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Abstract

This paper describes our system on SemEval-
2023 Task 10: Explainable Detection of Online
Sexism (EDOS). This work aims to design an
automatic system for detecting and classifying
sexist content in online spaces. We propose
a set of transformer-based pre-trained models
with task-adaptive pretraining and ensemble
learning. The main contributions of our system
include analyzing the performance of different
transformer-based pre-trained models and com-
bining these models, as well as providing an
efficient method using large amounts of unla-
beled data for model adaptive pretraining. We
have also explored several other strategies. On
the test dataset, our system achieves F1-scores
of 83%, 64%, and 47% on subtasks A, B, and
C, respectively.

1 Introduction

Discriminatory views against women in online
environments can be extremely harmful so in re-
cent years it has become a serious problem in so-
cial networks. Identifying online sexism involves
many challenges because sexist discrimination and
misogyny have different types and appear in dif-
ferent forms. Therefore, the aim of the EDOS
shared task (Kirk et al., 2023) is to develop English-
language models for detecting sexism. These mod-
els should be more accurate and explainable and
include detailed classifications for sexist content
from Gab and Reddit. This task covers a wide range
of sexist content and aims to distinguish different
types of sexist content. There are three hierarchical
subtasks within the task:

• SubTask A: Binary Sexism Detection. This
subtask involves a binary classification prob-
lem, where the goal is to determine whether a
given post is sexist or non-sexist using predic-
tive systems.

• SubTask B: Category of Sexism. When clas-
sifying sexist posts, a four-class classification
system is used, where the predictive systems
are tasked with identifying one of the follow-
ing categories: (1) threats, (2) derogation, (3)
animosity, or (4) prejudiced discussions.

• SubTask C: Fine-grained Vector of Sexism.
When dealing with sexist posts, a fine-grained
classification approach is utilized, where pre-
dictive systems are required to assign one of
11 specific vectors to each post.

In this paper, we describe our system for three
subtasks. First, we used some models based on
transformers. These models are fine-tuned for clas-
sification and in addition, they are used by adding
classification components in the upper layer. We
have also created a model by combining several
transformer-based models and adding a classifica-
tion layer and using it in all three subtasks as ensem-
ble learning. We then built a task-adaptive model
to adapt it to our specific domain. We trained this
model on a large unlabeled dataset and fine-tuned
it on labeled data for all subtasks. For all three sub-
tasks, we used cross-entropy loss for multi-class
classification. Our best system was able to achieve
an F1-score of 83% (subtask A), 64% (subtask B),
and 47% (subtask C) on the test dataset.

2 Background

Detecting and addressing sexist content in online
spaces has emerged as a significant issue. In this
work, we leverage a dataset obtained from two
online networks, Reddit and Gab, comprising of
user-generated text content. While 20,000 of the
dataset are labeled, a substantial portion of it (two
million) remains unlabeled. Our system employs
both datasets to perform the subtasks. Figure 1
displays a sample input and output for each subtask.

498



Figure 1: Sample input and output for sexist content.
The samples that have not-sexist labels in subtask A
have no labels in subtask B and subtask C.

State-of-the-art results in Natural Language Pro-
cessing (NLP) tasks have been achieved by pre-
trained models such as BERT, RoBERTa, ERNIE,
XLM-RoBERTa, and DeBERTa (Devlin et al.,
2019; Liu et al., 2019; Sun et al., 2019; Conneau
et al., 2019; He et al., 2020). These models, which
are trained on large datasets with numerous pa-
rameters, have demonstrated the potential to im-
prove system performance and generalization in
recent studies. Therefore, we used several pre-
trained models such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLM-RoBERTa (Con-
neau et al., 2019), competitive pre-trained mod-
els such as DeBERTa (He et al., 2020), and large-
scale pre-trained models such as ERNIE (Sun et al.,
2019). While pre-trained models have demon-
strated excellent performance in sentence-level or
paragraph-level tasks and binary classification sub-
task A, our preliminary tests revealed that they
did not perform well in subtasks B and C, which
involve classifying into four and eleven classes,
respectively. The limited amount of training data
available, differences in the scope of our work,
and pre-trained models’ training can explain these
results. However, training these models in our spe-
cific domain can potentially enhance the results.

In recent years, there has been significant re-
search into detecting sexism on social media plat-
forms. Several approaches have been proposed,
ranging from rule-based models to machine learn-
ing algorithms. Binary classification of shared con-
tent in online networks as sexist and not-sexist has
been considered in many recent works and Some
of the best methods used in sexism detection in-
clude deep learning, ensemble methods, and hy-
brid approaches. In this work (Rodríguez-Sánchez

et al., 2020), a new work is proposed that aims to
understand and analyze how sexism is expressed,
from overt hate or violence to subtle expressions,
in online conversations. the authors first collected
a dataset of 10,000 tweets on various topics includ-
ing politics, sports, culture, etc. Then, using this
dataset, they trained different models for sexism
detection using deep learning methods. For exam-
ple, they used convolutional neural networks, recur-
rent neural networks, and hybrid neural networks.
The performance of each model was then evalu-
ated using accuracy, precision, and recall metrics.
Finally, the authors concluded that convolutional
and hybrid neural networks are more accurate and
precise in detecting sexism on Twitter. In (Schütz
et al., 2021) binary and multi-class classification,
two multilingual transformer models are used, one
based on multilingual BERT and the other based
on XLM-R. This paper’s approach uses two differ-
ent strategies to adapt transformers to detect sexist
content. first, unsupervised pre-training with ad-
ditional data, and second, supervised fine-tuning
with additional and augmented data. The authors
compare their model’s performance with several
state-of-the-art methods, including traditional ma-
chine learning models and deep learning models
like convolutional neural networks and long short-
term memory networks. The evaluation results
show that the proposed multilingual transformer
model outperforms all other methods, achieving
state-of-the-art performance in detecting sexism
across multiple languages.

The structure of our paper is as follows: Section
3 describes our methodological approach and de-
scribes the models used. Our experimental setup
and employed datasets will be described in Section
4 of this paper, followed by a documentation of
the results (Section 5) and a final discussion and
conclusion (Section 6).

3 System Overview

This section describes the methods we have used
in our system. The main challenge in this work
is the rather small number of training datasets for
all three subtasks (subtask A includes 14,000 train-
ing instances, and subtasks B and C include 3,398
training instances). This rather small size makes it
difficult to effectively pre-training complex NLP
methods such as transformers. For this reason,
we use different transfer learning methods. As a
basis for textual content modeling, we apply sev-
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Figure 2: The architecture of the pre-trained
transformer-based model. In this architecture, vari-
ous pre-trained models such as BERT, DeBERTa, and
RoBERTa are used. The output layer is different for
each subtask. Subtask A includes two outputs, subtask
B includes 4 outputs, and subtask C includes 11 outputs.

eral pre-trained transformer-based models: BERT,
DeBERTa, and RoBERTa. To adapt these general-
purpose models to the task of recognition (subtask
A) and sexism classification (subtask B and C), we
use a large unlabeled dataset that has the same con-
tent as the training set. Also, in another approach,
we combine several pre-trained models and train
them by adding a classification layer for each sub-
task.

In Section 3.1 our system that uses transformer-
based models is described for three subtasks. Then,
we describe our task-adaptive system on the do-
main of this particular task (see Section 3.2). Also,
the ensemble model system is described in Section
3.3. Finally, we describe the optimization algo-
rithm and loss function in Section 3.4.

3.1 Transformer-based Model

The architecture of this model is shown in Figure 2.
For all three subtasks A, B, and C, we experimented
with pre-trained transformer-based models such as
BERT, RoBERTa, and DeBERTa. Since the distri-
bution of classes in all three subtasks is unbalanced,
model training is conducted with and without class-
weights1in the loss function. Also, the model is
fine-tuned using the training dataset. The output
layer of the model is different for each subtask,
there are two classes for subtask A, four classes for
subtask B, and 11 classes for subtask C. The classi-
fication layer of the pre-trained transformer-based
model for sequence classification was utilized.

1This argument allows you to define float values to the
importance to apply to each class.

Figure 3: The architecture of the task-adaptive model.
The output layer is different for each subtask. Subtask
A includes two outputs, subtask B includes 4 outputs,
and subtask C includes 11 outputs.

3.2 Task-adaptive Model
Transformer-based models can overfit small data
sets (Howard and Ruder, 2018). Therefore, we used
pre-trained models for all subtasks to overcome
this issue. Furthermore to adapt our model to the
scope of this particular task, in our experiments,
we trained the pre-trained transformer model in an
unsupervised manner on a large unlabeled dataset.
This large unlabeled dataset was provided by (Kirk
et al., 2023), and it contains unlabeled examples
from the same domain (i.e, also from Gab and
Reddit). We only used the pre-trained BERT model.
Then we fine-tuned the adaptive model with the
labeled data, and finally, we make predictions for
each subtask. The architecture of our task-adaptive
model can be seen in Figure 3.

3.3 Ensemble Model
In this model, we experiment with the combination
of transformer-based models. The architecture of
the ensemble model is shown in Figure 4. The input
is given to three pre-trained models, then the output
of these models, which are the representation of
the input sentence, are combined. In this model,
we tested different combinations of transformer-
based models. Our ensemble model takes the input
and feeds it into three pre-trained models. We then
added a dropout layer to the outputs of each pre-
trained model. Finally, we combined the outputs
of the dropout layers to obtain a representation of
the input sentence. A first dense layer with a Relu
activation function and a dropout layer as follows:

h1 = Dropout(Relu(htW1 + b1)) (1)
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Figure 4: Ensemble learning model architecture. Subtask A includes two outputs, subtask B includes 4 outputs, and
subtask C includes 11 outputs.

where h1 ∈ R1×d, W1 ∈ Rd×d and b1 ∈ Rd are
the embedding, learnable weight, and bias of the
first dense layer respectively. ht ∈ R3×768 It is also
a combination of the output of pre-trained models.
The last dense layer is as follows:

hout = Dropout(Relu(h1W2 + b2)) (2)

where hout ∈ R1×d, W2 ∈ Rd×d and b2 ∈ Rd

are the final embedding of the last layer, learnable
weight, and bias respectively. Finally, the hout
is transformed to fit the two-class for subtask A,
four-class for subtask B and 11-class for subtask C
classification.

3.4 Optimization and Loss Function
For all three subtasks A, B, and C, we used the
cross-entropy loss function for multi-class classifi-
cation as follows:

CE = −ΣM
c=1yi,clog(pi,c) (3)

where M denotes the number of classes, yi,c is a
binary indicator (0 or 1) that indicates whether c is
a correct class of i-th instance and pi,c means the
predicted probability of class c.

4 Experimental Setup

To fine-tune the pre-trained transformer-based mod-
els used in our systems, we employed the AdamW
optimizer (Kingma and Ba, 2014) with default hy-
perparameters. Additionally, we explored the im-
pact of additional hyperparameters, as detailed in

Hyperparameter Value
Dropout 0.5

Learning Rates 2e-5, 3e-5, 5e-5
Optimizer AdamW

Learning schedule Step Decay
schedule Step size 3

Epochs 2, 3, 5, 10, 15
Batch Size 16,32,48

Table 1: The values of the hyperparameters for fine-
tuning the models that we used in all three subtasks.
Due to unbalanced data, we used class-weight in the
loss function of some models.

Table 1. To determine the optimal values of the
hyperparameters, we utilized the dev dataset. Ex-
periments were done with Nvidia GTX 1080.

4.1 Data
We used the training, validation, and test data sets
provided by SemEval2023 Task 10 (Kirk et al.,
2023). The statistics of the corpus are presented
in Table 2. In all three subtasks, 70% of the total
data is allocated to training data, 10% to dev data,
and 20% to test data. Also, for the task-adaptive
system, we used the unlabeled data set provided to
us.

4.2 Evaluation
Our system makes classifications for all three sub-
tasks. Therefore, the output of the model is pre-
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Task Train Dev Test
SubTask A 14000 2000 4000
SubTask B 3398 486 970
SubTask C 3398 486 970

Unlabeled dataset 2 million - -

Table 2: A summary of the dataset. Data from subtasks
B and C include samples that are labeled as sexist in
subtask A.

Task BERTbase DeBERTa
SubTask A 0.7750 -
SubTask B - 0.6364
SubTask C 0.4230 -

Table 3: Official results on the leaderboard for three
subtasks. These results are reported on test sets.

dicting one class from two classes for subtask A,
predicting one class from four classes for subtask
B, and predicting one class from 11 classes for sub-
task C. To evaluate the results, we used F1-score
and other metrics such as precision and recall.

5 Results

In this section, we examine the results of the sys-
tems that we explained in the previous section. Our
best system was able to Macro-F1 score 83%, 64%,
and 47% on the test sets and 84%, 68%, and 49%
on dev sets in subtasks A, B, and C, respectively.
Using the BERT model, we obtained the official
result submitted for subtask A on the test dataset.
Our official submission system was based on the
BERT model, in which we utilized class-weight in
the loss function. We then improved it using other
models such as DeBERTa and ensemble models.
Also, the official results for subtasks B and C have
been using DeBERTa’s model, which in this paper
we have improved by adding class weights to the
cross-entropy loss function. These weights are cal-
culated based on the ratio of the number of samples
in each class to the total number of samples. They
are then normalized and used as the weight of each
class in the loss function. The official scores that
we have submitted are as follows: 77% in subtask
A, 64% in subtask B, and 42% in subtask C, which
can be seen in Table 3.

Table 4 shows the results of our different mod-
els. These results are based on the Macro-F1 score.
The performance benchmark of our systems is the
final results of the test dataset, but for better under-

Figure 5: Confusion matrix of DeBERTa model on
subtask A without any class-weight. These predictions
were made on the dev set.

standing, we have also presented the results of the
models on the dev dataset. To obtain the perfor-
mance of our systems on the test dataset, we first
trained the mentioned models with different values
of hyperparameters and then choose the optimal
hyperparameters on the dev set. Finally, for our
system and combination of hyperparameters, we
make predictions on the held-out test set. We pre-
sented the average results of at least three tests as
the final results on the test set. To deal with the un-
balanced data, we used the class-weight method in
the Loss function, which could improve the results,
especially in subtasks B and C. Also, in all models,
the learning rate of 2e−5 had the best performance
on the dev set. The results of our main models on
three subtasks’ dev sets with different batch sizes
are presented in Table 5. In the pre-trained and task-
adaptive models, batch size 32 and in the ensemble
model batch size 48 gave the best results.

Using the DeBERTabase, task-adaptive, and en-
semble models, we were able to achieve promis-
ing results in subtask A, with the best perfor-
mance belonging to model DeBERTabase on the
test set. For subtasks B and C, we obtained the
best results on the test sets using the DeBERTabase
model with class-weight. The classification layer
of the pre-trained DeBERTabase for sequence clas-
sification model was utilized in the DeBERTabase
model. However, in the ensemble model, pre-
trained transformer-based models are only used
for feature extraction. Then, several dense lay-
ers are added to combine the extracted features,
and finally, an output layer is added for classifi-
cation, which is trained on the data. Due to the
small number of data samples and their insufficient
amount for fine-tuning the model, the ensemble
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SubTask A SubTask B SubTask C
Model Dev Test Dev Test Dev Test

BERTbase 0.8036 0.7587 0.6159 - 0.3975 -

BERTbase+ Class-
Weight

0.8257 0.7834 0.5926 - 0.3597 -

RoBERTabase 0.8120 - 0.6055 - 0.3754 -

DeBERTabase 0.8418 0.8334 0.6841 0.6035 0.4855 0.4166

DeBERTabase+ Class-
Weight

0.8421 0.8319 0.6737 0.6382 0.4672 0.4728

Ensemble (DeBERTa,
RoBERTa, ERNIE)

0.8336 0.8326 0.6687 0.6254 0.3322 0.3206

Task-adaptive
BERTbase Model

0.8362 0.8324 0.6545 0.6112 0.4436 0.4344

Table 4: The results of the F1-scores for the described systems and for all three subtasks.

Model Batch Size SubTask A SubTask B SubTask C
DeBERTabase+ 16 0.8179 0.6223 0.4056
Class-Weight 32 0.8421 0.6737 0.4672

Ensemble
32 0.8148 0.6312 0.2974
48 0.8336 0.6687 0.3322

Task-adaptive 16 0.8035 0.6152 0.3991
(BERTbase) 32 0.8362 0.6545 0.4436

Table 5: F1-scores of our best models on the dev set for all three subtasks and different batch sizes.

could not achieve better results, especially in sub-
task C, which had very few data samples and a
higher number of classes compared to other sub-
tasks.

A confusion matrix of the DeBERTa model pre-
dictions on subtask A, is shown in Figure 5. Be-
cause the classes are unbalanced, the false negative
error is more than the false positive error.

6 Conclusion

In this work, we described our system for Se-
mEval2023 Task 10. The purpose of this task
was to identify and classify sexist content in on-
line spaces. To do this, we used different types of
transformer-based models as well as their combi-
nations. We also presented a task-adaptive system
in the domain of this particular task. In the above
sections, we examined the essential components
for ensuring the repeatability of our systems and
evaluated the performance of the architectures. Our
best system was able to achieve an F1-score of 83%

in subtask A, 64% in subtask B, and 47% in subtask
C on test sets. In future work, larger pre-trained
models such as DeBERTa-v3 can be used for clas-
sification or task-adaptative pretraining, and it is
also promising to use other unsupervised methods
or use more data to train the task-adaptive model.
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A Detailed Experimental Setup

The data is highly imbalanced across all three sub-
tasks(see Figure 6). To deal with this problem, we
used class-weight in the Loss function of our mod-
els. This method improved the F1-score by almost
2% in the BERT model and for subtask A, and we
observed very little improvement for subtasks B
and C. But in other models such as DeBERTa, the
class-weight was able to significantly improve the
performance of the model on the test data in all
three subtasks and increase the F1-score in most
cases. Figure 7 shows the confusion matrix of the
B and C subtasks. These results come from the
DeBERTa model, which uses class-weight in the
loss function. In this task, for each model, we first
obtained the best hyperparameters using the dev
dataset, then for the testing phase of the model,
we combined the dev and training datasets and
retrained the model, Then we evaluated the test
dataset. This could increase the F1-score for all
subtasks by an average of 1%.

A.1 Task-Adaptive System
In the task-adapted system, we trained the pre-
trained BERTbase model as an unsupervised for
both Masked Language Model(MLM) and Next
Sentence Prediction (NSP) tasks. To achieve this,
we examined 2 million unlabeled datasets and fil-
tered out those containing less than two sentences.
Finally, about 900,000 data remained, with which
we trained the model with a learning rate of 2e− 5,
batch size of 32, and in 2 epochs. Finally, we fine-
tuned the model with labeled data.
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Figure 6: The train dataset distribution diagram of A, B, and C subtask classes.

Confusion matrix on subtask B Confusion matrix on subtask C

Figure 7: Confusion matrix of DeBERTa model with class-weight on subtasks B and C. These predictions were
made on the dev sets.
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