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Abstract

The naïve approach for fine-tuning pretrained
deep learning models on downstream tasks in-
volves feeding them mini-batches of randomly
sampled data. In this paper, we propose a more
elaborate method for fine-tuning Pretrained
Multilingual Transformers (PMTs) on multilin-
gual data. Inspired by the success of curriculum
learning approaches, we investigate the signifi-
cance of fine-tuning PMTs on multilingual data
in a sequential fashion language by language.
Unlike the curriculum learning paradigm where
the model is presented with increasingly com-
plex examples, we do not adopt a notion of
“easy” and “hard” samples. Instead, our experi-
ments draw insight from psychological findings
on how the human brain processes new infor-
mation and the persistence of newly learned
concepts. We perform our experiments on a
challenging news-framing dataset that contains
texts in six languages. Our proposed method
outperforms the naïve approach by achieving
improvements of 2.57% in terms of F1 score.
Even when we supplement the naïve approach
with recency fine-tuning, we still achieve an
improvement of 1.34% with a 3.63% conver-
gence speed-up. Moreover, we are the first to
observe an interesting pattern in which deep
learning models exhibit a human-like primacy-
recency effect.

1 Introduction

Deep learning models are state-of-the-art (SOTA)
in many fields including natural language pro-
cessing (NLP). In NLP, the current SOTA mod-
els (Wang et al., 2019) are based on transform-
ers, which are deep-learning models with attention
mechanism (Vaswani et al., 2017). While many
transformers are monolingual, there has been in-
creased research and public interest in multilingual
transformers (Doddapaneni et al., 2021). Notably,
pretrained transformers, require huge amounts of
training data, no matter the domain (Devlin et al.,
2019; Dosovitskiy et al., 2021).
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Figure 1: Human-like primacy-recency effect in deep learning models:
imposing an order on the training data in which PMTs are fine-tuned sequentially
language by language matters. PMTs tend to perform relatively better on
languages at either end of the training sequence. The performance improvement
is measured against the naïve approach of language-agnostic uniform sampling.

Consequently, this results in a substantial carbon
footprint (Strubell et al., 2019), which is against
global sustainability objectives.1 There are many
approaches to address the AI carbon footprint con-
cerns ranging from using more carbon-efficient en-
ergy sources to applying more efficient AI models
and training algorithms. Curriculum learning (CL)
encompasses a specific class of efficient training
strategies for deep learning models. On the one
hand, the naïve approach of fine-tuning pretrained
deep learning models on downstream tasks involves
feeding them mini-batches of randomly sampled
subsets of the available training data. On the other
hand, in curriculum learning, the idea is to fine-
tune the model with a sequence of progressively
more challenging examples. This is motivated by
and mimics the way humans learn, where we start
with simpler concepts and gradually build up more
complex ones. Curriculum learning research (So-
viany et al., 2022) shows that such a strategy helps
the model achieve better performance and converge
faster.

1https://sdgs.un.org/goals
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Contributions Following the success of CL
approaches, and inspired by cognitive science, we
propose an approach to fine-tuning PMTs on multi-
lingual data. We investigate the significance of
doing this in a sequential fashion language by
language. Unlike CL where the model is pre-
sented with increasingly complex examples, we
do not adopt a notion of “easy” and “hard” exam-
ples. Instead, our experiments draw insight from
psychological findings on how the human brain
processes new information and the persistence of
newly learned concepts (Murdock, 1962).

We perform our experiments on a multi-label
text classification dataset (Piskorski et al., 2023)
that contains text in six languages: English, French,
German, Italian, Polish, and Russian. Our proposed
method outperforms the naïve approach by achiev-
ing an F1 score gain of 2.57%. Even when we
supplement the naïve approach with recency fine-
tuning, it achieves an F1 score gain of 1.34% with
a 3.63% average convergence speed-up. More-
over, we observe an interesting pattern in which
deep learning models exhibit a human-like primacy-
recency effect, which is also commonly referred to
as the serial-position effect (Murdock, 1962). The
effect describes the human tendency to remember
the first and the last items in a list more accurately
than the ones in the middle. Our contributions are
as follows:

• We propose and evaluate fine-tuning PMTs
on multilingual data in a sequential fashion
language by language.

• We find that a deep learning model exhibits a
human-like primacy-recency effect.

• We compare the performance of PMTs fine-
tuned on monolingual data versus multilingual
data.

• We examine the use of translation for data
augmentation and analyze the performance
of monolingual versus multilingual pretrained
language models.

2 Background

2.1 SemEval Task Description
We perform our experiments on data from the sec-
ond subtask of task 3 of SemEval-2023 on “De-
tecting the Genre, the Framing, and the Persua-
sion Techniques in Online News in a Multi-Lingual
Setup” (Piskorski et al., 2023).

Language Train (%) Dev (%) Test (%)
English 433 76.0% 83 14.6% 54 9.5%
French 158 60.5% 53 20.3% 50 19.2%
German 132 58.1% 45 19.8% 50 22.0%
Italian 227 62.4% 76 20.9% 61 16.8%
Polish 145 60.2% 49 20.3% 47 19.5%
Russian 143 54.4% 48 18.3% 72 27.4%
Spanish - - - - 30 100%
Greek - - - - 64 100%
Georgian - - - - 29 100%
Total 1238 60.4% 354 17.3% 457 22.3%

Table 1: News framing dataset: Note that for Spanish,
Greek, and Georgian, training data is not provided.

This is a challenging task and it is more nu-
anced than mere topic classification (Card et al.,
2015), e.g., while the topic of a news article may
be COVID-19, the framing could be from an eco-
nomic, political, or/and health perspective(s). In
concrete terms, the news framing subtask can be
formulated as a multilabel text classification prob-
lem. Given a news article, Ti = [w1, ..., wNi

],
where wi denotes the i

th token, and Ni denotes
the number of tokens in Ti, the goal is to learn a
mapping f ∶ T → S where S = [a1, ..., aM] and
aj ∈ True, False denotes whether Ti contains the
j
th framing label and M denotes the total number

of framing labels, which is fourteen in this subtask.
Table 1 shows in detail the train/dev/test

splits per language as provided by Piskorski et al.
(2023). The dataset has many challenges:

• The classes are imbalanced (Figure 2a).

• The frames’ proportions across languages are
unequal (Figure 2b).

• Most examples, namely 80.51%, contain
more than 512 tokens, which is the maximum
sequence length for BERT-like models.

• The number of examples per language is small
and so is the collective dataset size.

• Three of the test languages are surprise lan-
guages for which no training or development
data was provided.

2.2 Related Work
Curriculum Learning A large body of research
on CL (Soviany et al., 2022) investigates efficient
training strategies for deep learning models. A
core idea in CL research is the notion of “easy” and
“hard” examples.
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Figure 2: (a) Frames histogram for the training data. (b) Frames proportion by language in the training data.

Qualifying the difficulty of an example requires
creating a complexity evaluation method, which
could be challenging. Previous evaluation methods
in NLP ranged from simply looking at sentence
length (Cirik et al., 2016) to examining specialized
linguistic features (Jafarpour et al., 2021).

Primacy-Recency Effect Nikishin et al.
(2022) showed that deep reinforcement learning
models exhibit a primacy bias. Wang et al. (2023)
applied a machine learning model to study primacy-
peek-recency effect in human subjects. Both pa-
pers, however, do not tackle, nor do they observe
a primacy-recency effect in deep learning mod-
els. To the best of our knowledge, we are the first
to propose and to evaluate fine-tuning PMTs on
multilingual data in a sequential fashion language
by language. We are also the first to observe the
human-like primacy-recency effect in deep learn-
ing models in general and in PMTs in particular.

3 System Overview

We perform all of our experiments using two
transformer-based models, XLM-R with 278M pa-
rameters (Conneau et al., 2020) and uncased BERT
with 110M parameters (Devlin et al., 2019), us-
ing the setup depicted in Figure 3. We illustrate
in the upcoming subsections the different training
strategies we adopt in our experiments.

TransformerTokenizerNews

Fully-Connected Neural Network

Sigmoid + BCE 

Sigmoid + BCE

Sigmoid + BCE

a1

a2

a14

CLS Token Embeddings 

Figure 3: System overview.

3.1 XLM-R-BL: Baseline

The baseline XLM-R-BL is the pretrained XLM-
R model without fine-tuning (i.e., it has a ran-
domly initialized classification head). Note that
“BL” stands for “baseline.” This baseline will be
helpful later on to examine how fine-tuning for a
particular language contributes to the performance
for other languages.

3.2 XLM-R-S: Naïve Approach of Shuffling

We denote by XLM-R-S the naïve approach of shuf-
fling all languages and randomly sampling during
fine-tuning of XLM-R-BL. Here, “S” stands for
“shuffling.”

3.3 XLM-R-S-FT*: Shuffle then Fine-Tune on
the Target Language

For a fair comparison of the recency effect con-
tribution of the sequential training approach (sec-
tion 3.4) against the naïve approach (section 3.2),
we fine-tune XLM-R-S six times once on each of
the six target languages. Here,“FT” denotes “fine-
tuning,” and the asterisk denotes a wild-card. We
have six target languages, and thus this means we
independently fine-tune XLM-R-S six times, once
on each of the six respective target languages, re-
sulting in six distinct models. For example, one
of the six models that fall under XLM-R-S-FT* is
XLM-R-S-FT-EN, which denotes XLM-R-S fine-
tuned on English.

3.4 XLM-R-O*: Fine-Tune Sequentially
Language by Language

Fine-tuning XLM-R-BL sequentially by imposing
an ordered structure on our batches based on the
language the examples belong to yields XLM-R-
O*, where “O” denotes “order,” and, again, the
asterisk is a wild-card.
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We have six languages, and thus the number of
possible fine-tuning sequences is 7! = 720 from
which we select six:

• O1 =[English, French, German, Italian, Pol-
ish, Russian]

• O3 =[Italian, Russian, English, Polish, Ger-
man, French]

• O5 =[German, French, Russian, English, Ital-
ian, Polish]

The remaining three sequences O2, O4, and O6

are the reversed counterparts of O1, O3, and O5,
respectively. Observe that the six sequences were
selected so that each of the six languages appears
once either at the start or at the end of a sequence.

3.5 BERT-EN and BERT-TR: Data
Augmentation via Translation

We investigate the performance of monolingual
against multilingual models by fine-tuning BERT
on English training data to obtain BERT-EN. We
also investigate translation using Google Translate
as a means for data augmentation by translating
training data from all six languages to English then
fine-tuning BERT to obtain BERT-TR where “TR”
denotes “translation.” Needless to say, we also
translate test data to English before inference. Note
that we find that BERT-TR outperforms all other
approaches on the dev set, and thus our official
submission on the test set is based on BERT-TR.

3.6 Contribution of Each Language to All
Other Languages

We study how fine-tuning XLM-R-BL on any sin-
gle one of the six languages affects the performance
of the model on all the other languages, which we
did not fine-tune the model on. We use XLM-R-FR,
for instance, to denote fine-tuned XLM-R-BL on
only French data.

4 Experimental Setup

For all of our experiments, we split the task’s train-
ing set using stratified sampling2 to deal with class
imbalance. We adopt a 70/30 train/dev split, and
we use the official development set as a test set. In
sections 3.2, 3.3, and for BERT-TR from section
3.5, we do the split on the combined dataset from
all languages, while for the other sections, we do
this for each language independently.

2https://github.com/trent-b/
iterative-stratification

We use an NVIDIA Quadro RTX 6000 GPU to
fine-tune our models. We use WordPiece tokenizer
for BERT and SentencePiece tokenizer for XLM-
R.3 After tokenization, we truncate the input to 512
tokens. The CLS contextualized embeddings from
either BERT or XLM-R are fed to a fully-connected
neural network for multilabel classification with a
binary cross entropy loss for each of the fourteen
labels. We use a learning rate of 1e−5, and a batch
size of 16. We report micro-F1 scores which is a
suitable metric for examining fine-tuning sequence
ordering impact and is also the task’s official met-
ric. We also optimize for the threshold used in
the decision functions after the Sigmoids for all
models across all experiments. That is, after fine-
tuning, we use the training split to find the optimal
threshold in terms of micro-F1 score.

We fine-tune epoch by epoch and converge with
early stopping with a patience of three epochs.
Here, it is important to explain that for XLM-R-S-
FT*, we first fine-tune XLM-R-BL on the shuffled
dataset and converge with early stopping to obtain
XLM-R-S. Next, we fine-tune XLM-R-S on any of
the six target languages, say, English, again with
early stopping, to obtain XLM-R-S-FT-EN. This
process is repeated to obtain five models that cover
the five remaining languages.

As for XLM-R-O1, we fine-tune XLM-R-BL on
English with early stopping, then take the resulting
model and fine-tune on French with early stopping,
and so on all the way till Russian to obtain XLM-R-
O1. In other words, XLM-R-O1 involves six fine-
tuning steps with six early stopping convergences.
The same methodology is repeated for all other
XLM-R-O* models with the only difference being
the different order of languages when fine-tuning.

5 Results

5.1 Order Matters
Looking at Table 2, we see that XLM-R-S-O* has
the best overall performance achieving an average
F1 score gain of 2.57% and 1.34% over XLM-R-S
and XLM-R-S-FT*, respectively. Note that XLM-
R-S-FT* outperforms XLM-R-O* only on German.
Even though XLM-R-S-FT* exhibits the recency
effect by virtue of fine-tuning XLM-R-S on each
target language, we can see that the recency effect
of XLM-R-O* is stronger. Not only does XLM-
R-O* yield superior performance, but it also con-
verges 3.63% quicker as shown in Table 3.

3https://huggingface.co/
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Method English French German Italian Polish Russian Average
XLM-R-BL 47.11 36.39 49.70 43.44 52.00 32.03 43.45

XLM-R-S 63.98 55.45 61.99 56.33 63.07 46.01 57.81
XLM-R-S-FT* 65.91 57.4 63.25 52.53 65.11 50.00 59.03

XLM-R-O* 70.21 58.51 61.27 53.75 65.96 52.53 60.37

∆XLM−R−S 6.23 3.06 −0.72 −2.58 2.89 6.52 2.57
∆XLM−R−S−FT∗ 4.30 1.11 −1.98 1.22 0.85 2.53 1.34

Table 2: Order matters (dev): Here, we report the
micro-F1 scores on the development set. As discussed,
XLM-R-S-FT* consists of six models as does XLM-
R-O*. In the table, the goal is to compare the recency
effect between XLM-R-S-FT* and XLM-R-O*. Thus,
if we consider English F1 scores, the table shows the re-
sults of XLM-R-S-FT-EN for XLM-R-S-FT* and XLM-
R-O2 for XLM-R-O* because both XLM-R-S-FT-EN
and O2 have English as the last (most recent) language
in the fine-tuning sequence. In a similar fashion, the
table displays the results of the respective models ac-
cording to recency against the corresponding language
in the column.

XLM-R-O* Number of Examples XLM-R-S-FT* Number of Examples Speed Up
XLM-R-O1 15522 XLM-S-FT-RU 15405 −0.76%
XLM-R-O2 15458 XLM-S-FT-EN 18963 18.48%
XLM-R-O3 14336 XLM-S-FT-FR 15450 7.21%
XLM-R-O4 15385 XLM-S-FT-IT 15884 3.14%
XLM-R-O5 15684 XLM-S-FT-PO 15556 −0.82%
XLM-R-O6 16071 XLM-S-FT-GE 15240 −5.45%

Average Speed Up 3.63%

Table 3: Convergence speed-up: We compare each of
the six XLM-R-O* models to the respective XLM-R-S-
FT* model according to the last language the models
were fine-tuned on, and we show the number of exam-
ples (i.e., the number of optimization steps multiplied
by the batch size) till convergence.

We also make a striking observation where
PMTs exhibit a human-like primacy-recency effect
as shown in Table 4 and in Figure 1.

5.2 Data Augmentation via Translation

Recall that training data for three of the test lan-
guages is not available (Table 1). For this reason,
we explore translation as a form of data augmen-
tation, and report our results in Table 5. We find
that this approach yields better performance than
PMTs, so the system we adopt for the task submis-
sion is BERT-TR. We fine-tune BERT on English

Language ∆O1
∆O2

∆O3
∆O4

∆O5
∆O6

Language Position ∆avg

English −4.61 +6.23 +0.10 +4.33 −1.38 +11.14 1 (Primacy) +0.17%
French +1.12 +1.08 +3.06 +3.70 +0.68 +2.70 2 −0.77%
German −1.54 −0.55 −1.34 +0.93 +0.68 −0.72 3 −1.23%
Italian −4.72 −8.34 +0.16 −2.58 +0.64 +0.51 4 −1.28%
Polish −0.76 −4.83 −2.79 −3.80 +2.89 +0.65 5 −0.41%
Russian +6.52 +0.46 −3.03 −4.78 −4.91 −2.57 6 (Recency) +2.57%

Table 4: Primacy-recency effect: The table shows the
performance difference, ∆, between the naïve approach
(XLM-R-S) and the sequential approach (XLM-R-O*).
The first six columns show ∆ for all six sequences, O1

to O6. In the last column, we show ∆ averaged by
language position in the fine-tuning sequence.

Language BERT-EN (dev) BERT-TR (dev) BERT-TR (test)
English 67.96 72.68 51.23
French - 53.69 53.69
German - 60.81 60.33
Italian - 57.92 54.50
Polish - 61.81 58.70
Russian - 46.77 39.27

Spanish - - 47.66
Greek - - 52.58
Gregorian - - 55.17

Table 5: Data augmentation via translation
(dev+test): We report micro-F1 scores on the devel-
opment set. We also show BERT-TR results on the test
set from the official leaderboard.

Method English French German Italian Polish Russian
XLM-R-BL 47.11 36.39 49.70 43.44 52.00 32.03

XLM-R-EN 67.34 51.57 53.41 49.72 51.69 38.27
XLM-R-FR 52.50 50.94 54.88 46.32 54.67 40.42
XLM-R-GE 60.00 49.53 63.57 50.08 56.85 37.78
XLM-R-IT 59.85 50.46 55.72 53.83 56.66 42.15
XLM-R-PO 56.25 45.21 61.95 52.54 58.32 33.89
XLM-R-RU 58.01 45.81 53.44 45.44 48.28 41.86

Table 6: Contribution of each language to all other
languages (dev): We report micro-F1 scores on XLM-
R model trained on data from a single language. An
untrained XLM-R baseline is also shown for compari-
son.

data only to study the effect of data augmentation
and notice a ∼5% gain in performance in BERT-TR
over BERT-EN.

5.3 Contribution of Each Language to All
Other Languages

In Table 6, we see that fine-tuning XLM-R-BL
on any of the six languages benefits all other lan-
guages. We also observe that French and Rus-
sian seem to benefit negligibly more from out-
of-domain English and Italian fine-tuning, respec-
tively, than from in-domain fine-tuning.

6 Conclusion and Future Work

We are the first to illustrate the significance of fine-
tuning PMTs sequentially language by language.
We show that this not only yields sizable perfor-
mance gains of 2.57% over the naïve approach, but
it also converges 3.63% faster when supplemented
with recency fine-tuning. Moreover, we are the first
to observe a human-like primacy-recency effect in
deep learning models in general and PMTs in par-
ticular. We also perform other experiments to study
data augmentation via translation, and we study
how fine-tuning on any single language benefits all
other languages.

In the future, we plan to experiment with larger
datasets, more languages, multiple runs with differ-
ent random seeds, different downstream tasks, and
more variants of PMTs.
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This work has the potential to give us a better
understanding of the inner workings of deep learn-
ing models by drawing insight from psychology.
It also has the potential to improve the way deep
learning models in general, and PMTs in particular
are pretrained and fine-tuned.

In our work, we looked at only six out of 720
possible sequences of languages for fine-tuning. It
would be interesting to investigate other sequences.
For example, it is interesting to study keeping lan-
guages from the same family closer in the sequence
or farther apart. It would also be interesting to
frame this research as a CL problem and define a
notion of “easy” and “hard” languages.

Acknowledgements

The authors would like to thank Timothy Baldwin
for his valuable insights and helpful discussion.

References
Dallas Card, Amber E. Boydstun, Justin H. Gross, Philip

Resnik, and Noah A. Smith. 2015. The media frames
corpus: Annotations of frames across issues. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), NAACL-HLT’15,
pages 438–444, Beijing, China. Association for Com-
putational Linguistics.

Volkan Cirik, Eduard H. Hovy, and Louis-Philippe
Morency. 2016. Visualizing and understanding cur-
riculum learning for long short-term memory net-
works. CoRR, abs/1611.06204.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sumanth Doddapaneni, Gowtham Ramesh, Anoop
Kunchukuttan, Pratyush Kumar, and Mitesh M.
Khapra. 2021. A primer on pretrained multilingual
language models. CoRR, abs/2107.00676.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net.

Borna Jafarpour, Dawn Sepehr, and Nick Pogrebnyakov.
2021. Active curriculum learning. In Proceedings
of the First Workshop on Interactive Learning for
Natural Language Processing, pages 40–45, Online.
Association for Computational Linguistics.

Bennet B Murdock. 1962. The serial position effect
of free recall. Journal of Experimental Psychology,
64(5):482–488.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro,
Pierre-Luc Bacon, and Aaron Courville. 2022. The
primacy bias in deep reinforcement learning. In Pro-
ceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 16828–16847.
PMLR.

Jakub Piskorski, Nicolas Stefanovitch, Giovanni
Da San Martino, and Preslav Nakov. 2023. SemEval-
2023 task 3: Detecting the category, the framing,
and the persuasion techniques in online news in a
multi-lingual setup. In Proceedings of the 17th In-
ternational Workshop on Semantic Evaluation, Se-
mEval’23, Toronto, Canada.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and
Nicu Sebe. 2022. Curriculum learning: A survey.
Int. J. Comput. Vision, 130(6):1526–1565.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. SuperGLUE: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Ping Wang, Hanqin Yang, Jingrui Hou, and Qiao Li.
2023. A machine learning approach to primacy-peak-
recency effect-based satisfaction prediction. Infor-
mation Processing Management, 60(2):103196.

63

https://doi.org/10.3115/v1/P15-2072
https://doi.org/10.3115/v1/P15-2072
http://arxiv.org/abs/1611.06204
http://arxiv.org/abs/1611.06204
http://arxiv.org/abs/1611.06204
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2107.00676
http://arxiv.org/abs/2107.00676
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.18653/v1/2021.internlp-1.6
https://doi.org/10.1037/h0045106
https://doi.org/10.1037/h0045106
https://proceedings.mlr.press/v162/nikishin22a.html
https://proceedings.mlr.press/v162/nikishin22a.html
https://doi.org/10.1007/s11263-022-01611-x
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.ipm.2022.103196
https://doi.org/https://doi.org/10.1016/j.ipm.2022.103196

