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Abstract
This paper presents the best-performing ap-
proach alias "Adam Smith" for the SemEval-
2023 Task 4: "Identification of Human Values
behind Arguments". The goal of the task was
to create systems that automatically identify
the values within textual arguments. We train
transformer-based models until they reach their
loss minimum or f1-score maximum. Ensem-
bling the models by selecting one global de-
cision threshold that maximizes the f1-score
leads to the best-performing system in the com-
petition. Ensembling based on stacking with
logistic regressions shows the best performance
on an additional dataset provided to evaluate
the robustness ("Nahj al-Balagha"). Apart from
outlining the submitted system, we demonstrate
that the use of the large ensemble model is not
necessary and that the system size can be sig-
nificantly reduced.

1 Introduction

"We should ban whaling, whaling is wiping
out species for little in return." say some, "We
shouldn’t, it is part of a great number of cultures."
say others. Both arguments support their claim, but
why are some arguments more convincing to us
than others? This might relate to the underlying
values they address. Whereas the first argument ap-
peals to the value of "universalism: nature", the sec-
ond one addresses the value of "tradition". Whether
an argument is in agreement or disagreement with
our values influences its ability to persuade. The
task organizers (Kiesel et al., 2023) are the first
who extend the field of argument mining by this
"value" dimension. As part of the SemEval-2023
workshop, they organize the task of automatically
detecting human values behind arguments. They
decided to add two additional test datasets to evalu-
ate the robustness of the developed systems (Mirza-
khmedova et al., 2023).

Our system uses an ensemble of transformer-
based models that are either trained until they reach

their loss minimum or the f1-score maximum. To
ensemble the models we average the individual
predictions and calculate a decision threshold for
the final system on a separate "Leave-out-Dataset".
This model achieves the best performance in the
competition ("Main" dataset). Each team was al-
lowed to submit up to four systems. Ensembling
the predictions by using stacking with logistic re-
gressions leads to the system with the best perfor-
mance on the additional "Nahj al-Balagha" dataset.
In this paper, we describe the best-performing sys-
tem on the "Main" dataset and briefly outline the
ideas behind the other submitted systems.

The system can be accessed through a web-based
interface that is available online1. Furthermore, a
docker container, models, and code are open source
and publicly accessible (Appendix A).

2 Background

Mirzakhmedova et al. (2023) created a labeled
dataset of 9324 arguments from 6 different sources.
The arguments are structured as follows:

Premise whaling is part of a great number of cultures
Conclusion We should ban whaling
Stance against
Labels [’Tradition’, ’Conformity: interpersonal’]

Table 1: Example argument about whaling

The arguments are in English and in total there
are 20 different value categories to predict. Each
argument is labeled with one or multiple values.
Hence the task at hand can be characterized as a
multi-labeling problem. The systems can be tested
against two additional datasets to evaluate their ro-
bustness on unseen data from different domains.
The "Nahj al-Balagha" dataset contains arguments
from Islamic religious texts. The "New York
Times" dataset contains arguments from texts about

1https://values.args.me/
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COVID-19. A detailed introduction to the datasets
can be found in Mirzakhmedova et al. (2023). The
task organizers (Kiesel et al., 2023) created two
baseline models: 1-baseline and a BERT-based sys-
tem. The system we propose builds upon the trans-
former architecture by Vaswani et al. (2017) and in
particular the BERT model (Devlin et al., 2018). In
fact, we use two improved versions of the original
BERT model called RoBERTa (Liu et al., 2019) and
DeBERTa (He et al., 2021). Further, we apply well-
known techniques from the field of practical AI
such as ensembling (Zhou, 2012), cross-validation
and early-stopping (Goodfellow et al., 2016). By
presenting the best-performing system in the task
and outperforming the baselines by a large mar-
gin, this paper delivers valuable insights into how
values can be automatically detected within text.

3 System Overview

This section is dedicated to precisely describing the
best-performing submission as a baseline for future
research and further development. The proposed
system is an ensemble of 12 individual models. Fig-
ure 1 provides an overview of the inference pipeline
of the final system. We briefly outline the process
of making a prediction and subsequently describe
each of the individual steps in detail. To make a
prediction the following steps are performed:

1. We take an input argument and concatenate
the premise, stance, and conclusion.

2. The input is then fed into the neural networks.
The output of each neural network is a vector con-
taining 20 values with the "confidence" (values
between 0 and 1) whether the sample has the cor-
responding label. The final system consists of 12
models, so we get 12 of these vectors.

3. We ensemble the opinions of the models by
taking the average of the 12 vectors per label.

4. As we now have the averaged values for each
of the 20 labels we must decide which labels to
assign. Therefore we use a threshold. For the
values in the vector that are above the threshold,
the corresponding label is assigned.

3.1 Data Preprocessing

Transformer-based models are trained on large cor-
pora of natural text. Hence, it seems reasonable to
transform the input in a format that is most similar
to a human-like formulation. Therefore we con-
catenate the premise, stance and conclusion into
a single text string. This transforms the above ex-
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Figure 1: Inference System

ample (Table 1) into whaling is part of a great
number of cultures against We should ban whal-
ing.

3.2 The Models
The final system is an ensemble of 12 individual
models that are based on the transformer architec-
ture. Each model has the same structure: It consists
of a transformer-based language model with one
additional fully connected linear layer on top. We
use the CLS token as input for the additional layer
as described by Devlin et al. (2018). The sigmoid
function maps the values for each label to the (0,1)
interval.

We use two deviations of BERT (Devlin et al.,
2018), namely "microsoft/deberta-large" ("De-
berta") and a pretrained roberta-large model ("IBM-
Roberta") as base models. They are then optimized
for loss minimization or f1-score maximization
leading to four different configurations as depicted
in blue in Figure 1. Each of the four configura-
tions is trained on 3 folds, leading to the 12 models
in the final system (Table 9 in the Appendix). In
the following sections, we describe the different
configurations in more detail.

3.2.1 Pretraining
According to Mirzakhmedova et al. (2023) 83% of
the arguments are retrieved from the IBM-ArgQ-
Rank-30kArgs dataset (Gretz et al., 2019). We pre-
train our models on the IBM-dataset using masked
language modeling (Devlin et al., 2018) to shift the
language understanding capabilities of our model
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Pretraining F1 Validation

IBM-Deberta-Large .516
Microsoft Deberta Large .523
IBM-Roberta-large .529
Roberta-large .519

Table 2: Pretraining: Values are calculated without
tuned hyperparameters and before the training data up-
date by the organizers during the competition.

towards the specific language in the arguments.
Table 2 shows that pretraining only improves the
roberta model but not the deberta model. Subse-
quently, we proceeded with the pre-trained roberta
model (IBM-Roberta) and used the deberta model
in its base version.

3.2.2 Optimizing for Loss and f1-score
A traditional training procedure requires a train-
validation split. To prevent models from over-
fitting, the training is stopped as soon as the valida-
tion loss reaches its minimum. Within the task, the
models are evaluated against the f1-score. So in-
stead of training until the minimum loss is reached
we train the models until they reach the maximum
f1-score.

f1 =
2 ∗ recallmacro ∗ precisionmacro

recallmacro + precisionmacro
(1)

The used f1-score (1) differs slightly from the
f1-scores as defined in most software packages (e.g
macro average f1-score in sklearn2). Instead of
calculating the f1-score for each label and then
taking the average, the "macro average recall"3 and
"macro average precision"4 are calculated first and
are then used in the f1-score (formula 1).

Now the question arises of how to optimize for
the f1-score. During one validation step, we get the
predictions for the validation set. Instead of calcu-
lating the loss, we could binarize the predictions
according to a threshold and use them to calculate
the f1-score. We could then train the model until
no further improvement in the f1-score is observed.
This procedure would require that we select the
threshold at each validation step that maximizes
the f1-score.

2https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.f1_score.html

3https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.recall_score.html

4https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.precision_score.html

Algorithm 1 Threshold selection with f1-score
maximization
1: Input: yTrue, yPred
2: Output: optimal threshold optT
3:
4: threshold← 0
5: maxF1← 0
6: optT ← 0
7: while threshold ≤ 1 do
8: yPredBin← binarize yPred with threshold
9: recall← recall(yTrue, yPredBin, average="macro")

10: precision← precision(yTrue, yPredBin,
average="macro")

11: if precision+ recall ̸= 0 then

12: f1← 2 ∗ recall ∗ precision
(recall + precision)

13: if f1 ≥ maxF1 then
14: optT ← threshold
15: maxF1← f1
16: end if
17: end if
18: threshold← threshold+ 0.01
19: end while
20: return optT

Consequently, we define Algorithm 1 to deter-
mine the threshold that maximizes the f1-score. As
input, it takes a set of true labels and a set of pre-
dictions with values between 0 and 1. We iterate
over all possible thresholds in small steps (0.01). In
each iteration, we binarize the predictions accord-
ing to the threshold and calculate the corresponding
f1-score. As output, we return the threshold that
maximizes the f1-score.
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Figure 2: F1-scores and average validation loss in each
training step in a single run of a Deberta model

In Figure 2 we can clearly see, how the model
improves its performance during training. It fur-
ther shows that the training step that minimizes
the average validation loss and the training step
maximizing the f1-score can differ. The average
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validation loss (blue) has its minimum at step 3,
whereas the f1-score (green) has its maximum at
training step 4. Subsequently, we decide to opti-
mize each model with respect to the f1-score and
with respect to the loss. This leads to the two blue
rows in Figure 1. The first blue row in Figure 1
indicates the training with the goal of f1-score max-
imization, whereas the second row indicates the
validation loss minimization.

3.2.3 Cross-Validation

To make use of as much training data as possible we
apply a variant of 3-fold-cross-validation. Each of
the four model configurations is trained three times,
with a validation set of 500 samples. Each valida-
tion set is created by taking a different random split
from the training dataset. Figure 1 reflects these 3
versions of each model with the blue boxes in the
background.

3.3 Ensembling

During the training process, various models (sec-
tion 3.2) are developed. Hence, the question arises
of how to ensemble them to create the final la-
bels. Our final submissions contain two different
approaches.

The best-performing system uses Algorithm 1
to select an optimal threshold that can be used for
the test dataset. In order to do so, the models are
not trained on the whole dataset but instead, we
split a "Leave-Out-Dataset" of 300 samples apart.
These 300 samples are not seen by any of the mod-
els before and are used to determine the optimal
threshold.

Recipe I: 1. Get the predictions on the "Leave-
Out-Dataset" for all single models. 2. Average the
individual predictions. 3. Select the optimal thresh-
old for the "Leave-Out-Dataset" that maximizes the
f1-score with Algorithm 1 4. Repeat steps 1 and 2
for the test dataset and use the optimal threshold
for the final prediction.

We also submitted the best-performing system
on the "Nahj al-Balagha"-dataset. This system has
the same architecture but uses stacking (Wolpert,
1992) as an ensemble method. Instead of defining
one "global" threshold for all labels, we train logis-
tic regressions for each label to decide whether a
label should be 0 or 1. The models are trained on
the entire dataset.

Recipe II: 1. Get the predictions for 3000 sam-
ples of the training dataset for all single models. 2.

Train multiple logistic regressions5 (input: predic-
tions, output: true labels) to predict the labels based
on the predictions. 3. Get the predictions for the
test dataset and use the trained logistic regressions
to predict the final labels.

4 Experimental Setup

The final system was trained on the data provided
by the task organizers (training + validation set)
except for a "Leave-Out-Dataset" of 300 samples.
During the different cross-validation runs a valida-
tion set of 500 samples is taken from the train-
ing data. We use a linear learning rate sched-
ule and early stopping. We stop the training pro-
cess if the validation loss or f1-score does not
improve in 3 consecutive evaluation steps. Espe-
cially the parameter for the learning rate schedule
(total_training_steps) was manually optimized be-
cause it defines the speed at which the learning
rate decays and is therefore crucial for the learning
process. The hyperparameters for pretraining and
finetuning, used model versions as well as links to
the code and a docker container reproducing the
results can be found in Appendix A.

During the competition, we used an internal test
dataset of 500 samples to create an internal "leader-
board" and choose the final systems to submit in
the competition.

The models are implemented with PyTorch-
Lightning and are trained on an NVIDIA Tesla
T4 GPU.

5 Results

Each team was allowed to make up to four submis-
sions (Table 3).

EN-Thres-LoD: The system described in this
paper and the best-performing system in the com-
petition. The ensemble threshold is calculated on
a "Leave-out-Dataset" ("EN-Thres-LoD"), and the
model achieves an f1-score of 0.56 (Table 3).

EN-Log-Reg: A system that uses stacking with
logistic regressions as an ensemble method (Sec-
tion 3.3). It has an f1-score of 0.54 on the "Main"
dataset and was the best-performing system with an
f1-score of 0.40 on the "Nahj al-Balagha" dataset.

EN-Thres-Train: The same system architecture
as EN-Thres-LoD. Instead of calculating the thresh-
old on the "Leave-Out-Dataset", the entire dataset

5https://scikit-learn.org/stable/
modules/generated/sklearn.multioutput.
MultiOutputClassifier.html#sklearn.multioutput.
MultiOutputClassifier
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was used for training and the optimal threshold was
calculated on the training data.

EN-Silver-Labels: The system uses a self-
training approach (Appendix B.1). A first version
of a system creates additional training data ("silver
labels") for arguments from the IBM-30k dataset.
The model architecture is the same as "EN-Thres-
LoD". The size of the training data is then in-
creased to 140% by adding the "silver-label" data.
We followed a similar approach as in Jurkiewicz
et al. (2020). The performance during training
seems to slightly improve (Figure B.1), but when
ensembled the system was outperformed by the
other architectures.

All of our four submitted systems rank high
in the competition on the "Main" dataset and the
"Nahj al-Balagha". On these datasets, our systems
outperform the BERT baseline by a large margin.
However, there is a different picture for the "New
York Times" dataset. With a maximum score of
0.27, the systems are only slightly better than the
BERT baseline and are outperformed by other sys-
tems by a large margin (0.34 as "best approach" in
Table 3).

The scores reported in Table 3 refer to the overall
scores across all labels. Clearly, the model delivers
better results for some labels than for others. A
table with the scores for each label can be found
in Table B in the appendix. The system delivers
the best performances for the labels "Universalism:
nature" and "Security: personal" with f1-scores of
0.82 and 0.76 respectively. The weakest perfor-
mances are seen for the labels "Hedonism" (0.25)
and "Stimulation" (0.32). The dataset is imbal-
anced and there seems to be a correlation between
the frequencies of labels in the training data and
the performance of the system (Figure 4).

5.1 Ablation study

The above-presented approach turned out to be sub-
optimal. Based on our own "internal leaderboard"
it seemed like the suggested ensemble of all 12
models has slightly superior performance (F1 inter.
in Table 8 in Appendix B.3). After submission,
we evaluated the individual components of the fi-
nal ensemble on the official test dataset. Table 3
shows that ensembling the 3 deberta models, which
are optimized for the f1-score (EN-Deberta-F1)
leads to slightly better performance (0.57) on the
"Main" dataset and significantly better performance
on the "New York Times" dataset (0.34). A sin-

Approach / Test Dataset M
ai

n

N
ah

ja
l-B

al
ag

ha

N
ew

Yo
rk

Ti
m

es

T
hr

es
ho

ld

#
m

od
el

s

Main
Best per category .59 .48 .47
Best approach .56 .40 .34
BERT .42 .28 .24
1-Baseline .26 .13 .15

Submitted Models
EN-Thres-Train .56 .36 .26 0.32 12
EN-Log-Reg .54 .40 .27 - 12
EN-Thres-LoD (1st) .56 .34 .25 0.26 12
EN-Silver-Labels .54 .34 .24 0.29 12

Ablation Studies
EN-Deberta-F1* .57 .33 .34 0.27 3
Single-Deberta-F1* .55 .35 .37 0.25 1

Table 3: Achieved f1-score of team adam-smith per test
dataset. Approaches marked with * were not part of the
official evaluation. Approaches in gray are shown for
comparison: an ensemble using the best participant ap-
proach for each individual category; the best participant
approach; and the organizer’s BERT and 1-Baseline.

gle Deberta model, optimized for f1-score (Single-
Deberta-F1) leads to slightly worse performance
on the test dataset (0.55) but significantly better per-
formance on the "New York Times" dataset (0.37).
The model selection for these ensembles can be
found in Table 9 in the Appendix.

5.2 Other approaches
Besides the different approaches submitted for the
competition, we have experimented with the gen-
erative T5 transformer model. The T5 model is
trained on multiple downstream tasks including
natural language inference. We assumed that this
multi-tasking ability might have a beneficial influ-
ence on our task. Therefore we fine-tuned a T5-
large model to predict the values. With an f1-score
of 0.493 on the validation set it beats the baseline
BERT model but is far from the performance of
the other approaches. We further weighted the loss
function according to the class distribution in or-
der to account for the class imbalance problem.
This was ruled out in the early stages of the sys-
tem development because it showed slightly lower
performance. Comparing several approaches can
be complicated due to the randomness in training
procedures and the need for different hyperparam-
eter optimizations. These modeling decisions are
based on the performances captured in Table 7 in
the appendix.
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6 Conclusion

We have presented the best-performing system for
the task of automatically detecting human values in
arguments. Our system ensembles 12 models that
have been either optimized for loss minimization
or f1-score maximization. As an ensemble method,
we choose one global decision threshold for all
labels. The threshold maximizes the f1-score for a
"Leave-out-Dataset". This approach outperforms
stacking as an ensemble method, where for each
label a logistic regression is trained. Even though
our systems show the best performances on the
"Main" and "Nahj al-Balagha" datasets, they are
outperformed by other approaches on the "New
York Times" dataset. In the ablation study, we
show that such a large ensemble is not necessary.
In fact, an ensemble of only 3 models shows better
performance and robustness while decreasing the
system’s memory requirements significantly.

For future work, an analysis of this phenomenon
could be considered. Does the reduction of ensem-
ble size lead to a more robust system and what
are the counter-productive elements in the larger
ensemble? Furthermore, we have only manually
combined a few different models into an ensemble.
Hence, it would be interesting to see whether a sys-
tematic selection of different approaches within an
ensemble could further boost performance.

7 Limitations

The proposed system is trained on a very spe-
cific argument structure taken from the IBM-30k
dataset. The system’s performance noticeably de-
clines when tested on additional datasets, which
raises questions about their ability to handle new,
unprepared datasets and textual arguments with ro-
bustness. Furthermore, the best performing system
consists of 12 individual models leading to a high
resource requirements.
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A.1 Code, Docker Container and Models

The Code6 and Docker Container7 for the final sys-
tem are available online. We pushed the Single
Deberta Model8 from the ablation studies to Hug-
gingface for simple usage. Furthermore, all models
are publicly available.9

A.2 Language Models

We used the microsoft/deberta-large10 model from
huggingface and the pretrained roberta-large.11

A.3 Hyperparameters

Parameters Value

General
batch_size 8
epochs* 3* (see caption)

Optimizer
Optimzier AdamW
learning_rate_schedule linear
Learning Rate 2e-5
total_training_steps 2502
n_warmup_steps 500

Early_Stopping
validation_inverval 300
epochs early_stopping*
patience 3

Table 4: Hyperparameters: The epochs are not
actually the number of trained epochs. Instead
they are used to calculate the linear learning rate
schedule by calculating the Total_training_steps =
(len(training_data)//Batch_Size)*Epochs. The models
are then trained with early stopping

Parameters Value

Batch Size 16
accumulated gradients 2
epochs 8
Learning Rate 2e-5

Table 5: Hyperparameters Pretraining with Masked Lan-
guage Modelling

6https://github.com/danielschroter/human_
value_detector

7https://github.com/touche-webis-de/
team-adam-smith23

8https://huggingface.co/tum-nlp/Deberta_Human_
Value_Detector

9https://zenodo.org/record/7656534#.Y_
yKdyaZP30

10https://huggingface.co/microsoft/
deberta-large

11https://huggingface.co/danschr/
roberta-large-BS_16-EPOCHS_8-LR_5e-05-ACC_GRAD_
2-MAX_LENGTH_165/tree/main?doi=true

B Results

B.1 Self-training and Silver Labels
We further applied a self-training procedure:
1) First we trained the IBM-Roberta and Deberta
Model for f1-score-maximization. 2) We then en-
sembled the models and defined the optimal thresh-
old based on a small Leave_out_Dataset. 3) We
used the ensemble to created additional silver labels
(additional training data) from the IBM-30k dataset.
Thereby we ensured to not include samples, that
are in our internal test dataset or the test dataset
of the competition. 4) We retrained the models
on an extended dataset including the silver labels
in the training data. (During Cross-Validation, it
is ensured that silver-labels are not added to the
validation set). Figure 3 shows how pretraining
might have a positive impact on the performance of
the model. The values are the averages from cross-
validating with 3 folds. However, the submitted
system (ensemble of 12) containing the self-trained
models was outperformed by the other models.
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Figure 3: F1 Scores on average Validation loss during
Cross-Validation (F1 Val) and the internal Test-Dataset
(F1 Test). The X Axis represents the amount of training
data used. Values above 1 indicate that additional silver-
labels are included in the training.

B.2 Results per category
Table 6 contains the performances of the systems
submitted for the competition and developed in the
ablation studies. It shows the performance for each
label individually.
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Main
Best per category .59 .61 .71 .39 .39 .66 .50 .57 .39 .80 .68 .65 .61 .69 .39 .60 .43 .78 .87 .46 .58
Best approach .56 .57 .71 .32 .25 .66 .47 .53 .38 .76 .64 .63 .60 .65 .32 .57 .43 .73 .82 .46 .52
BERT .42 .44 .55 .05 .20 .56 .29 .44 .13 .74 .59 .43 .47 .23 .07 .46 .14 .67 .71 .32 .33
1-Baseline .26 .17 .40 .09 .03 .41 .13 .12 .12 .51 .40 .19 .31 .07 .09 .35 .19 .54 .17 .22 .46
EN-Thres-Train .56 .59 .71 .22 .29 .66 .48 .52 .30 .79 .67 .65 .61 .61 .19 .60 .36 .74 .84 .41 .53
EN-Log-Reg .54 .61 .71 .20 .29 .62 .46 .44 .30 .78 .68 .64 .59 .61 .20 .59 .36 .76 .85 .38 .49
EN-Thres-LoD (1st) .56 .57 .71 .32 .25 .66 .47 .53 .38 .76 .64 .63 .60 .65 .32 .57 .43 .73 .82 .46 .52
EN-Silver-Labels .54 .58 .70 .13 .29 .65 .45 .53 .19 .73 .59 .64 .55 .60 .16 .57 .38 .71 .84 .46 .50
EN-Deberta-F1* .57 .57 .71 .30 .34 .65 .50 .55 .38 .78 .64 .64 .60 .60 .32 .57 .43 .75 .83 .47 .53
Single-Deberta-F1* .55 .54 .70 .29 .32 .65 .44 .55 .37 .77 .63 .62 .62 .65 .29 .55 .42 .74 .81 .46 .52

Nahj al-Balagha
Best per category .48 .18 .49 .50 .67 .66 .29 .33 .62 .51 .37 .55 .36 .27 .33 .41 .38 .33 .67 .20 .44
Best approach .40 .13 .49 .40 .50 .65 .25 .00 .58 .50 .30 .51 .28 .24 .29 .33 .38 .26 .67 .00 .36
BERT .28 .14 .09 .00 .67 .41 .00 .00 .28 .28 .23 .38 .18 .15 .17 .35 .22 .21 .00 .20 .35
1-Baseline .13 .04 .09 .01 .03 .41 .04 .03 .23 .38 .06 .18 .13 .06 .13 .17 .12 .12 .01 .04 .14
EN-Thres-Train .36 .12 .43 .50 .50 .66 .22 .00 .56 .50 .23 .55 .23 .15 .31 .30 .27 .26 .40 .00 .35
EN-Log-Reg (1st) .40 .13 .49 .40 .50 .65 .25 .00 .58 .50 .30 .51 .28 .24 .29 .33 .38 .26 .67 .00 .36
EN-Thres-LoD .34 .09 .33 .33 .44 .59 .22 .20 .62 .51 .20 .55 .23 .12 .24 .26 .24 .29 .40 .05 .30
EN-Silver-Labels .34 .06 .37 .33 .40 .62 .22 .18 .51 .49 .23 .51 .21 .23 .20 .24 .24 .24 .50 .00 .32
EN-Deberta-F1* .33 .13 .34 .25 .31 .64 .21 .22 .57 .53 .21 .55 .23 .15 .27 .27 .21 .24 .40 .11 .30
Single-Deberta-F1* .35 .10 .35 .15 .29 .65 .22 .15 .55 .54 .25 .46 .24 .17 .20 .25 .23 .25 .67 .10 .34

New York Times
Best per category .47 .50 .22 - .03 .54 .40 - .50 .59 .52 - .33 1.0 .57 .33 .40 .62 1.0 .03 .46
Best approach .34 .22 .22 - .00 .48 .40 - .00 .53 .44 - .18 1.0 .20 .12 .29 .55 .33 .00 .36
BERT .24 .00 .00 - .00 .29 .00 - .00 .53 .43 - .00 .00 .57 .26 .27 .36 .50 .00 .32
1-Baseline .15 .05 .03 - .03 .28 .03 - .05 .51 .20 - .07 .03 .12 .12 .26 .24 .03 .03 .33
EN-Thres-Train .26 .29 .14 - .00 .54 .00 - .00 .56 .42 - .23 .00 .00 .33 .40 .58 .33 .00 .40
EN-Log-Reg .27 .33 .18 - .00 .42 .00 - .00 .58 .52 - .18 .00 .00 .21 .31 .62 .50 .00 .46
EN-Thres-LoD .25 .18 .17 - .00 .42 .00 - .00 .57 .38 - .27 .00 .20 .26 .37 .50 .33 .00 .42
EN-Silver-Labels .24 .22 .15 - .00 .42 .00 - .00 .56 .36 - .29 .00 .00 .26 .34 .50 .40 .00 .44
EN-Deberta-F1* .34 .22 .15 - 1.0 .44 .00 - .33 .56 .37 - .29 .00 .22 .28 .24 .44 .33 .00 .42
Single-Deberta-F1* .37 .22 .00 - 1.0 .42 .00 - .40 .56 .36 - .22 .67 .22 .21 .29 .48 .33 .00 .45

Table 6: Achieved f1-score of team adam-smith per test dataset, from macro-precision and macro-recall (All) and
for each of the 20 value categories. Approaches marked with * were not part of the official evaluation. Approaches
in gray are shown for comparison: an ensemble using the best participant approach for each individual category; the
best participant approach; and the organizer’s BERT and 1-Baseline. The bold values highlight the best per category
approach.
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Figure 4: Error Analysis: Label Frequency in training data vs f1-performance of the system.

Pretraining F1 Validation pre-training weighted-loss epochs* optimized LR batch

IBM-Roberta-large .529 (+) 20 F1 2e-5 8
IBM-Roberta-large .526 (+) (+) 20 F1 2e-5 8
Roberta-large .519 20 F1 2e-5 8
T5-large .493 35 F1 .001 16

Table 7: Results of other approaches: Values are calculated without tuned hyperparameters. This training was at
the beginning of the competition where instead of applying 3-fold-cross validation we took a validation sample
of 500 and trained the model with 3 different random seed initialization. For weighting the loss function we
used "Inverse Number of Samples"12 as weights. The epochs are not actually the number of trained epochs.
Instead they are used to calculate the linear learning rate schedule by calculating the Total_training_steps =
(len(training_data)//Batch_Size)*Epochs. The models are then trained with early stopping.

B.3 Internal Leaderboard for Ensembling

Table 8 compares the performance of the different
ensembles. Based on the f1-score performance
on an internal test-split we decided to submit the
system with 12 models.

Model Selection # Thres. F1 Test F1 inter.

EN-Max-F1* 6 .26 .555 .596
EN-Thres-LoD (1st) 12 .26 .561 .599
EN-Deberta-F1* 3 .27 .566 .589
Single-Deberta-F1* 1 .25 .554 .565

Table 8: Ablation Studies: Scores on official test set
(F1-Test) and scores for internal test split. For Single-
Deberta-F1 the Model with Random Seed = 123 was
selected. # represents the number of models in ensemble.
The models with their identifier are listed in Table 9 in
the Appendix

B.4 Error Analysis
We plotted the frequencies of the labels in the train-
ing data against their f1-score performance (Figure
4)

B.5 Other Approaches
We provide the results of some different ap-
proaches. They have been calculated on the same
validation set of 500 samples, but we initialized the
training with three different random seeds. Table 7
contains different methodologies.

B.6 Model Mapping - Ablation Studies
Table 9 shows the identifier of the models in the
model repository together with optimization goals
and random seeds. The Table also shows which
model is included in the Ensembles in the Ablation
Studies.
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Model Mapping model Fold-Seed Optimized EN-Max-F1* EN-Deberta-F1* Single-F1*

HCV-406 deberta 42 F1 (+) (+)
HCV-408 deberta 96 F1 (+) (+)
HCV-409 deberta 123 F1 (+) (+) (+)
HCV-402 danschr-roberta 42 F1 (+)
HCV-403 danschr-roberta 96 F1 (+)
HCV-405 danschr-roberta 123 F1 (+)
HCV-364 deberta 42 Loss
HCV-366 deberta 96 Loss
HCV-368 deberta 123 Loss
HCV-371 danschr-roberta 42 Loss
HCV-372 danschr-roberta 96 Loss
HCV-375 danschr-roberta 123 Loss

Table 9: The models are publicly available (Appendix A). The danschr-roberta represents the "IBM-Roberta" in the
paper. The first column identifies the model in the model repository.
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