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Abstract

Dialogue systems need to produce responses
that realize multiple types of dialogue acts
(DAs) with high semantic fidelity. In the past,
natural language generators (NLGs) for dia-
logue were trained on large parallel corpora
that map from a domain-specific DA and its
semantic attributes to an output utterance. Re-
cent work shows that pretrained language mod-
els (LLMs) offer new possibilities for control-
lable NLG using prompt-based learning. Here
we develop a novel few-shot overgenerate-and-
rank approach that achieves the controlled gen-
eration of DAs. We compare eight few-shot
prompt styles that include a novel method of
generating from textual pseudo-references us-
ing a textual style transfer approach. We de-
velop six automatic ranking functions that iden-
tify outputs with both the correct DA and high
semantic accuracy at generation time. We test
our approach on three domains and four LLMs.
To our knowledge, this is the first work on NLG
for dialogue that automatically ranks outputs
using both DA and attribute accuracy. For com-
pleteness, we compare our results to fine-tuned
few-shot models trained with 5 to 100 instances
per DA. Our results show that several prompt
settings achieve perfect DA accuracy, and near
perfect semantic accuracy (99.81%) and per-
form better than few-shot fine-tuning.

1 Introduction

Dialogue systems need to faithfully produce utter-
ances that realize multiple types of dialogue acts
(DAs), such as providing opinions, making recom-
mendations, or requesting information. In the past,
natural language generators (NLGs) for dialogue
have been trained on large parallel corpora that
map from a domain-specific meaning representa-
tion (MR) that specifies the desired DA and se-
mantic attributes to an output utterance. The NLG
must faithfully generate utterances that realize the
style and form of the DA, and all of the specified
attributes, as shown by the reference utterances

in Table 1. Recent work shows that pretrained
language models (LLMs) offer new possibilities
for controllable NLG using prompt-based learning
(PBL) (Brown et al., 2020; Radford et al., 2019;
Liu et al., 2021). Here we present a novel few-shot
overgenerate-and-rank approach that achieves the
controlled generation of DAs.

Attributes and Values
(NAME [Call of Duty: Advanced Warfare], RATING
[excellent], DEVELOPER [Sledgehammer Games], ESRB
[M (for Mature)])
give_opinion
Call of Duty: Advanced Warfare must be one of the best
games I’ve ever played. Sledgehammer Games always nail
their M-rated games.
recommend
Since you seem to love M-rated games developed by Sledge-
hammer Games, I wonder if you have tried Call of Duty:
Advanced Warfare.
inform
Developed by Sledgehammer Games, Call of Duty: Ad-
vanced Warfare is targeted at mature audiences and has
overall very positive ratings.

Table 1: Sample ViGGO dialogue acts (DAs) (Juraska
et al., 2019). The same attributes and values can be
realized as different DAs.

Previous work on semantically-controlled NLG
has focused on improving semantic accuracy (Ras-
togi et al.; Xu et al., 2021; Du et al., 2022; Wen
et al., 2015; Kedzie and McKeown, 2020; Juraska
and Walker, 2021). However, Table 1 shows how
the the same set of semantic attributes can be real-
ized by different DAs, such as give_opinion, recom-
mend and inform, each of which affect the dialogue
state differently (Traum and Allen, 1994).

Obviously an NLG for dialogue needs to faith-
fully realize the DA as well as the semantic at-
tributes. However, previous work has neither con-
trolled for nor evaluated DA accuracy. We spec-
ulate that this is because many NLG training sets,
such as E2E, Weather, WebNLG, WikiBio, DART
and ToTTo, only include inform DAs (Novikova
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et al., 2017b; Belz, 2008; Gardent et al., 2017; Le-
bret et al., 2016; Nan et al., 2021; Parikh et al.,
2020). Yet NLG training sets for spoken dialogue
include many types of DAs, e.g. the ViGGO cor-
pus has 9 DAs (Juraska et al., 2019), the RNNLG
corpus provides 13 DAs (Wen et al., 2015), Multi-
WOZ has 34 DAs (Eric et al., 2021), and Topical
Chat was automatically labelled with 11 DAs (He-
dayatnia et al., 2020; Mezza et al., 2018).

We present a few-shot PBL framework that over-
generates and ranks NLG outputs and achieves high
accuracy for both semantic attributes and DAs. We
develop high accuracy DA classifiers for three do-
mains and use them to define 6 ranking functions
that combine estimates of DA probability with mea-
sures of semantic accuracy. We also compare a
combination of prompt formats, prompt sampling
methods, and DA representations. Several prompt
templates take the novel approach of treating DA
control as a textual style transfer (TST) problem
(Reif et al., 2022). For completeness, we report re-
sults for few-shot fine-tuned models trained with 5
to 100 instances per DA. Our contributions include:

• The first results showing that dialogue acts
can be controlled with PBL;

• A new overgenerate-and-rank framework that
automatically ranks generation outputs for DA
accuracy at generation time;

• A systematic exploration of both domain-
specific and general measures in ranking func-
tions, and a comparison of their performance;

• Results showing that a ranking function that
prioritizes DA correctness results in higher
semantic accuracy.

• The definition of novel textual DA represen-
tations that support automatic ranking for se-
mantic accuracy using off-the-shelf metrics
such as BLEU and Beyond-BLEU;

• The systematic testing of 8 prompt formats
that re-cast data-to-text generation as a text-
to-text task, and an examination of their per-
formance across 4 LLMs.

The results demonstrate large performance dif-
ferences across prompt styles, but show that many
prompts achieve perfect DA accuracy, and semantic
accuracy as high as 99.81% with only 10 examples,
while 100-shot per DA fine-tuning only achieves
97.7% semantic accuracy, and 80.6% DA accuracy.

2 Related Work

This paper applies few-shot PBL to the task of con-
trollable generation of DAs using an overgenerate-
and-rank NLG framework. The overgenerate-and-
rank paradigm for NLG has primarily used two
methods for ranking: (1) language model probabil-
ity (Langkilde and Knight, 1998); and (2) ranking
functions trained from human feedback (Rambow
et al., 2001; Bangalore et al., 2000; Liu et al., 2016).
We extend this framework by applying it in the con-
text of PBL, by using DA probability in ranking,
and by comparing many ranking functions, includ-
ing Beyond-BLEU and BLEU baselines (Wieting
et al., 2019; Papineni et al., 2002).

We know of only a few previous studies on con-
trollable generation of DAs in the context of di-
alogue systems, each of which has only focused
on one or two types of DAs. Obviously, tasks like
question generation (QG) aim at controllable gen-
eration of questions (Harrison and Walker, 2018;
Zhang et al., 2021) but research on QG is not fo-
cused on trying to control the generation of ques-
tions as opposed to other types of DAs. However,
some work has focused on controlling questions
in dialogue, e.g. Hazarika et al. (2021) learned a
latent representation of questions from a labelled
corpus and then used this as a prompt prefix to
control question generation. See et al. (2019) fine-
tuned a Persona Chat model and tested decod-
ing methods that controlled question frequency,
but did not guarantee a question on a particular
turn. Other work has focused on dialogue acts
like opinions and recommendations. For exam-
ple, Oraby et al. (2019) curated opinionated ut-
terances from user reviews that had been marked
with exclamation points, and then used the ex-
clamation points as a way to control the produc-
tion of exaggerated opinions. Reed et al. (2020)
used token supervision to control the production of
recommendation as opposed to inform dia-
logue acts where recommendation DAs stated
that a particular restaurant was the best and then
justified the recommendation with attributes from
the MR. Ramirez et al. (2023) used PBL with simi-
lar prompts to control the expression of Big 5 per-
sonality types (Harrison et al., 2019), rather than
dialogue acts.

It is well known that data-to-text NLGs based
on fine-tuned LLMs are prone to semantic errors
(Ji et al., 2022; Rashkin et al., 2021), thus previous
work has focused on methods for ensuring semantic
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correctness. This includes automatically augment-
ing the training data (Xu et al., 2021; Du et al.,
2022), modifying the input representation (Kedzie
and McKeown, 2020; Heidari et al., 2021), us-
ing rankers or classifiers or decoding methods that
identify semantically accurate or acceptable can-
didates (Harkous et al., 2020; Juraska and Walker,
2021; Wen et al., 2015; Shen et al., 2019; Batra
et al., 2021). Previous work on few-shot PBL for
semantically-controlled NLG has not attempted to
control DA accuracy (Reed et al., 2022; Soltan
et al., 2022), and has not used an overgenerate and
rank approach, resulting in lower semantic accura-
cies than we report here.

Much previous work on few-shot NLG has in-
vestigated few-shot finetuning rather than few-shot
PBL. Previous work on the ViGGo, TV and Laptop
corpora (Xu et al., 2021; Du et al., 2022; Kedzie
and McKeown, 2020; Juraska and Walker, 2021)
supports direct comparison to our work, but is not
few-shot, does not rank outputs or use PBL. Few-
ShotWoz trains a model called SC-GPT on a 400K
data-to-text corpus, and then tests transfer learn-
ing with only 40 or 50 fine-tuning examples (Peng
et al., 2020). Other recent work develops meth-
ods for augmenting FewShotWoz using synthetic
data or by self-training and shows improvements
in semantic accuracy and BLEU score. The Few-
ShotWoz corpus includes many types of DAs but
none of this previous work includes an evaluation
of NLG DA accuracy. Previous work on few-shot
finetuning in the weather domain used 300 exam-
ples in fine tuning, and also explored different ways
of textualizing the MR (Heidari et al., 2021), but
did not attempt to control DAs, develop ranking
functions, evaluate DA accuracy, or use instruc-
tions such as our novel definitional prompts and
the templates for TST tasks. Heidari et al. (2021)
achieve an 85% reconstruction accuracy, while our
best prompt/LLM combinations achieve 99.44%
PERF score for ViGGO, 99.57% PERF for TV
and 99.47% PERF for Laptop, a similar metric to
reconstruction accuracy, with only 10 examples.

3 Automatically Ranking NLG Outputs

We start by providing a mathematical formulation
of our problem. When generating from a DA rep-
resentation, a high-quality response should: (1)
manifest the specified DA; (2) have no missing or
incorrect mentions of the attributes; (3) hallucinate
no additional attributes; and (4) be fluent. Thus

the generated utterance y, conditioned on an input
x composed of DA d and attribute values a, can
be formulated as y = f(d, a). The conditional
likelihood of y given the MR can then be decom-
posed using Bayes Rule into the product of three
probabilities:

p(y|d, a) = p(d|y, a) ∗ p(a|y) ∗ p(y) (1)

The term p(d|y, a) is the DA probability given
the generated utterance y and the semantic at-
tributes a. The term p(a|y) represents the semantic
accuracy. The term p(y) is the unconditional prob-
ability of the generated utterance, which is com-
monly used as a measure of fluency. Below, we
show how we compute estimates of these terms at
generation time, and then explain their use in the
ranking functions.

Dialogue Act Classifier. The term p(d|y, a) re-
quires highly accurate DA classifiers to use in au-
tomatic ranking. We fine-tuned two classifiers us-
ing pre-trained bert-base-uncased on HuggingFace.
We discovered that even though the ViGGO, Lap-
top and TV training corpora are good size (Juraska
et al., 2019; Wen et al., 2015), producing high ac-
curacy classifiers required us to modify the training
data.1 We originally trained the ViGGO classifer
with the original ViGGO training set, when we ap-
plied this classifier to the generated outputs, we
noticed many cases of low confidence classifica-
tion. A qualitative analysis of the data showed that
many generated outputs did not actually fit into the
original ViGGO ontology, which is not surprising,
given that the training data for an LLM would have
included many different types of DAs.

To increase the ViGGO classifier performance,
we introduced an "Other" class of dialogue acts,
doubly annotated another 1000 ViGGO NLG out-
puts by hand, and added them to the original train-
ing set. Final results are shown in Table 2.

The second classifier was trained using the com-
plete RNNLG corpus with all 4 domains to maxi-
mize classifier domain transfer. When we tested it
on the RNNLG test set, we discovered that several
classes had low F1. Examination of the confu-
sion matrix showed that the recommend and inform
DAs were highly confusable, so we created a new
type of DA we call “describe” by combining their

1We also experimented with training classifiers for Mul-
tiWoz but were unable to get high accuracies due to noise in
DA labelling, which is known to be an issue with MultiWoz
(Zou, 2022).
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Dialogue Act ViGGO
confirm 0.99
inform 0.98

suggest 0.91
give_opinion 0.90

recommend 0.92
request 0.94

request_attribute 0.93
request_explanation 0.99

verify_attribute 0.94
other 0.78

Weighted Average 0.97

Table 2: ViGGO DA classification F1 scores.

training sets. The final results for for the RNNLG
classifiers is shown in Table 3.

Dialogue Act Laptop TV
compare 1.00 1.00
confirm 0.96 0.95

describe 1.00 1.00
inform all 0.86 0.92

inform count 1.00 1.00
inform no info 1.00 1.00

inform no match 0.98 0.94
inform only match 0.83 0.87

suggest 1.00 1.00

Weighted Average 0.99 0.99

Table 3: Laptop and TV DA classification F1 scores.
The describe DA = combination of the inform and rec-
ommend DAs in the original dataset.

We provide these DA classifiers along with addi-
tional human-labelled model outputs so that other
researchers can duplicate our setup.2 The resulting
classifiers achieve average F1s over .97 for all three
domains.

Semantic Accuracy. Work on data-to-text NLG
often computes semantic accuracy as the Slot Error
Rate (SER), i.e., the percentage of slots across all
outputs y that the NLG realized incorrectly, with
models either carefully tuned by hand, or trained
by artificially creating incorrect realizations (Wen
et al., 2015; Dusek et al., 2019; Juraska et al., 2018;
Reed et al., 2020; Wiseman et al., 2017; Harkous
et al., 2020; Kedzie and McKeown, 2019, 2020).
There is a toolkit for SER for all three domains,3

which we use to calculate SACC:

SACC = 1− SER (2)

Because the SACC scripts are domain specific,
we also create new metrics that are based on BLEU,
BLEURT, Beyond-BLEU and BertScore, widely

2
https://github.com/aramir62/da-nlg

3
https://github.com/jjuraska/data2text-nlg

used measures of semantic accuracy and semantic
preservation (Papineni et al., 2002; Wieting et al.,
2019; Sellam et al., 2020; Zhang et al.; Gehrmann
et al., 2021). Because these metrics require com-
parisons with reference utterances, which are not
available at generation time, we define reference-
less versions based on pseudo-references, Spseudo,
created from the input DAs Juraska (2022). For
any MR, we create its Spseudo by omitting the slot
names and the DA name and then concatenating
the categorical attribute values with spaces between
them, and converting boolean attributes, such as
HAS_MULTIPLAYER = no, into phrases using the
attribute name, with a negation when needed, e.g.
“no multiplayer”. For example, Spseudo for the MR
at the top of Table 1 would be “Call of Duty: Ad-
vanced Warfare excellent Sledgehammer Games
M for Mature". Pseudo-references are available
at generation time, so we use them to calculate
pseudo-metrics for semantic accuracy and use them
in ranking. Juraska et al. (2019) shows that the rela-
tive differences of these pseudo-metrics distinguish
errorful NLG utterances from correct ones.

Fluency. Recent work suggests that the probability
P(S) of a generated output S according to an LLM
is a good automatic and referenceless measure of
fluency (Kann et al., 2018; Suzgun et al., 2022).
We thus adopt P(S) to measure fluency, and use
GPT-2 to calculate P(S).

Ranking. The ranking functions in Table 4 aim to
select NLG outputs that maximize DA accuracy,
semantic accuracy, and fluency. Ranking function
RF1 scores each candidate according to Equation 1.

RF1: DAC * SACC * P(S)

RF2: DAC * SACC * pBLEU * P(S)

RF2DA: DAC | SACC | pBLEU | P(S)

RF3: DAC * pBBLEU * P(S)

RF4: pBBLEU

RF5: pBLEU

Table 4: Ranking functions. DAC = probability of the
correct DA using a classifier. SACC = semantic accu-
racy using domain-specific SACC scripts. P(S) = LM
probability as a measure of fluency. pBBLEU = pseudo-
Beyond-BLEU to measure semantic accuracy. pBLEU
= pseudo-BLEU as a baseline.

After a qualitative analysis of the ranking out-
puts from RF1 on pilot data, we developed ranker
RF2 and RF2DA in Table 4. Our analysis revealed

https://github.com/aramir62/da-nlg
https://github.com/jjuraska/data2text-nlg
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that the SER scripts often do not detect halluci-
nations, but pBLEU appeared to detect some hal-
lucinations, so we add pBLEU to RF2. Ranking
function RF2DA prioritizes one metric at each step,
as represented by | in RF2DA, enforcing DA cor-
rectness as more important for dialogue than per-
fect SACC. Matching DA candidates are preferred,
but if no candidates match the required DA, the
DA class other is preferred, or otherwise, all k
candidates are selected. The second step selects
candidates with the highest SACC. The third step
aims to remove candidates with hallucinations by
choosing the highest pBLEU outputs. The final
step selects outputs with the highest fluency (P(S)).

So far RF1, RF2 and RF2DA all use the domain-
specific SACC score for measuring semantic ac-
curacy. To define a domain-independent ranking
function, we calculate the correlation of SACC
with pBLEU, pBBLEU, pBERT, and pBLEURT,
defined in Section 3, on sample model outputs. See
Table 12 in Appendix A.2. The results show that
pBBLEU (Wieting et al., 2019) has the highest
correlation across all three domains with 0.52 for
Viggo, 0.32 for Laptop and 0.45 for TV. We thus
define RF3 by replacing SACC in RF1 with pB-
BLEU. We then define RF4 as pBBLEU alone, so
we can compare our novel ranking functions to pB-
BLEU. Finally, as a baseline reflecting the fact that
previous work uses BLEU as a single measure of
goodness for NLG, we define R5 as pBLEU.

4 Experimental Overview

Figure 1 provides an overview of the experimental
architecture. Given a set of DA representations for
a domain, we sample prompt examples from the
original training sets while varying the number of
samples. We then textualize the DA representations
in the sample to look more similar to the LLMs
free-text training data. The samples are then fed
through the 8 prompt formats in Table 5. We apply
this method to the ViGGO, Laptop and TV domains
and utilize the 6 ranking functions in Table 4.

Prompt Formats. LLMs are typically trained on
far more monologic data than dialogue, and will
have rarely, if at all, seen examples of data-to-text
NLG (Brown et al., 2020; Raffel et al., 2020; De-
vlin et al., 2018). While there are LLMs trained on
dialogue such as DialoGPT (Zhang et al., 2020),
and semantically-controlled dialogue data such as
KGPT (Chen et al., 2020), and SC-GPT (Peng et al.,
2020), there are clear benefits to using a general

Figure 1: Experimental Architecture

LLM. Previous work also shows that without spe-
cific dialogic data, many LLMs do well on NLG
for dialogue (Soltan et al., 2022). Here, we test
the hypothesis that performance can be improved
by using prompt formats that make the data-to-text
task look more like the LLM’s textual training data.

Prompt ID Prompt Template
TST VANILLA Here is a text: “spseudo". Here is a

rewrite of the text which is a(n) d dia-
logue act: “rtext"

TST Here is a text: “spseudo". Rewrite it
DIALOGUE to be a(n) d dialogue act: “rtext"
TST Here is a text: “dr spseudo".
PARAPHRASE Here is a paraphrase of the text: “rtext"
DEFINITIONAL description of < d >: Dd.

Data: d = yes | sa1 = v1..san = vn

Data to Text for < d >: rtext
PARAPHRASE dr spseudo

rtext
DIALOGIC dr spseudo

rtext
PSEUDO d spseudo

rtext
S2S d = yes | a1 = v1..an = vn

rtext

Table 5: Prompt IDs and templates. Instantiations of
each template are given in Table 11 in the Appendix.

Table 5 shows the 8 prompt templates, with full
instantiations in the Appendix in Table 11. The
templates vary the representation of the DAs and
their attributes. We represent the DA directly by its
name d, or convert the DA to a sentence starter dr
such as “I recommend”. The attributes of the DA
constitute a set a = a1, a2, ..., an, each with a value
in v where v = v1, v2, ..., vn. The attributes can
be represented directly or using a textual pseudo-
reference spseudo, as described in Section 3. The
reference text rtext then varies the representation
of the DA and the attributes.

Prompts TST Vanilla, TST Dialogue, and TST
Paraphrase of Table 5 treat data-to-text generation
as a textual style transfer (TST) task, where each
DA is a style, and the prompt provides instructions,
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e.g., “Rewrite it to be a suggest dialogue act” (Reif
et al., 2022; Suzgun et al., 2022). TST Vanilla
and TST Dialogue represent the MR as its pseudo-
reference spseudo, while TST Paraphrase prefixes
the sentence starter dr for the DA to spseudo.

We also define a Definitional prompt with defini-
tions of the DAs, represented as Dd, based on the
instructions given to crowdworkers when ViGGO
was collected, inspired by previous work providing
slot descriptions (Gupta et al., 2022).

The Paraphrase prompt is based on the fact that
producing paraphrases is a common task. This
prompt rewrites the DA as a first-person sentence
starter, e.g., “I suggest” for the suggest DA. The
Dialogue Response prompt is similar, but mimics a
request and its response, with sentence starters writ-
ten as requests, e.g., “can you recommend a game
Worms: Reloaded Steam?” for the recommend DA.

To directly evaluate the benefit of instructions,
we also input the pseudo-reference without instruc-
tions as a baseline (Pseudo), as well as input the
commonly used S2S format which linearizes the
MR as a sequence of attributes and values (Soltan
et al., 2022; Wen et al., 2015; Harkous et al., 2020).

5 Results

Experimental Roadmap. We first experiment
with ViGGO over all the experimental settings from
Section 4 using Jurassic-1 Jumbo, a 175B auto-
regressive transformer-based LLM with a differ-
ent depth-width tradeoff than GPT3 (Levine et al.,
2020; Lieber et al., 2021). All experiments set top
P = 1, and T = 0.7 based on pilot experiments. We
compare prompting to few-shot fine-tuning using
5, 25, 50 and 100 examples per DA sampled from
the training data. We test the 8 prompt formats in
Table 5 with 1, 5 or 10 prompt examples. Our focus
is DA control, so we create a ViGGO test set with
40 instances per DA (360 total). We look-ahead
to see which ranking function performs best for
ViGGO and use that for the results in Table 6.

We then test the best settings from ViGGO on
the Laptop and TV corpora (Wen et al., 2015) with
results in Table 7. We compare ranking function
performance across all domains in Table 8, and
demonstrate the improved performance of our rank-
ing functions compared to simply using BLEU. We
then test for generalization with additional LLMs:
we select the top three prompt settings, and test of
GPT-Neo as a smaller LLM, and GPT-3 and Chat-
GPT as instruction-tuned LLMs, and compare them

to Jurassic-1, for all three domains. These results
are shown in Table 9. Table 10 then compares our
best performance to recent SOTA results for both
fine-tuning and few-shot fine-tuning on ViGGO,
Laptop and TV. Finally we report the results of our
human evaluations. We make the DA classification
models, the prompts and their instantiations, and
the model outputs for all experiments available.4

ID N PERF SACC DAC
Few-Shot Fine-Tuning Experiments

FTune 5-per 45 38.88 85.71 54.44
FTune 25-per 225 62.22 92.19 79.72
FTune 50-per 450 71.94 96.43 79.44
FTune 100-per 900 78.61 97.74 80.56

Prompt Styles and Samples Experiments
TST Vanilla 10 85.56 94.73 100.00
TST Dialogue 10 83.89 94.17 100.00
TST Paraphrase 10 83.90 94.20 100.00
Definition (each) 10 76.94 91.16 100.00
Definition (top) 10 82.22 93.51 100.00
Paraphrase 10 77.78 92.10 100.00
Dialogic 10 77.22 91.53 100.00
Pseudo 10 75.83 94.17 100.00
S2S 10 70.56 86.45 100.00
TST Vanilla 5 80.56 92.57 99.72
TST Dialogue 5 83.61 93.88 100.00
TST Paraphrase 5 80.20 92.60 99.70
Definition (each) 5 80.00 92.66 99.40
Definition (top) 5 77.22 91.25 100.00
Paraphrase 5 70.83 89.71 100.00
Dialogic 5 66.94 88.34 99.10
Pseudo 5 52.22 82.60 85.56
S2S 5 66.67 83.54 99.72
TST Vanilla 1 68.06 86.64 91.94
TST Dialogue 1 69.17 88.15 93.30
TST Paraphrase 1 72.20 89.80 93.60
Definition 1 63.89 85.32 98.30
Paraphrase 1 41.94 75.14 83.88
Dialogic 1 38.89 71.83 82.30

Table 6: Results after ranking via RF2DA for ViGGO. N
= number of prompt examples. PERF = % outputs that
are perfect. SACC = semantic accuracy using SACC
scripts. DAC = DA accuracy using a classifier.

Few-Shot Fine-Tuning. To compare prompting to
fine-tuning, we use the traditional linearized MR
in the S2S format and vary the number of training
examples per DA in few-shot fine-tuning from 5, to
25, to 50, to 100. The results in Rows 1-4 of Table 6
show that, as expected, increasing the number of
training examples improves performance, with 100
examples per DA (900 overall) achieving a SACC
of 97.74 after ranking. However, interestingly, the
highest DAC performance is only 80.56, and the
PERF score (both perfect DA and perfect SACC) is
only 78.61. Table 13 in the Appendix shows more

4
https://github.com/aramir62/da-nlg

https://github.com/aramir62/da-nlg
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detail, providing before and after ranking perfor-
mance for fine-tuning. Overall, the results affirm
previous findings that few-shot prompting beats
few-shot fine-tuning (Le Scao and Rush, 2021).

Prompt Styles. All experiments provide examples
for a single DA and then generate that DA, while
varying the prompt style and the number of exam-
ples. The TST format provides N examples using
one of the TST prompts in Table 5. The Defini-
tional (each) format, for 10 prompts, provides 10
triplets of (definition, MR, text). For Definitional
(top), the definition is mentioned once before all
the MRs and examples, so for 1 prompt, there is no
difference between top and each.

We first notice in Table 6 that the PERF score
improves with the number of prompt examples,
from 1 to 5 to 10 for all the prompt styles, with TST
Vanilla, TST Dialogue, and TST Paraphrase, which
provide the MR as text and include instructions (see
Table 5) consistently performing the best overall.
TST Vanilla-10 performs signicantly better than
the other TST styles with 10 examples (p < .01),
but TST Dialogue is the best for 5 examples and
TST Paraphrase is the best for 1 example. The
Definitional, Paraphrase and Dialogic formats all
perform significantly worse than the TST formats,
but interestingly the Definitional format gets the
highest DAC with only 1 example perhaps showing
the advantage of explicit definitions in PBL.

The Pseudo and S2S prompt styles are baselines,
and only reported for the 5 and 10 example settings.
Both baselines indicate the benefits of instructions.
The S2S 10 performance is the worst for 10 ex-
amples, and the Pseudo performance is the worst
for 5 examples. It is worth noting that the poorly
performing S2S representation is commonly used
in both fine-tuning and PBL (Soltan et al., 2022;
Wen et al., 2015; Harkous et al., 2020).

Domain ID N PERF SACC DAC
Laptop TST Van. 10 80.95 95.90 100.00
TV TST Van. 10 98.85 99.76 100.00

Table 7: Results for Laptop and TV for TST 10 using
RF2DA. N = number of examples. PERF = % out-
puts that are perfect. SACC = semantic accuracy using
SACC scripts. DAC = DA accuracy using a classifier.

We then take the best performing prompt (TST
Vanilla) and experiment with TV and Laptop. The
results are shown in Table 7. RF2DA performs the
best for both Laptop and TV so these results are
ranked with RF2DA. Interestingly, TV has the high-

est PERF and SACC seen so far, while Laptop also
has a higher SACC than any ViGGO setting, sug-
gesting that it is easier to achieve high performance
with Laptop and TV than ViGGO.

RF Terms PERF SACC DAC BLEU
ViGGO

RF1 DAC, SACC, P(S) 79.17 91.82 99.72 38.41
RF2 DAC, SACC, pBLEU, P(S) 78.33 91.72 99.00 38.67

RF2DA DAC, SACC, pBLEU, P(S) 85.56 94.73 100.00 40.08
RF3 DAC, pBBLEU, P(S) 62.78 84.38 100.00 49.87
RF4 pBBLEU 60.55 91.63 77.78 42.82
RF5 pBLEU 44.22 81.66 75.28 40.08

TV
RF1 DAC, SACC, P(S) 85.40 96.86 100.00 72.55
RF2 DAC, SACC, pBLEU, P(S) 88.19 97.43 100.00 72.55

RF2DA DAC, SACC, pBLEU, P(S) 98.85 99.76 100.00 60.51
RF3 DAC, pBBLEU, P(S) 73.96 93.87 100.00 72.89
RF4 pBBLEU 90.14 97.88 99.71 60.51
RF5 pBLEU 63.45 91.50 99.57 66.71

Laptop
RF1 DAC, SACC, P(S) 49.25 86.70 100.00 61.24
RF2 DAC, SACC, pBLEU, P(S) 57.29 89.47 100.00 59.39

RF2DA DAC, SACC, pBLEU, P(S) 80.95 95.90 100.00 61.36
RF3 DAC, pBBLEU, P(S) 35.55 80.41 100.00 45.03
RF4 pBBLEU 61.79 90.97 98.88 36.32
RF5 pBLEU 42.38 84.25 97.77 61.36

Table 8: Ranking functions performance.

Ranking Functions. Our results show that our
overgenerate-and-rank method has a huge effect on
performance as compared to taking the first output
from the model. Section A.3 in the Appendix pro-
vides more detail, e.g. showing for Viggo, across
all the experiments, Before Ranking has an average
SACC of 65.29% versus an After Ranking average
of 86.82%, while DAC has an almost a 30% in-
crease with a Before Ranking average of 62.11%,
and an After Ranking average of 91.04%.

Table 8 compares the 5 ranking functions from
Section 3 on all three domains for the best prompt
so far: TST Vanilla 10. The differences between
RF1 and RF2 (addition of pBLEU) are not signifi-
cant for ViGGO, but are significant for TV (t-test, p
< 0.001) and Laptop (t-test, p < 0.001), with Lap-
top improving from 49.24 PERF to 57.29 PERF.
Note that in all domains ranking by RF2DA results
in significantly higher performance across all met-
rics (t-test, p < 0.001): prioritizing DA correct-
ness results in higher SACC and higher PERF.

Table 8 also shows that replacing SACC with pB-
BLEU in RF3 results in a clear drop in performance.
As shown in Appendix Section A.2 pBBLEU is the
best performing pseudo-metric overall, but there
are clear advantages to the domain-specific SACC.
Recent work explores automatic methods for train-
ing domain-specific semantic fidelity classifiers,
but these methods rely on large training corpora
making them difficult to apply in few-shot settings
(Harkous et al., 2020; Batra et al., 2021).
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The baseline RF4 with only the pBBLEU term
performs surprisingly well in SACC across all three
domains, suggesting that it might be worth examin-
ing further combinations of BBLEU with DAC.

MODEL PROMPT PERF SACC DAC BLEU
ViGGO

ChatGPT TST 10 98.89 95.58 99.44 45.05
ChatGPT TST 5 94.72 99.34 96.67 40.88
ChatGPT Def 10 98.89 100.00 100.00 42.40

ChatGPT VO Def 10 95.28 99.85 95.83 14.79
GPT 3 TST 10 95.00 98.49 98.33 40.26
GPT3 TST 5 95.28 98.31 98.89 54.11
GPT3 Def 10 99.44 99.81 100.00 42.75

GPT3 VO Def 10 95.28 99.83 95.55 9.55
Jurassic TST 10 85.56 94.70 100.00 40.08
Jurassic TST 5 83.61 93.88 100.00 32.54
Jurassic Def 10 82.22 93.51 100.00 15.77

GPT NEO 1.3B TST 10 17.78 85.32 35.56 25.25
GPT NEO 1.3B TST 5 dial 64.17 86.74 94.72 43.47
GPT NEO 1.3B Def 10 35.56 78.27 81.94 15.44

TV
ChatGPT TST 10 98.00 99.57 99.93 45.98
ChatGPT TST 5 91.23 98.14 100.00 38.22
ChatGPT Def 10 98.00 99.30 99.64 50.97

GPT 3 TST 10 99.57 99.91 100.00 57.92
GPT3 TST 5 99.07 99.81 100.00 71.80
GPT3 Def 10 99.22 99.94 100.00 73.81

Jurassic TST 10 98.85 99.76 100.00 60.51
Jurassic TST 5 91.80 98.26 100.00 74.73
Jurassic Def 10 95.01 98.94 100.00 73.66

GPT NEO 1.3B TST 10 83.15 96.37 100.00 66.28
GPT NEO 1.3B TST 5 dial 50.78 93.15 73.93 31.95
GPT NEO 1.3B Def 10 15.74 78.61 65.88 19.29

Laptop
ChatGPT TST 10 97.08 99.47 99.58 41.45
ChatGPT TST 5 85.95 97.19 99.43 23.36
ChatGPT Def 10 67.54 90.37 99.92 36.00

GPT 3 TST 10 84.79 99.91 100.00 33.20
GPT3 TST 5 94.79 97.14 100.00 32.41
GPT3 Def 10 81.45 92.54 100.00 85.40

Jurassic TST 10 80.95 95.90 100.00 61.36
Jurassic TST 5 81.55 96.10 99.81 12.94
Jurassic Def 10 55.98 45.60 100.00 29.12

GPT NEO 1.3B TST 10 68.89 92.66 100.00 46.21
GPT NEO 1.3B TST 5 dial 71.89 93.55 100.00 19.49
GPT NEO 1.3B Def 10 1.33 43.73 99.96 14.59

Table 9: Experiments with additional LLMs, with the
top three prompt settings, for ViGGO, Laptop and TV,
using the RF2DA ranking function. We also tested here
with the original ViGGO test set, with ChatGPT Def
10 and GPT-3 Def 10, with results shown in cyan, to
facilitate comparison with previous work.

Finally, the pBLEU baseline of RF5 reinforces
work emphasizing the inadequacies of BLEU as
a metric for NLG (Belz, 2008; Liu et al., 2016;
Novikova et al., 2017a). We report BLEU for
comparison with related work, but Table 8 clearly
shows that the highest BLEU score doesn’t cor-
respond to the best PERF or SACC, and that
even ranking with pBLEU (RF5) doesn’t maximize
BLEU. RF5 gets the lowest PERF, SACC and DAC
scores for ViGGO and TV, and RF2DA achieves
the same BLEU score, with much higher PERF,
SACC and DAC for both ViGGO and Laptop.

Experiments with other LLMs. We also com-
pare our results with Jurassic to other LLMs. We

select the three best prompt settings, namely TST
10, TST 5, and Definitional Top 10, and experi-
ment with ChatGPT and GPT-3 as large instruction-
based models and GPT-Neo 1.3 as a small model.

Table 9 presents the results. Our primary metric
is PERF with best PERF shown in bold. Note in the
table that the highest PERF score does not neces-
sarily correspond with the highest SACC or highest
BLEU. Interestingly, GPT-3 performs slightly bet-
ter than ChatGPT for both ViGGO and TV while
ChatGPT performs best for Laptop. Both ChatGPT
and GPT-3 perform significantly better than Juras-
sic across all three domains. Table 9 shows that the
Definitional prompt performs better than TST 10
with both ChatGPT and GPT-3 for Viggo, while
TST 10 for TV was comparable to Definitional and
performs the best for Laptop in terms of PERF. We
add results here for the original ViGGO test set
shown in cyan, which has a skewed distribution
of DAs with more long Inform DAs, and which
appears to be more challenging for DAC but not
SACC. Finally, we see much worse performance
with GPT Neo, reinforcing results suggesting a
model size threshhold for PBL (Wei et al.).
Comparison with SOTA. Table 10 compares our
best results with recent work on the VIGGO, Lap-
top and TV corpora (Xu et al., 2021; Du et al., 2022;
Juraska and Walker, 2021; Kedzie and McKeown,
2020; Harkous et al., 2020; Peng et al., 2020). The
related work either used fine-tuning or few-shot
fine-tuning, rather than PBL. JW21, DT and K-
McK are based on fine-tuning. SC-GPT, AUGNLG
and ST-SA are all based on FEWSHOTWOZ. In
each case, we take the results exactly as reported in
the related work. These results are indicative only
as e.g. FEWSHOTWOZ does not use the original
RNN-NLG test set for Laptop and TV, which we
use here. We created our own ViGGO test set to
have equal numbers of each DA, but the original
test set has many more long inform DAs.

Human Evaluation. Given the almost perfect per-
formance reported in Table 9, we conducted a hu-
man evaluation to check whether the outputs were
indeed perfect (the right DA and the correct se-
mantics), and whether there were any hallucina-
tions. Two expert annotators hand-labelled 100 out-
puts from ChatGPT with TST-10 Vanilla prompts.
Amazingly, neither annotator found any outputs
that weren’t perfect and neither did they find any
hallucinations. They agreed 100% on the results,
resulting in a Cohen’s Kappa of 1.0.
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Model Laptop TV ViGGO
BLEU↑ ERR↓ BLEU↑ ERR↓ BLEU↑ ERR↓

Ours 33.20 0.08 73.81 0.06 14.79 0.15
JW21 – – – – 53.60 0.46
DT 53.60 1.68
K-McK – – – – 48.50 0.46
SC-GPT 32.73 3.39 32.95 3.38 – –
AUGNLG-SC 34.32 2.83 34.99 5.53 – –
ST-SA 35.42 2.04 36.39 1.63 – –

Table 10: Ours = Our best model for each domain
from Table 9 compared to recent SOTA results. Our
VIGGO result is for the ViGGO ORIGINAL test set.
JW21 = SeaGuide (Juraska and Walker, 2021). DT =
Data Tuner (Harkous et al., 2020). K-McK = (Kedzie
and McKeown, 2020). SC-GPT = (Peng et al., 2020).
AugNLG = (Xu et al., 2021). ST-SA = (Du et al., 2022).
We convert SACC to SER, which other work calls ERR,
and report BLEU, and ERR as in that other work. Note
that we use our best SACC score from Table 9 to select
the row to include here, but this doesn’t necessarily
correspond to the best BLEU score or the best PERF
score.

We also test whether our addition of pBLEU
to RF2 has an effect on hallucinations, by testing
in general whether pBLEU helps identify halluci-
nations. We annotate hallucinations for ViGGO,
by having 3 annotators label all 360 outputs for
each ranking function (6*360) shown in Table 8.
The number of hallucinations for RF1 was 34, RF2
was 19, RF3 was 26, RF4 was 40 and RF5 was 14.
We compared the mean number of hallucinations
of ranking functions with pBLEU, namely RF2,
RF2DA, and RF5 to those without, namely RF1,
RF3 and RF4. We find that the mean number of
hallucinations of those with pBLEU is 31.67, while
the mean number of those without is 19.67. This
difference seems large, but the sample size is small
and therefore it’s not significant (t = 1.82, p = .14)

6 Conclusion and Future Work

Here we apply an overgenerate-and-rank NLG ap-
proach and and provide the first experiments us-
ing automatic ranking functions that optimize both
DA and semantic accuracy in few-shot prompt-
based NLG. We test and compare a combination of
prompt formats, sampling methods, and DA repre-
sentations. We test prompts used for textual style
transfer (TST) by treating DAs as styles to be con-
trolled. We also create novel prompts that provide
definitions of DAs, For completeness, we fine-tune
few-shot models and compare them with the few-
shot results. The results show that several prompt-
ing styles achieve perfect DA accuracy, and that
few-shot methods can achieve semantic accuracy

as high as 99.81% with the right ranking function,
while 100-shot fine-tuning achieves 97.7%, and
performs much worse on DA accuracy (80.6%).

Our contributions include systematic experimen-
tation with different ways of textualizing MRs,
providing instructions to the LLM, and ranking
outputs. Our results also show that formulating
the data-to-text task as textual style transfer using
pseudo-references yields the highest performance.
We achieve SOTA semantic accuracy with only 10
prompt examples with our best prompt styles, and
achieve the surprising results that a ranking func-
tion that prioritizes DA correctness results in higher
semantic accuracy.

Limitations and Risks One limitation arises from
the challenges of prompt-engineering: it is impos-
sible to tell whether another prompt format could
perform better, e.g. with smaller LLMs like GPT-
Neo, where we get poor comparative results. An-
other limitation is the need for a high-accuracy DA
classifier that works well on out-of-domain model
outputs. We address this limitation by releasing our
classifiers. Another possible limitation is the use of
the overgenerate and rank approach in real-time. In
future work we plan to use the high quality (ranked)
generated data, to fine-tune a smaller real-time lan-
guage model, without the need for overgeneration.
Another limitation arises from the comparison to
few-shot fine-tuning – there are many ways to fine
tune and many representations of the MRs, so it
is possible that some other method of fine-tuning
would lead to better fine-tuning results (Liu et al.,
2022). Our main goal here was to show that with
a small-number of examples, using reasonable as-
sumptions, few-shot fine-tuning performs worse
than PBL.

A potential risk of using LLMs is the possibility
of disinformation, often called hallucinations. Con-
trol of hallucinations is an active area of research.
One of the challenges is that it is very difficult to
automatically identify them. Here we experiment
with ranking functions for better control of halluci-
nations, hand-label hallucinations and characterize
them. Another potential risk of our work is that
some of our dialogue acts like recommend and sug-
gest could be used, in an application context, to
persuade a user to buy something. In this context,
it is even more important to ensure that the system
is not providing false information to users.
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A Appendix

A.1 Full Prompt Descriptions and Examples
Table 11 shows a sample instantiation for each
prompt type and template. When this paper is ac-
cepted, we will provide all the prompt files and
instantiated prompts for all experiments in our
github: https://github.com/aramir62/
da-nlg.

A.2 Semantic Accuracy Pseudo Metrics
We estimate the goodness of the pseudo versions
of BLEU, Beyond-BLEU, BERT and BLEURT
by examining their correlations with the domain-
specific SACC scores on a sample of model out-
puts from our experiments, as shown in Table 12.
The correlations show that the pseudo version of
Beyond-BLEU (Wieting et al., 2019) – pBBLEU
– performs the best across all three domains. In-
terestingly, pBLEU, despite BLEU’s popularity,
performs the worst.

A.3 Before & After Ranking
Our results show that ranking by any ranking
function significantly and greatly improves per-
formance, with the greatest performance improve-
ments arising from the RF2DA ranking function
for all three domains. We calculate Before Ranking
by averaging all metrics over the entire set of test
outputs (test set size X 10 outputs into ranking).
When taking averages across all experiments (per,
fine-tuned, and specific), average SACC and DAC
are significantly higher after ranking.

Table 13 provides more detail on how the rank-
ing affects the results for few-shot fine-tuning.
Comparing Row 1 to Row 4 shows that ranking
improves the performance of SACC for 5-shot fine-
tuning (85.71) to perform almost as well as 100-
shot fine-tuning before ranking (88.71). Ranking
also improves the performance of DAC for 100-
shot fine-tuning from 57% to 80.56%, a huge im-
provement.

Table 14 shows more detail for Viggo across all
the experimental settings. Before Ranking has an
average of 65.29% versus After Ranking with an
average of 86.82% for SACC. DAC has an almost
a 30% increase where Before Ranking has an aver-
age of 62.11%, and After Ranking has an average
of 91.04%. Table 15 shows the effect of ranking
for TV and Laptop, illustrating a similarly large
performance improvement due to ranking.

Prompt ID Example
TST VANILLA Here is a text: "Worms: Reloaded Steam".

Rewrite of the text, which is a suggest dialogue
act: "I bet you like it when you can play games
on Steam, like Worms: Reloaded, right?"

TST DIALOGUE Here is a text: "Worms: Reloaded Steam".
Rewrite it to be a suggest dialogue act: "I bet
you like it when you can play games on Steam,
like Worms: Reloaded, right?"

TST PARA-
PHRASE

Here is a text: "I suggest Worms: Reloaded
Steam". Paraphrase of the text: "I bet you like
it when you can play games on Steam, like
Worms: Reloaded, right?"

DEFINITIONAL Description of < suggest >: A question
asking if your friend has any experience with a
certain type (based on data) of video games.
Use the name of the game in data with ’such
as’, ’like’, etc. The response should consist
of a single yes/no question. Generate diverse
responses.

Data: suggest = yes | name = Worms:
Reloaded | available_on_steam = yes.
Data to Text for < suggest >: I bet you like
it when you can play games on Steam, like
Worms: Reloaded, right?

PARAPHRASE I suggest a game Worms: Reloaded Steam.
I bet you like it when you can play games on
Steam, like Worms: Reloaded, right?

DIALOGIC Can you suggest a game Worms: Reloaded
Steam?
I bet you like it when you can play games on
Steam, like Worms: Reloaded, right?

PSEUDO Suggest Worms: Reloaded Steam.
I bet you like it when you can play games on
Steam, like Worms: Reloaded, right?

S2S suggest = yes | name = Worms: Reloaded |
available_on_steam = yes.
I bet you like it when you can play games on
Steam, like Worms: Reloaded, right?

Table 11: Prompt IDs and Instantiation of each Prompt
Template Type

Measure ViGGO Laptop TV
pBLEU 0.08 -0.12 0.05
pBBLEU 0.52 0.32 0.45
pBLEURT 0.38 0.17 0.26
pBERT precision 0.33 0.14 0.36
pBERT recall 0.03 -0.06 0.14
pBERT F1 0.20 0.04 0.26

Table 12: Pearson correlation between SACC and com-
mon semantic preservation measures when applied to
pseudo-references. All correlations are statistically sig-
nificant at p < 0.001 .

N SACC Perf DAC
Before After Before After Before After

5 65.57 85.71 9.10 38.88 21.10 54.44
25 76.01 92.19 16.39 62.22 31.10 79.72
50 86.70 96.43 29.10 71.94 42.00 79.44

100 88.71 97.74 40 78.61 57.00 80.56

Table 13: Few-shot fine-tuning performance with in-
creasing training examples per DA - before and after
ranking. DAC = DA accuracy.

https://github.com/aramir62/da-nlg
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Format N Perfect SACC DAC
Before After Before After Before After

TST Vanilla 10 37.2 85.6 76 94.7 84.3 100
TST Dialogue 10 39.5 83.9 76.7 94.2 84.7 100
S2S 10 32.0 70.6 68.3 86.5 85 100
Pseudo 10 32 75.8 70.3 94.2 84.5 100
Definitional (each) 10 37.2 76.9 73.4 91.2 88.3 100
Definitional (Top) 10 38.2 82.2 72.3 93.5 88.8 100
TST Vanilla 5 38.7 83.6 76.8 92.6 76.9 98.7
TST Dialogue 5 40.7 83.6 76.9 93.9 79.1 100
S2S 5 34.1 66.7 65.5 83.5 77.9 98.7
Pseudo 5 14.7 52.2 47.5 82.6 47.2 88.6
Definitional (each) 5 40.2 80.0 75.1 92.7 81.9 99.4
Definitional (Top) 5 38.4 77.2 74 91.3 82 100
TST Vanilla 1 25.6 69.2 69.3 88.2 58 92
TST Dialogue 1 25.5 69.2 68.2 88.2 62.3 93.3
Definitional 1 25.7 63.9 67 85.3 66.2 98.3

Table 14: Results Before and After Ranking

Format N SACC Perf DAC
Before After Before After Before After

TV 10 92.59 99.76 65.30 98.85 95.90 100
Laptop 10 80.73 95.90 36.35 80.95 99.71 100

Table 15: Laptop and TV Before and After ranking. DAC = DA Accuracy.


