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Abstract

This paper describes our submission to
SemEval-2023 Task 6, Subtask B, a shared
task on performing Named Entity Recogni-
tion in legal documents for specific legal en-
tity types. Documents are divided into the
preamble and judgement texts, and certain en-
tity types should only be tagged in one of the
two text sections. To address this challenge, our
team proposes a token classification model that
is augmented with information about the docu-
ment type, which achieves greater performance
than the non-augmented system.

1 Introduction

The goal of the Legal NER subtask of the Legal-
Eval task is to perform named entity recognition
(NER) on English legal texts (Modi et al., 2023).
We are interested in detecting entities specific to
the legal domain, such as case numbers, as well as
differentiating between legal roles for people, such
as lawyers and judges. This information can then
be used for downstream tasks such as information
retrieval.

While industry-standard NER systems such as
spaCy’s transition-based parser (Honnibal and
Johnson, 2015) achieve state-of-the art perfor-
mance on most standard NER tasks, it can be de-
sirable to have a customizable system for a domain
task (Tang et al., 2017). Custom NER systems can
support domain-specific entity types and learn to
detect entities in structured domain-specific docu-
ments.

Our primary system utilizes a pretrained lan-
guage model with a token classification head.

The data provided by Kalamkar et al. (2022) con-
sists of annotated sentences from Indian English
court judgement documents, which are divided into
two sections, the preamble text and judgement text.
We observed that while entities of certain classes
appear in both the preamble and judgement texts,
they should only be identified in one of the two

document classes. To address this imbalance, we
introduced augmentations that aided our system
in making accurate predictions for each document
class.

We discover that our system is able to achieve
similar performance to the baseline on the vali-
dation data, and that certain augmentations allow
the system to learn more quickly and accurately.
Our system shows improvements for certain entity
types, although certain entity types remain difficult
to label.

Our code is available at https://github.com/
michaelpginn/SemEval2023-LegalNER.

2 Background

2.1 Datasets

The dataset provided by (Kalamkar et al., 2022)
consists of 11.0k training sentences and 1k valida-
tion sentences, labeled with fourteen different en-
tity types. For example, in the following sentence,
"Sri Raja Amareshwar Naik" should be tagged as a
RESPONDENT.

No one was examined as witness on be-
half of other respondents, including re-
spondents 2 and Sri Raja Amareshwar
Naik.

2.2 Evaluation Metrics

The systems are primarily evaluated using the aver-
age F1 score over all entity labels, where entities
must match exactly to be considered correct. Addi-
tionally, we compute the F1, precision, and recall
scores for each entity to assess model weaknesses.

2.3 Baseline System

The best-performing baseline system (Kalamkar
et al., 2022) uses a spaCy transition-based parser
(Honnibal and Johnson, 2015) with the pretrained
RoBERTa model (Liu et al., 2019) used to provide
contextualized embeddings. Kalamkar et al. (2022)
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also experimented with different pretrained lan-
guage models such as Legal BERT (Chalkidis et al.,
2020) and InLegalBERT (Paul et al., 2022), as well
as a Transformer finetuning approach built with
the T-NER library (Ushio and Camacho-Collados,
2021). Critically, the baseline system does not fine-
tune the underlying transformer, but only trains the
transition-based parser.

3 System Overview

Our base NER system uses a pretrained transformer
encoder with a token classification head on top,
fine-tuned on the training data (Figure 1). Fine-
tuning pretrained transformers has proven very ef-
fective for NER (Lothritz et al., 2020). We experi-
mented with both RoOBERTa (Liu et al., 2019) and
LegalBERT, a BERT model trained from scratch on
legal texts (Chalkidis et al., 2020), for the encoder.
We use IOB tagging, where each entity type has an
inside, outside, and beginning tag, resulting in 29
total output tags.

3.1 Data Augmentation for Heterogeneous
Sentences

One key challenge our base system ran into is
that entities are tagged differently depending on
whether they came from the preamble or judge-
ment text. For example, case numbers appear in
both types of document, but are only tagged in the
judgement text, causing our models to have high
recall but low precision for these entities, as there
were many false positives. Thus, our system must
learn to recognize entities in a heterogeneous man-
ner, considering the source document type of the
sentence.

Labelled Sequence

Input Sentence

Figure 1: Fine-Tuned Model Architecture
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While the provided data divides sentences into
the preamble and judgement text, there is no guar-
antee that our model will have access to this. Fur-
thermore, a transformer should hypothetically be
able to learn this distinction, but it is likely that this
is too complex to infer with the amount of provided
data.

Thus, we trained a second model to predict the
source of a sentence based on its raw text. This
model used LegalBERT (Chalkidis et al., 2020) as
an encoder with a one-node fully-connected layer
on top for binary classification. The classification
model’s performance is presented in Table 1.

F1 P R

Classification Model | 99.1 | 98.8 | 994

Table 1: Sentence classification model performance

This trained model is used to augment the NER
model in three distinct approaches.

* In the first approach (Figure 2), we use the
classification model to predict the class for
each sentence, and add one of two special to-
kens to the end of the sequence indicating the
document type. We resize the pretrained en-
coder for the new tokens and run training and
inference as usual. Because the class informa-
tion is explicitly present in the input sequence,
the transformer should learn when to classify
certain entity types more easily.

In the second approach (Figure 4), we design
a twin-transformer model with two identical
NER models. For each batch of sentences,
we use the predictions from the classifica-
tion model to split the batch into preamble
and judgement sentences, and run each partial
batch through one of the two models, aggre-
gating the loss. Because each model only sees
sentences of one type, it should learn which
entities to label.

In the third approach (Figure 3, we modify
the token classification linear layer so it also
accepts a parameter indicating the class of
the sentence, provided by the classifier pre-
dictions. Again, this context should help the
model learn the differences between docu-
ments, but unlike the first model, the infor-
mation is available at the last step rather than
the first.



Labelled Sequence

[CLASS
TOKEN]T

Input Sentence

Figure 2: Append Sentence Classification Token

Labelled Sequence
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Figure 3: Augmented Linear Layer

4 Experimental Setup

4.1 Preprocessing

In order to do IOB tagging, we first load the data
from the spaCy binary format, which is tokenized
into words. For each sequence of tokens that are
tagged as an entity, we set the first label to the B-
CLASS tag, such as B-LAWYER, and set all others
to the I-CLASS tag, such as I-LAYWER. All other
tokens are labelled with O.

Next, we tokenize and encoder using the appro-
priate byte-pair encoder for our pretrained LM. We
map each subword token to the appropriate IOB
tags and ignore all special tokens.

A few of the validation rows did not have entities
tagged correctly, so these were omitted.

Labelled Sequence

LINEAR LAYER

LINEAR LAYER

enT Ten

ROBERTA

ROBERTA

‘m Wn,

Input Sentence

Figure 4: Twin Model

4.2 Experiments

First, we trained and evaluated the baseline sys-
tem and a few small variations, for four different
experiments. Models were trained with the train-
ing parameters specified in Kalamkar et al. (2022).
In addition to the baseline, we trained with Legal-
BERT instead of ROBERTa, with dropout increased
from 0.1 to 0.3, and with the hidden state size in-
creased from 64 to 128.

Next, we trained five custom models using fine-
tuned transformers. First, we trained two models
with Legal BERT and RoBERTa, and selected the
higher performing model for augmentation; in our
experiment this was RoOBERTa. Next, we trained
and evaluated models with the three augmentations
mentioned: a model where the sentence class was
added as an input token, a twin model where sen-
tence class was used to pick one of the two sub-
models, and a model where the sentence class was
provided to the final linear layer.

Each model was trained on all of the training
data and evaluated using all of the remaining val-
idation data. Models were trained for 40 epochs
with a batch size of 64 and 3 gradient accumulation
steps. Training used the AdamW (Loshchilov and
Hutter, 2017) optimizer with learning rate of 2E-5,
weight decay of 0.01, betal of 0.9, beta2 of 0.999,
and epsilon of 1E-8. Models were trained on an
Nvidia RTX A6000; training for each model took
around 3 hours.
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Model F1 P R
Baseline (RoBERTa) 90.3 903 904

spaCy Baseline Baseline (LegalBERT) 89.3 89.2 894
Baseline (RoBERTa) + higher dropout (0.3) 90.1 90.1 90.1
Baseline (RoBERTa) + larger hidden state (128) 89.0 89.1 88.9
LegalBERT base 85.6 83.1 88.1
RoBERTa base 87.3 86.0 88.7

Fine-Tuned Transformer RoBERTa + sentence class. token 899 88.6 91.2
RobERTa + twin model 89.8 884 913
RoBERTa + aug. linear layer 89.6 88.5 90.7

Table 2: Average performance of all models on validation set

5 Results

The overall performance for each model on the val-
idation data is listed in Table 2. All of the systems
had high performance scores, indicating this task
is very tractable.

Our best system achieved an F1 of 72.7 on the
test data, ranking 12 of 17. As this performance
is significantly worse than our validation set, this
indicates that either our system is overfit to the
validation data or the validation and test data have
significantly different distributions.

The former seems unlikely, since we only tested
the models listed against the validation data, and
all of them performed well on both the training
data and unseen validation data. Thus, we believe
that the test data must have been different than the
training and validation data in some way, such as
having different distribution of entity types (maybe
the patterns we observed with entities in preamble
and judgement texts weren’t consistent?). We do
observe that the test data has a much greater propor-
tion of sentences that were truncated by our model
input length, which could be partly responsible for
the error.

5.1 Effect of Fine-tuning

None of the variations to the baseline spaCy model
improved performance. The fine-tuned models did
not quite outperform the best spaCy baseline model,
although the difference was very small. Generally,
the fine-tuned models tended to have slightly worse
precision and slightly better recall. This indicates
that while a simple fine-tuned transformer model

doesn’t perform significantly better than the SOTA
solution, it is very competitive. One possible so-
lution to beat the SOTA would be to constrain the
output of the fine-tuned model using a conditional
random field (CRF) layer on top, while continuing
to fine-tune the entire model.

We hypothesize that the SOTA would have a
larger performance disparity on a general NER task,
where fine-tuning a transformer would not provide
much benefit.

The fine-tuned systems tended to have higher
recall than precision. One reason for this behav-
ior is that, as mentioned previously, certain entity
types appear but should not be labelled in either
the preamble or judgement, leading to many false
positives.

5.2 Effect of Legal BERT

While we initially hypothesized that using a do-
main specific model such as Legal BERT would im-
prove performance over a general-purpose model,
the Legal BERT models underperformed for both
the baseline model and our fine-tuned model. One
possible explanation is that the benefit of pretrain-
ing on legal data did not outweigh the advantage of
the RoBERTa architecture over the standard BERT
architecture. Another possibility is that the data
used to pretrain Legal BERT, which consisted of
European legal documents, was not similar enough
the Indian legal documents used in this task.
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spaCy Baseline | RoBERTa Base | + Class. Token
LAWYER 96.4 97.3 98.1
DATE 98.4 96.6 98.4
ORrRG 73.9 62.5 70.0
GPE 81.5 73.8 83.1
STATUTE 93.9 91.1 92.2
PROVISION 93.8 92.4 95.8
PRECEDENT 77.8 73.0 79.6
CASE NUMBER 80.3 76.6 76.0
WITNESS 97.4 91.5 95.8
OTHER PERSON 93.4 88.2 91.3

Table 3: Entity-level F1 on validation data

5.3 Effect of Augmentation Techniques

All of the augmented models outperformed the base
model by 2+ points. As predicted, the base model
had difficulty providing labels differently based on
document type.

Table 3 indicates the performance for entities
that only appear in one of the two document
types. The best-performing augmented model out-
performs the baseline on all but one entity type,
confirming that augmentation provided benefits.
However, the augmented model only outperformed
the spaCy baseline on some entities.

Of the augmented models, the model that ap-
pended a classification token performed best and
the model that augmented the linear layer per-
formed the worst. The best model had an F1 of
89.9, which is only 0.4 less than the SOTA.

The closeness between all augmented models
indicates that as long as the document class infor-
mation is explicitly available, it does not matter
when it is provided to the model.

The twin model achieved the highest recall of
any model including the SOTA.

5.4 Error Analysis

Our best model has particular difficulty with label-
ing ORG entities, and also struggles at STATUTE,
CASE NUMBER, WITNESS, and OTHER PERSON
labels. One likely reason for this is that these en-
tities are either similar to the surrounding text, or
similar to other entity types.

In order to better distinguish entities from sur-
rounding text, we can augment the data with fea-
tures such as word shape and other character-level
information, which spaCy uses. Song et al. (2021)
finds that for biomedical NER, extracting character-
level features is an effective strategy.

In order to distinguish between similar entity
types, we could integrate the use of a knowledge
base for relevant entities, as in Tedeschi et al.
(2021).

6 Conclusion

In this paper, we describe a fine-tuned transformer
model for named entity recognition in the legal
domain, which fails to outperform the SOTA, al-
though producing very similar results. Using a cus-
tom transformer architecture is desirable in domain-
specific tasks, as it allows customization to the task
at hand.

We demonstrate that in situations where docu-
ments should not all be labelled in the same man-
ner, augmenting data using a trained classification
model can improve performance. To this end, the
simplest and most effective solution is to append a
special token to the sequence indicating document
class. We also demonstrate that domain-specific
pretrained language models do not necessarily offer
performance benefits over general-purpose models.
Future work could involve augmenting input data
further using information such as word shape.
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