty in children remains a complex problem.

What has been established, however, is that chil-
dren consistently communicate their uncertainty
through the use of various facial, auditory, and
gestural cues. For example, Harris et al. (2017)
found that children are very expressive when they
are uncertain. In the presence of an adult, these
expressions may be communicated via hand flips,
questions, and utterances, such as “I don’t know.”
However, when children are alone, these same sig-
nals can be representative of signals of uncertainty.
In the past, researchers have attempted to codify
behaviors associated with communicating uncer-
tainty by parsing through these various cues and
creating annotation protocols.

Previously, researchers Swerts and Krahmer
(2005) aimed to detect uncertainty in audiovisual
speech by coding for different audiovisual cues in
both adults and children. Their protocol consisted
of audio cues (e.g. speech fillers and speech delays)
and facial movements (e.g. eyebrow movement and
smiling). While the protocol included both audio
and visual cues, the cues that were noted were
limited. Another protocol developed by Mori and
Pell (2019) studied solely visual cues signaling un-
certainty in speech communication. These cues
included changes in gaze direction, facial expres-
sions, and embarrassed expressions. An additional
protocol developed by Ricci Bitti et al. (2014) stud-

ied uncertainty through facial expression entirely.
However, while these protocols are indeed use-

ful, they lack the specificity necessary for our goal
of pinpointing various multimodal cues associated
with uncertainty. There are other various proto-
cols, but they are also limited, typically adhering
to one modality. Consequently, we expanded upon
these existing protocols and included other multi-
modal behaviors grounded in developmental and
cognitive psychology, and presented multimodal
machine learning models that can predict these cues
and their association with uncertainty.

Children have an intuitive sense of numbers re-
lying on the Approximate Number System (ANS).
The ANS obeys Weber’s Law, where one’s ability
to differentiate between two quantities depends on
the ratios of those quantities (Dehaene, 2011; Odic
and Starr, 2018). The smaller the ratio, the more
difficult it is to discriminate between quantities and
the more uncertainty there is in the participants’
internal representations. Previous research showed
that children perform better on a numerical com-
parison task when given a scaffolded, Easy-First
numerical task starting with easier trials (e.g., 10
vs. 5) and progressing to harder ones (e.g., 10 vs.
9), compared to children seeing the same exact tri-
als in the reversed order (i.e., Hard-First), an effect
termed “confidence hysteresis” (Odic et al., 2014).
This implies that confidence is built by gradually
working up to harder tasks, resulting in better per-
formance, whereas starting out with more difficult
tasks reduces confidence, resulting in worse perfor-
mance.

Due to its effectiveness at generating confidence
or lack thereof in participants, such a numerical
comparison task would be the ideal method for
measuring behaviors associated with uncertainty.
As such, the present study aims to fulfill this objec-
tive by implementing this “confidence hysteresis”
paradigm into the task children are given.

2.2 Studying Uncertainty in Human-AI
Interaction

Multimodal models have been shown to improve
performance on certain tasks by grounding some
aspects of the human condition with features be-
yond text. Leveraging multiple modalities is partic-
ularly applicable in cases where text may miss key
insights, such as sarcasm detection (Castro et al.,
2019), depression prediction (Morales et al., 2018),
sentiment detection (Yang et al., 2021), emotion
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recognition (Morency et al., 2011), and persua-
siveness prediction (Santos et al., 2016). Tasks in-
volving such complex labels benefit from multiple
modalities due to the richness of the data streams.
In addition to understanding what is said, under-
standing how it is said (pitch, facial expression,
body language, gesture) is crucial (Beinborn et al.,
2018).

There have been attempts at predicting uncer-
tainty from the audio through prosodic features.
Dral et al. (2011) reported that prosodic features
were successful in detecting speaker uncertainty
in spoken dialogue with a 75% accuracy. Pon-
Barry and Shieber (2011) had similar findings with
prosodic features, and self-reported states of cer-
tainty and perceived states have strong mismatches.
In this paper, we address this by controlling task
difficulty to affect a participant’s level of observed
uncertainty. A seminal study on the understand-
ing and generation of multimodal uncertainty cues
exists by Stone and Oh (2008). Here the authors an-
alyze adult human-human conversations for uncer-
tainty cues and try to replicate them using avatars.
Our experimentation and modeling efforts, on the
other hand, are focused on the domain of uncer-
tainty detection in younger children.

3 Data

Participants A group of 68 children between the
ages of 4 and 5 years old (Mage = 5;0; SDage =
6.88 months; 28 females) was recruited through
Lookit, an online platform for developmental stud-
ies (Scott and Schulz, 2017). Thirty-six parents
identified their child as White, six as Asian, three
as Hispanic, Latino, or Spanish origins, and the
rest as multi-racial. All but three parents reported
having a college degree or higher level of educa-
tion. After completing the study, compensation
was sent in the form of a $5 gift card. Each child
participated in 30 trials which are, on average, 8
seconds long. In total, our data is composed of
16,320 seconds of video data.
Task Participants were given an Approximate Num-
ber System manipulation task adapted from Wang
et al. (2021) designed to impact children’s certainty
about numerical quantities. Children were pre-
sented with two arrays of dots paired with two
cartoon characters (Figure 2) and asked to guess
which character has more dots.

Both characters and their array of dots appeared
for 2500 ms before disappearing. This short display

Figure 2: Schematic of experimental procedure depict-
ing the Easy-First condition on the left and the Hard-
First condition on the right. As time progresses through-
out the task, the trials advance from easier ratios (2.0) to
hard ratios (1.11) in the Easy-First condition. Whereas
in the Hard-First condition, trials move in reverse order
from hard ratios (1.11) to easy ratios (2.0) as time pro-
gresses.

duration was chosen to ensure that children did not
have sufficient time to count. Children were then
asked to click on the side of the screen showing
the greater number of dots. Children were given
immediate audio feedback for each trial once they
chose their response.

Children completed 30 trials with the following
number pairs: 10:9 dots (1.11 ratio), 8:7 (1.25 ra-
tio), 14:12 (1.17 ratio), 10:8 (1.13 ratio), 9:6 (1.5
ratio), and 10:5 (2 ratio). In half of the trials, arrays
with more dots had a greater, congruent cumulative
area. In the other half of the trials, arrays with the
greater number of dots had a smaller, incongruent
cumulative area.

Children were randomly assigned to either the
Easy-First or Hard-First conditions. In the Easy-
First condition, trials advanced from the easier tri-
als (e.g., 10:5) to the harder trials (e.g., 10:9) in a
staircase order following the design of Wang et al.
(2021). Whereas in the Hard-First condition, trials
move in reverse order from hard ratios (e.g., 10:9)
to easy ratios (e.g., 10:5).
Annotation Procedure Annotators first watched
the video muted so as not to be influenced by the
vocal feedback from the task since whether or not
the child answered right or wrong may lead them to
over/under-interpret certain cues. During this first
watch, they marked all present physical cues as in-
dicated by the protocol. On their second watch, an-
notators unmuted the video, and marked all verbal
cues. If the cue was not present, the corresponding
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Figure 3: The distribution of uncertain trials with task
difficulty on a scale of 1 (easiest) to 30 (hardest). Un-
certainty shows a strong correlation with task difficulty
(r(58) = −.927, p < .01).

cell was left empty.

3.1 Annotation Protocol
In collaboration with a team of developmental psy-
chologists and cognitive psychologists, we have
collected and designed a protocol that aims to study
uncertainty, particularly expressed non-verbally.
Through pilot studies observing and annotating our
data, we iteratively defined our protocol and con-
structed a list of signals we observed as signs of
uncertainty. Our protocol spans multiple modali-
ties and includes facial, gestural, and auditory cues
to account for a broad spectrum of possible behav-
iors. The protocol can be found in Table 1 with
supplemental example images in Figure 4. The
Rutgers University Institutional Review Board ap-
proved the research, and all parents of this study’s
children provided verbal consent before their chil-
dren’s participation. However, only some of the
parents agreed to allow their children’s video and
voice recordings to be shared publicly.

3.2 Analysis
In this section, we provide an analysis of our an-
notated data, identify any significant cues that con-
tribute to detecting uncertainty, and explore when
different cues occur.
When were children annotated as uncertain?
The annotations are split 13.8/5.3/80.9 between
the labels uncertain/unclear/non-uncertain. Of all
the annotated trials, 79.3% were correct, of which
82.4% were rated as having no uncertainty. In other
words, most trials are within the children’s capabil-
ity and confidence. While a significant class imbal-
ance exists between uncertain and non-uncertain

trials, the distribution is realistic.
Are uncertainty and task difficulty related?
As shown in Figure 3, uncertainty was found to
be highly correlated with task difficulty, r(58) =
−.927, p < .01. Both ratio of dot size and size
control factor into the difficulty of a trial (with a
smaller ratio and the presence of size control both
indicating a harder trial).
Are uncertainty and task performance related?
Despite the high correlation between uncertainty
and task difficulty, there was no substantial cor-
relation between uncertainty and task correctness,
r(58) = .290, p > .4. This makes sense as the
accuracy and ease of a task are not necessarily in-
tertwined; a participant may make a mistake on an
easy trial or get lucky on a difficult trial.
How do demographics affect uncertainty?
We analyze participant demographics in terms of
age and gender. Regarding the frequency of ex-
pressing uncertainty, we found that the average
participant age of the uncertain trials is younger
than that of the non-uncertain trials, though they
are not significantly different. Similarly, female
participants have slightly more uncertain trials, and
male participants have slightly more non-uncertain
trials, but the results are insignificant.

However, we did find gender differences in the
types of cues used to express uncertainty. Female
participants exhibited more of the filled pause cue,
while male participants exhibited more of the smile
and shoulder movement cues. The full table of
comparisons can be found in Appendix Table 5.
Which cues occur the most?
The percentage in which each cue appears in all

uncertain trials can be found in Figure 5. We can
see that in general, hand on face and smile are the
most common cues, appearing in 17% and 12% of
all trials, respectively.

Notably, during uncertain trials, while hand on
face and smile remain common, other cues also
appear more frequently. In particular, eyebrow
scrunch, eyebrow raise and delay are now equally,
if not more common, appearing in 22% and 17%
of all uncertain trials. This is promising, as cues
frequently appearing in uncertain trials but not so
common throughout all trials can be valuable indi-
cators of uncertainty.
Which cues occur in difficult trials as opposed
to easy trials?
The percentage that each cue appears in hard and
easy trials can also be found in Figure 5. Hard
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Cue Description

Delay The participant delayed their decision-making with a pronounced pause
Eyebrow raise The participant raised their eyebrows
Eyebrow scrunch The participant markedly scrunched their eyebrows or squinted their eyes
Filled pause Utterances such as “umm,” “hmm,” or “uh.”
Frustrated noise Sounds of verbal frustration, such as sighing, groaning, and growling
Funny face The participant grimaced or made an unconventional facial expression
Hand on face Any kind of movement that includes a participant putting a hand on their face
Head tilt The participant tilted their head to either side while making their decision
Look away The participant was distracted and not paying attention to the task
Look to adult The participant looked towards their parent when making their decision
Shoulder movement The participant made a pronounced shoulder movement, such as shrugging
Smile The participant smiled
Verbal cues Any spoken words

Table 1: Categories in our annotation protocol.

Figure 4: Examples of (from left to right) eyebrow raise, eyebrow scrunch, hand on face, funny face, and smile

Figure 5: Distribution of uncertainty cues across
all/uncertain, difficult/easy. We can see that delay, eye-
brow raise, and eyebrow scrunch are significantly more
frequent in uncertain trials.

trials are defined as half of the trials with a more
difficult ratio (1.11 to 1.17), and easy trials are half
with ratios of 1.25 to 2.

We find that if the trial is hard, the participant is
slightly more likely to exhibit more of our studied
cues overall. In particular, the participant is likelier
to exhibit the look at adult or funny face cues. If
the trial is easy, the participant might display hand
on face instead.

This shows support for the potential to differ-
entiate between stages of uncertainty. Namely, if
a child or student expresses uncertainty at a more
manageable task, this could be out of a lack of con-
fidence (I’m generally familiar with this and have
an idea on how to do it, but I need a little help.)
or another factor that may entail minor assistance.
Meanwhile, facing a more challenging or perhaps
even a completely new task, they may feel a more
difficult uncertainty (I don’t know where to start.)
requiring more involved guidance.

This possible distinction in stages of uncertainty
may open the door for a more precise intervention
in the context of education and tutoring systems.
For instance, if notified about a student exhibiting
the former uncertainty, the teacher might engage
with small hints and encouragement to maximize
the student’s learning. However, if a student shows
the latter uncertainty, the teacher can offer hands-on
guidance, such as checking foundational concepts.

4 Approach

With the goal of predicting uncertainty from mul-
timodal signals, we conducted experiments with
three approaches: learning uncertainty from pro-
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posed cues, a multimodal transformer-based model,
and an ensemble learning approach that first pre-
dicts cues from the multimodal features and then
predicts uncertainty from those cues.

4.1 Multimodal Features
We take facial action units, gaze direction, and fa-
cial pose from the OpenFace toolkit (Baltrusaitis
et al., 2018) for video features. Action units (AUs)
are coded for facial muscle movements, which
indicate various facial expressions (Tian et al.,
2001). For audio features, we extracted glottal
source and spectral envelope features using De-
gottex (2014)(v1.4.2). For text features, we then
passed GloVe embeddings of each trial’s annotated
transcription to the model (Pennington et al., 2014).
It should be noted that as a task that does not ask
the participant to speak, most trials contain no text.

4.2 MulT Model
Given the cost of annotation, an ideal uncertainty
prediction system would take multimodal data of
the participant as features and be able to make
real-time predictions on the participant’s level of
uncertainty. To test this goal, we first experiment
with an end-to-end model. Specifically, we use
the Multimodal Transformer proposed in Tsai et al.
(2019) on audio, video, and text data from videos
of the participants. This model is uncertainty cue-
agnostic, as it contains no information about our
annotated cue categories.

4.3 Contrastive Learning
Our dataset has high-dimensional features: 710 di-
mensionalities for each video frame, 71 for each
second of corresponding audio, and 30 for each
word in the corresponding text. Training a pre-
diction model end-to-end in a high-dimensional
feature space focuses on local differences in the
latent space instead of the global relationships be-
tween classes. We also tested a contrastive learning
procedure with a custom loss function to overcome
this challenge. This method encourages the model
to learn representations that are close for positive
pairs and far apart for negative pairs and better dis-
criminates between different classes. The details
of the loss function and our weighted sampling
strategy are given in Appendix B.1.

4.4 Annotation-based Ensemble learning
We further propose an ensemble learning approach
illustrated in Figure 6, that first predicts each of

the annotator cues found to be significantly corre-
lated to the annotator prediction of uncertainty and
then predicts uncertainty using the trained classifier.
We compare this proposed model to the previous
end-to-end multimodal transformer and the uni-
modal transformers. We choose only to predict
the cues that were used in the decision tree clas-
sifier (i.e., delay, eyebrow raise, eyebrow scrunch,
look at adult, and hand on face). Multimodal
transformer model is used as the classifier for
uncertainty.

Figure 6: This figure shows the architecture of the en-
semble learning model. First, cross-modal transformers
learn the attention across the features of each modality
with each of the other two modalities’ low-level features.
Then, using the fused features, self-attention transform-
ers predict the present uncertainty cues, which are then
passed into a multilayer perceptron to output the final
prediction of whether or not uncertainty is present.

5 Experimental Evaluation

In order to determine the viability of a multimodal
uncertainty prediction model, we detail the results
from each of our computational experiments and
models. The implementation details of the experi-
ments and models are given in the Appendix C.

Baselines We employed two baseline models
for comparison. The first is a simple multimodal
neural network that separately processes video, au-
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Model F1 MAE R2

N
o

C
ue

Basic .7011 .3603 -.2419
Adult .6397 .8553 -2.7119
MulT .8120 .2307 -.1391

CL + W .8216 .3076 -.5412

C
ue Ensemble .8366 .2222 -.1250

Table 2: This table shows the results of different models.
The "Basic" refers to the MLP baseline, and the “Adult"
refers to the adult uncertainty baseline. “MulT" refers to
the Multimodal Transformer, and “CL + W" is the MulT
model with contrastive learning and weighted sampling.
"Ensemble" refers to the cue-based ensemble model.
No Cue and Cue indicate whether the model uses the
identified cues as intermediate features.

dio, and text inputs and combines the features for
a three-class softmax classification. The second
is a detection model trained with adult data that
takes visual information (Jahoda et al., 2018). This
second baseline is a traditional machine-learning
approach using SVMs and LBP descriptors.

Metrics In our experiment, we utilized three key
metrics to evaluate the performance of our model.
The weighted F1 score was employed to account
for any class imbalance and provide a more com-
prehensive assessment of the model’s precision and
recall. Mean Absolute Error (MAE) was used to
measure the average magnitude of the errors in our
predictions, illustrating the model’s ability to min-
imize deviations from the actual values. Lastly,
the R-square statistic was employed to quantify the
proportion of variance in the dependent variable
explained by the model, offering insight into the
overall goodness of fit and the model’s explanatory
power.

5.1 Results

We report a weighted F1 score of .8216 and a mean
absolute error of .3076 on the cue-agnostic end-to-
end model with reweighted class labels, as seen in
Table 2. Full results for each modality can also be
found in the same table. The cue-aware ensemble
model shows improvements in both weighted F1
and MAE over the multimodal transformer model.
Contrastive learning and weighted sampling im-
prove the performance but are subpar compared to
the cue-based ensemble method. The intermediate
prediction of cues like delay that are a vital indica-
tor but may be challenging to learn in an end-to-end

model may play a role in this performance.
Modality Ablations After doing an ablation study
on the modalities for the cue-agnostic models, we
find that the text and audio modality report the best
scores overall, as shown in 3. This is unexpected
due to participant speech being scarce. However,
when participants do talk, they usually express their
feelings about the task. For instance, participants
may say “This is easy!" or “I don’t know," tell the
adult if the trial is hard or begin counting. As a
result, the text modality could be less noisy than
the video and audio modalities. We note that the
particular task does not request verbal responses
from the participants. Thus, we expect that with a
task that entices a verbal response, such as question
answering, there may be more contribution from
the text and audio modalities.

Model F1 MAE R2

CL + W .8216 .3076 -.5412

Video only .7991 .2820 -.4072
Text only .8056 .2564 -.2731

Audio only .8056 .2564 -.2731

Table 3: F1, MAE, and R2 results for the best perform-
ing cue-agnostic model (weighted) with the ablation
studies for all the modalities. The model performs the
best with all the components, but the most influential
modality is text/audio.

6 Conventions of Expressing Uncertainty:
A Case Study in Different Age Groups

From our annotated data, we find that for older
children (> 2150 days old), less parental guidance
is present, faster decision-making is observed, less
diverse facial expressions are present, and more ver-
bal cues are present while expressing uncertainty,
which increases the performance of the models for
5-year-olds Table 4. In addition, certain behavior
patterns that children of different age groups dis-
play are context-dependent, convention-oriented,
and personality-specific, making it difficult to iden-
tify only through visual and textual modalities.
Some of these behaviors that we investigate here
are nail-biting, pointing, and social facilitation (see
Figure 7).

In the developmental psychology literature, nail-
biting is either found to be an acquired habit or re-
lated to states of nervousness (Gilleard et al., 1988;
Silber and Haynes, 1992; Ghanizadeh, 2008; Mc-
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4 year old 5 year old
Model F1 MAE R2 F1 MAE R2

Basic .69 .32 -.24 .73 .33 -.21
Adult .57 1.06 -4.40 .62 1.0 -8.13
MulT .78 .26 -.39 .81 .26 -.27

CL + W .79 .22 -.15 .81 .23 -.14

Table 4: This table shows the results of the models
between different age groups. There are slight inference
differences between the 4 and 5-year-old groups. These
performance changes are dependent on the conventions
of uncertainty and age.

Clanahan, 1995; Wells et al., 1998). This behavior
is hard to classify as stress-induced or uncertainty-
induced. Hence, a context-dependent analysis of
the person using skeletal features can help decide.

Figure 7: This figure shows two complex behavior pat-
terns by children: nail-biting and uncertain declarative
pointing. The top sequence belongs to the oldest male,
and the bottom sequence belongs to the youngest fe-
male.

Pointing (see Figure 7) is another context-
dependent occurrence. When the child is uncertain,
the pointing to options also becomes ambiguous,
and the parent needs to ask a follow-up grounding
clarification question, such as "Which one?". This
behavior pattern involves spatial placement of op-
tions and understanding the boundaries between
them. Younger children prefer ambiguous pointing
gestures to conventional and visible cues of uncer-
tainty. This type of declarative pointing is observed
to be a way of engaging with the parent, pointing
to a theory of mind (ToM) understanding by the
children (Cochet et al., 2017). Skeletal and ToM
modeling can help make prediction performance
better.

Another behavior pattern is social facilitation.
Younger children prefer to be together with their

parents while solving tasks. Older children fol-
low verbal conventions and reduce the vividness
of their facial expressions, while younger children
exaggerate their facial expressions and rely more
on social facilitation factors. Similar behavior pat-
terns happen in adults in a competitive atmosphere
where social facilitation has different effects on an
individual’s facial expressions (Buck et al., 1992;
Katembu et al., 2022). ToM and multi-party dia-
logue modeling can increase the performance of
uncertainty understanding models.

Uncertainty is context-dependent – some chil-
dren are naturally more fidgety or shy. So predict-
ing uncertainty on an isolated trial basis may lead
to less accurate results. As a result, one interesting
question is how to incorporate contextual features
about the participant’s personality and recent cog-
nitive states to make more informed predictions.

7 Conclusion

In this paper, we explored the task of predict-
ing uncertainty in young children from an anno-
tated dataset that we introduced with a multimodal
transformer-based model. We discover that de-
mographic and trial difficulty can affect the fre-
quency of certain cues. Moreover, trial difficulty
strongly correlates with uncertainty, but trial perfor-
mance interestingly does not. There is still room for
improvement in task performance by transformer
models, which means that more data or more com-
plicated task setups are needed to study uncertainty
properly. Our dataset–which we make available
for research purposes–and protocol provide future
researchers with additional tools to predict uncer-
tainty using multimodal cues to facilitate human-
human and human-AI dialogue.

8 Ethics

Due to the sensitive nature of the video data of chil-
dren and their privacy, we are only making some
portion of the data publicly available with the con-
sent of the parents of the children. All the images
used in this paper are from the videos that are from
children and parents who have given consent to
share their video data publicly.
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A Percentages of each cue

Here we present in Table 5, all the distribution of
the uncertainty cues we found in the dataset. We
also present more statistics between female and
male participants in Figure 8.

Figure 8: Female and male participants show small
differences in frequency of displaying certain cues.

B Contrastive Learning Details

B.1 Problem Statement

In this study, we aim to predict the uncertainty
of a child based on multimodal inputs, including
video, transcripts, and audio. Given the dataset of
instances, each containing video (V), transcripts
(T), and audio (A) data, our goal is to develop a
model that can accurately predict whether a child is
uncertain, unclear, or not uncertain. We represent
this problem as a function F that maps the input
features (V, T, A) to the binary output variable
y ∈ {0, 0.5, 1}, where 0 denotes not uncertain, 0.5
denotes unclear, and 1 denotes uncertain:

To achieve this, we design a multimodal trans-
former model that leverages the complementary
information in the video, transcripts, and audio
data to make predictions. The model is trained
on a dataset of labeled examples (Vi, Ti, Ai, yi),
where i ∈ {1, ..., N} and N is the total number of
instances. Our objective is to minimize the cross-
entropy loss. By minimizing this loss, our model
will learn to predict a child’s uncertainty level ac-
curately based on the provided multimodal inputs.

The specific contrastive learning loss function,
L(X1, X2, L1, L2), that we are focusing on here is
defined as the following:

L(X,L) =
1

N1 ∗N2

∑
i

∑
j

Wij ∗ (m− Sij)
2
+

(1)
This function captures the relationship between
pairs of data points X1 and X2, with associated
labels L1 and L2. The cosine similarity, Sij , is
used to measure the similarity between the data
points, and the weighing factor, Wij , is used to dif-
ferentiate between positive and negative pairs. The
weighting factor is determined using the Kronecker
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Cue All Pct. Uncertain Pct. Hard Pct. Easy Pct. Female Pct. Male Pct.

delay 0.03 0.17 0.03 0.02 2.7 2.93
eyebrow raise 0.05 0.17 0.06 0.04 4.94 4.48
eyebrow scrunch 0.06 0.22 0.07 0.06 6.49 6.15
filled pause 0.03 0.06 0.03 0.03 5.17 1.26
funny face 0.02 0.07 0.03 0.01 1.84 1.49
hand on face 0.17 0.19 0.16 0.18 16.44 17.53
look at adult 0.04 0.1 0.05 0.03 2.93 4.02
look away 0.03 0.05 0.03 0.02 2.36 3.16
frustrated noise 0.01 0.02 0.01 0.01 0.57 0.8
shoulder 0.01 0.02 0.01 0.01 0.29 1.03
smile 0.12 0.17 0.12 0.12 11.15 13.05
verbal cues 0.01 0.02 0.01 0.01 1.09 0.92

Table 5: Distribution of uncertainty cues across all/uncertain, difficult/easy, and female/male trials. We can see that
delay, eyebrow raise, and eyebrow scrunch are significantly more frequent in uncertain trials. Meanwhile, if the
trial is hard, participants are likelier to look at an adult or make a funny face. If the trial is easy, the participant
may display hand on face instead. Female and male participants also show mild differences in the frequency of
displaying certain cues.

delta function, δ(L1i, L2j). The eα∗δ(L1i,L2j) coef-
ficient ensures that the positive pairs have a greater
influence on the learning process where m is a
threshold to separate positive and negative pairs
and α, is a scaling factor. Lastly, (x)+ ensures that
only the non-negative values of x are considered.

To further improve our model’s performance,
we employed a weighted sampling method using
the class frequencies’ inverse square root. Given
a dataset with classes 0 being certain, 0.5 being
unclear, and 1 being uncertain, we calculate the
weights for each class sample as follows:

wi =
1√
Ni

, wherei ∈ {0, 0.5, 1}. (2)

In our case, this weighting scheme assigns higher
weights to underrepresented classes, the class of 0.5
(unclear) and 1 (uncertain), which helps balance
class sampling probabilities. The inverse square
root function is particularly useful as it provides a
smooth topology less sensitive to small changes in
class frequencies than other weighing functions.

C Implementation Details

C.1 Experimental setup

The argmax of the label probabilities was taken
as the output layer. All networks were trained for
40 epochs with a batch size of 24. Both raw and
weighted cross entropy loss were used to train two
versions of the model. Class weights were set based

on the distribution of train set samples to mitigate
class imbalance issues.

We employ a 75-10-15 training-dev-test split.
For each result, we report the average across three
different seeds. We also run the model on every
single modality to provide unimodal baselines.

Additionally, we have age information for each
participant, so we divided the dataset into two age
groups: 4-year-olds and 5-year-olds. This division
will allow us to investigate potential differences
between the two age groups as shown in the 4-year-
old and 5-year-old tabs in Table 2.

Transformer Model Details. Our multimodal
transformer model is based on a modified version
of the Transformer architecture. It consists of five
layers, each equipped with five attention heads
to capture various contextual relationships within
the input data. We used the Stochastic Gradient
Descent (SGD) optimizer with an initial learning
rate of 0.001 to train our model. To enhance con-
vergence and overall performance, we employed
the ReduceLROnPlateau learning rate scheduler,
which adjusts the learning rate when the valida-
tion loss ceases to improve. We set the reduction
factor to 0.1 and patience of 5 epochs for monitor-
ing improvements. Our model was trained on an
NVIDIA RTX 4090 GPU, using a batch size of 1.
We trained the model for 100 epochs. For mod-
els with contrastive learning, we trained the model
with additional 10 epochs before real training.


