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Abstract

Identification of medical claims from user-
generated text data is an onerous but essential
step for various tasks including content mod-
eration, and hypothesis generation. SemEval-
2023 Task 8 is an effort towards building those
capabilities and motivating further research in
this direction. This paper summarizes the de-
tails and results of shared task 8 at SemEval-
2023 which involved identifying causal medi-
cal claims and extracting related Populations,
Interventions, and Outcomes (“PIO”) frames
from social media (Reddit) text.! This shared
task comprised two subtasks: (1) Causal claim
identification; and (2) PIO frame extraction.
In total, seven teams participated in the task.
Of the seven, six provided system descriptions
which we summarize here. For the first subtask,
the best approach yielded a macro-averaged F-1
score of 78.40, and for the second subtask, the
best approach achieved token-level F-1 scores
of 40.55 for Populations, 49.71 for Interven-
tions, and 30.08 for Outcome frames.

1 Introduction

Social media allows individuals to discuss, poten-
tially rare, medical conditions with others and to
find “long-tail” information about condition tra-
jectories and treatment strategies (Wadhwa et al.,
2023).

While users may feel empowered, the unvetted
nature of such online discourse makes it vulnerable
to misinformation (factually incorrect statements,
though not necessarily motivated by the aim to
mislead) and disinformation (falsehoods crafted ex-
plicitly to shape public opinion) (Swire-Thompson
and Lazer, 2019). The problem of medical mis-
information was particularly visible at the height
of the COVID-19 pandemic, during which many
unsubstantiated claims about treatments for the dis-
ease circulated. For example, Ivermectin might be
an effective treatment for COVID-19.
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Here, we propose a task which enlists NLP to
detect health related conversations on social media.
This is a crucial first step for countering health mis-
information (among other potential applications).
More specifically, we propose a multi-stage task.
The first objective is to identify causal medical
claims (Khetan et al., 2022) made within a given
text snippet from a Reddit post, consisting of ei-
ther a single or multiple sentences, i.e., to identify
the text spans that contains claims. The second
objective is to extract key clinical elements from
identified causal claims, in particular: The Popu-
lation (i.e., the condition), the Intervention, and
the Outcome i.e., the PIO elements (Richardson
et al., 1995; Nye et al., 2018). For example, if
we identify a claim such as “Drinking bleach can
cure COVID-19!”, both the Population and Out-
come would be “COVID-19”, while the Interven-
tion would be “bleach”.? In an identified claim, the
extracted interventions and the outcomes have a
causal relationship communicated between them,
either explicitly or implicitly.

This task generated a lot of interest from re-
searchers in the NLP community both because of
the timely application for the pressing issue of med-
ical misinformation (Zuo et al., 2021), and the chal-
lenging nature of the task, which entails identifying
claims on social media (Risch et al., 2021; Ahne
et al., 2022) and then extracting (Gi et al., 2021)
key elements from these identified claims. Addi-
tionally, the current advancements and widespread
availability of Large Language Model (LLM) based
systems for text generation in medical and clinical
applications (Singhal et al., 2022; Feng et al., 2022;
Rajagopal et al., 2021) also underscore the need for
research in this area.

2Note that the Outcome, in this case, is implicit, and is
also vague as stated (it is unclear whether this refers to symp-
toms of COVID-19 or some measure of viral load in the nose,
for instance); such imprecision is common on social media
however.
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Reddit post

Extracted sentence classes

PIO elements from claims

Rheumatologist says cellcept

and
now I have developed lupus.
Prednisone messed up my hips.
Just wondering if anyone tried
Xanax for pain?

Claim: Rheumatologist says cell-
cept failed to protect my kidneys
Personal Experience: Prednisone
messed up my hips

Question: Just wondering if any-
one tried Xanax for pain?

P: Rheumatoid Arthritis
I: cellcept
O: failed to protect kidneys

Specialist recommends chemo
for my thyroid cancer even
though we’ve told them we’re
trying to get Spoke
to my primary about it and he
agrees that either of those two
should be delayed but special-
ist seems insistent that any preg-
nancy, even immediately after
chemo, should not pose any prob-
lems whatsoever. Am confused
how to approach this, has anyone
experienced this?

Claim: specialist seems insistent
that any pregnancy, even immedi-
ately after chemo, should not pose
any problems whatsoever
Question: Am confused how to
approach this, has anyone experi-
enced this?

P: thyroid cancer
I: chemo
O: pregnant

Getting a lot of mixed signals in-
formation about what I can and
can’t eat. One source tells me
beans and plat proteins are fine,
other says they’re terrible. One
article says cherry juice lowers

Claim;: One source tells me beans
and plat proteins are fine, other
says they’re terrible.

Claimy: One article says cherry
juice lowers uric acid, another says
it does nothing.

I;: beans and plant proteins
I: cherry juice
O>: uric acid

, another says it does
nothing.

Table 1: Example of a dataset with a Reddit post, identified sentence class and extracted PIO elements; reproduced

from Wadhwa et al. 2023. Sentence classes are identified in the first stage of annotations corresponding to pure-

claims, personal experiences, experiences that are also claims, and questions. Populations, Interventions, and
corresponding to each individual claim are further identified in the second stage.

2 Data and Resources

Data Sources The data we release as part of this
shared task stems from a larger corpus of over 22k
richly annotated social media posts from Reddit
spanning 24 health conditions; this is described at
length in Wadhwa et al. (2023). For this task, we
released 5,695 annotated Reddit posts of this data
focused on 10 of those health conditions. These
include 597 posts containing PIO annotations for
claims.

For the full dataset in Wadhwa et al. (2023), we
identified a set of 24 condition-focused health com-
munities (“subreddits”) on Reddit, ranging from
common health conditions such as diabetes (gen-
erating very high online activity) to relatively rare
chronic diseases like Multiple Sclerosis (MS). For
each subreddit, we extracted the most recent posts

(up to 1000) to include in the dataset. To anno-
tate for gold labels, we relied on Amazon Mechan-
ical Turk (MTurk). Annotations were collected
in two stages. In the first stage (stage-1), we ob-
tain sentence-level annotations by asking workers
to identify sentences (text spans) that correspond
to claims, personal experiences, claims based on
personal experiences, and questions. For the sec-
ond stage (stage-2), we considered only instances
where we find pure-claims, i.e., broad claims that
are not related to a personal experience (~7.7% of
posts). Here, we collected annotations to identify
the relevant PIO elements that correspond to those
claims. The annotations from the first stage have
an average span length of ~23.0 tokens while the
the second stage covers entities with an average
span length of ~2.0 tokens.
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For the first stage, we use the following defini-
tions to identify sentences belonging to each cate-
gory:

* Claims: A span is classified as a claim if and
only if there exists any explicit or implicit
relationship (regardless of directionality) be-
tween an intervention and an outcome (e.g.,
my friend took X, and Y happened; I was hav-
ing X symptoms and my doctor prescribed me
Z for treatment). Operationally, we are inter-
ested in claims that could potentially change
someone’s perception about the efficacy of an
intervention for a particular condition and/or
outcome (i.e., the relationship between X, Y,
and Z). An independent claim on average
spans ~19.6 tokens.

* Question: If a span of text contains a ques-
tion (e.g.: Is this normal?; Should I in-
crease/decrease my dosage?; etc). The aver-
age length of a question in this data is ~10.5
tokens.

* Personal Experience: If a span de-
scribes a personal experience related to
specific outcomes/symptoms or popula-
tions/interventions. The average length of a
standalone personal experience is ~27.0 to-
kens while those containing a claim are on
average ~30.6 tokens long.

Obtaining high quality annotations was one of
our top priorities and challenges. To that end, we
ran three pilot experiments: the first, was an inter-
nal experiment with a very small sample of about
100 Reddit posts which were annotated for stage-1
by two people with expertise in analysing biomedi-
cal data. We evaluated the quality of annotations
through token-wise label agreement between our
internal annotators. Then, we conducted two pi-
lot experiments on mTurk with ~6000 samples to
identify and recruit workers. Recruited workers
were paid periodic bonuses based on the quality
of a random subset of their annotated samples. In
total, it took us a little over six weeks to accumulate
stage-1 annotations and approximately two weeks
to accumulate stage-2 annotations. This includes
the time it took for us to evaluate the annotated data
in batches and provide feedback to the workers. We
provide additional details on quality validation of
our data in Wadhwa et al. (2023).

To account for user consent, we sent a short mes-
sage to every Reddit user whose public post we

scraped to inform them about the potential inclu-
sion in this corpus, the intended purpose of the
data and to provide them the option to opt-out by
responding within a period of 30 days. Every user
who responded within the 30 day period had their
data completely removed from the broader dataset.

3 Task Description and Evaluation

3.1 Task Description

Participants of SemEval-2023 task 8 were invited
to develop systems to automatically identify med-
ical claims, questions, personal experiences, and
associated PIO elements made within a text snip-
pet (single or multi-sentence Reddit Post). The
proposed task was divided into the two following
subtasks.

Subtask 1: Causal claim identification Given
a text snippet (single or multi-sentence Red-
dit Post), the first subtask aims to iden-
tify all the spans of text containing Claims,
Personal Experiences, Claims based
on Personal Experiences, Questions,
and Other. This can be framed as a sentence-
level multiclass classification task. Nevertheless,
there are instances in which the desired target spans
represent only a portion of the sentence.

Subtask 2: PIO frame extraction Given a
text snippet (single or multi-sentence Reddit
Post) and an identified claim in that snippet, the
goal here is to extract related Population,
Intervention, and Outcome frames. In rare
cases, there may be more than one claim in a given
text snippet. In any case, the task is to identify the
PIO elements associated with a particular claim;
this can be framed as a sequence tagging task.

3.2 Evaluation

Data for subtask 1 was annotated at the sentence-
level while data for subtask 2 was annotated at the
token-level. We therefore required participants to
submit test files with foken-level labels. For subtask
1, we evaluated macro-averaged F1 scores across
five classes. These were evaluated at the sentence-
level as opposed to exact span/token matches since
differences in annotated spans often depend on dif-
ferences in where annotators (and consequently,
trained models) decide to mark span boundaries.
However, sentences covering those spans can rea-
sonably be assumed to belong to the same given
class.
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For subtask 2, we evaluated token-level F1 indi-
vidually for each class (effectively treating it as an
entity-tagging task). Note that most tokens in any
given post will not belong to any PIO element.

4 Results and Discussion

During the evaluation phase of our task, a total of
seven teams participated with 48 valid submissions
for subtask 1 and six teams participated with 43
valid submissions for subtask 2. The teams were
given the opportunity to make an unlimited number
of submissions for each subtask. The results pre-
sented in Table 2 and Table 3 reflect the outcomes
of the final submission for subtask 1 and subtask 2,
respectively.

4.1 Summary of Participating Systems

We provide detailed information about the top three
performing systems, and some insights gleaned
from other systems.

Team MaChAmp (van der Goot, 2023) posed
both the subtasks as a sequence tagging task at the
token level for respective categories. They used
a unified multi-task learning toolkit, MaChAmp
(van der Goot et al., 2020), to model multi-
ple SemEval 2023 tasks including our subtasks.
MaChAmp consists of a shared transformer-based
encoder and 8 different task-specific decoder heads
named as SEQ, SEQ_BIO, STRING2STRING,
MULTISEQ, etc. In this work, the authors have
used SEQ decoder head for token-level sequence
tagging using greedy decoding with a softmax out-
put layer, and SEQ_BIO decoder head for token-
level sequence prediction using CRF as decoder.
They utilized intermediate multi-task training (Gu-
rurangan et al., 2020a; Muller et al., 2020; Phang
et al., 2018), i.e. training on all the SemEval
2023 text-based tasks datasets, before finetuning
the same shared encoder on our task data. They
achieved the best F1 score using SEQ_BIO decoder
for subtask-1 and SEQ decoder for subtask-2. This
team ranked first for both subtasks on our leader-
board.

Team NCUEE-NLP (Lee et al., 2023) posed the
first subtask as a sentence classification task and
the second subtask as a sequence tagging task at
the token level. They segmented each text snippet
into sentences using Trankit (Nguyen et al., 2021),
a transformer-based NLP toolkit. For both the sub-
tasks, they performed five-fold cross-validation for

hyperparameter search and finetuned various en-
coders including BERT (Devlin et al., 2019), De-
BERTa (He et al., 2020, 2021), BioBERT (Lee
et al., 2019), and RoBERTa (Liu et al., 2019). For
subtask-1, they utilized CLS based classifier head
while for subtask-2 they utilized the token-level
classifier. This team ranked second for both sub-
tasks on our leaderboard.

Team MasonNLP (Ramachandran et al., 2023)
posed both subtasks as sequence tagging using
token-level classifiers to predict the begin-inside-
outside (BIO) tags for the respective categories.
They finetuned general domain as well as mixed
domain encoders, for both the subtasks, and per-
formed a grid search to tune the hyperparame-
ters. BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) were selected as the general do-
main encoders; BioMedRoBERTa (Gururangan
et al.,, 2020b) and BioRedditBERT (Basaldella
et al., 2020) were used as mixed domain encoders.
Team MasonNLP also incorporated external knowl-
edge by identifying disease and chemical entities
in text snippets and annotating these with special
tokens. To that end, they used Scispacy’(Neumann
et al., 2019) to augment the provided text snippet
data. This approach yielded improvements in the
F1 score for subtask-2. This team ranked third for
both subtasks on our leaderboard.

Other participating teams built systems using
a variety of methods including weak supervision,
ensemble-based modeling, and data augmentation
methods. Team HEVS-TUW (Dhrangadhariya
et al., 2023) posed both the subtasks as a sequence
tagging task at the token level for respective cat-
egories. They leveraged majority voting for an
ensemble approach. Team CAISA (Karimi and
Flek, 2023) posed the first subtask as a sentence
classification task and the second subtask as a se-
quence tagging task at the token level. They exper-
imented with various data augmentation methods
including AEDA (Karimi et al., 2021), entity re-
placement (Zeng et al., 2020), using YouChat to
produce diverse and counterfactual sentences to
mitigate class imbalance in the provided dataset.
Finally, Team Togedemaru (QOica et al., 2023)
only participated in subtask-1 and posed it as a
sentence classification task.

*model en_ner_bc5cdr_md
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Team P R F1

MaChAmp 78.14 78.65 78.40
NCUEE-NLP 7297 67.36 70.05
MasonNLP 71.16 65.78 68.59
HEVS-TUW  68.73 6290 65.70
CAISA 60.68 55.71 58.09
Togedemaru  34.93 31.14 32.93

Table 2: Subtask-1 evaluation based on final submission.

Team F1(POP) F1(INT) F1(OUT)
MaChAmp 40.55 49.71 30.08
NCUEE-NLP  37.78 43.58 30.67
MasonNLP 34.96 42.16 20.83
HEVS-TUW 17.44 26.39 22.78
CAISA 17.67 21.05 20.31

Table 3: Subtask-2 evaluation based on final submission.

5 Related Work

Causality expressed in health-related text data
Understanding causality expressed in the text has
been an area of interest for a long time (Talmy,
1987; Wolft, 2007). Researchers have proposed
guidelines to represent (Mostafazadeh et al., 2016),
built datasets to capture (Mirza and Tonelli, 2014;
Dunietz et al.,, 2017), and methods to extract
(Khetan et al., 2020) causality in text data from
various domains (Bethard and Martin, 2008).

Gurulingappa et al. (2012) studied causality com-
municated in medical case reports by developing
a dataset of Adverse Drug Effects. Whereas, Mi-
haila et al. (2012) annotated various causal events
as arguments and the connectives between them as
triggers from biomedical scientific articles to cap-
ture causality. More recently, Khetan et al. (2022)
defined causal typology and built a dataset to un-
derstand types and directions of causal interaction
communicated in clinical notes.

Health-related corpora from social media posts
Social media posts can act as complementary
sources to obtain data for research on various top-
ics, including healthcare (Chen et al., 2018; Aragén
et al., 2019; Yadav et al., 2020).

Various past works have built corpora from
health-related Reddit and Twitter posts. Copper-
smith et al. (2014) studied the quantification of
mental health signals using Twitter posts. Jiang
et al. (2020) introduced a dataset of Reddit posts to
evaluate models for automatically detecting psychi-
atric disorders. Shen and Rudzicz (2017) studied

anxiety disorders through Reddit posts, whereas,
Ahne et al. (2022) built a dataset of cause-effect
pairs from Twitter posts specifically for the diabetes
distress study.

Crowd-sourcing annotation of scientific and
medical texts

Crowdsourcing has been an acceptable approach
for parsing and obtaining annotations for many
NLP tasks in a variety of domains, including scien-
tific and medical datasets (Dumitrache et al., 2013;
Drutsa et al., 2021). Nye et al. (2018) annotated
texts from PubMed via crowdsourcing. Similarly,
Bogensperger et al. (2021) leveraged crowdworkers
to build a dataset of drug mentions on the darknet.
For our dataset, we also relied on crowdworkers to
identify claims and annotate related PIO labels.

6 Conclusion and Future work

We presented SemEval-2023 shared task 8, a novel
task to address the important and timely problem
of identifying medical causal claims on social me-
dia posts. This was formulated as a multi-step
process involving two subtasks: 1) causal claim
identification, which consisted in classifying sen-
tences as containing medical claims, personal ex-
periences, claims based on personal experiences,
or questions; and 2) PIO frame extraction, aim-
ing to extract spans corresponding to Populations,
Interventions and Outcomes associated to the iden-
tified claims. SemEval participants were asked to
build and evaluate systems to either or both sub-
tasks given a dataset of Reddit posts discussing 10
different health conditions.

In total, seven teams participated in our shared
task and six submitted a paper describing their sys-
tems. While there was a clear variation across
different submitted systems, all of them used
transformer-based models. Overall, the final re-
sults show that both our subtasks are difficult and
there is considerable room for improvement.

The current advancements and widespread avail-
ability of LLMs capable of generating text that is
indistinguishable from human-written text exacer-
bated the risk of mass production and dissemina-
tion of medical mis- and disinformation. Therefore
there is a growing imperative to conduct further
research into methods that can help to detect and
combat the spread of such misleading and poten-
tially harmful content. A promising approach in
this direction is to combine systems for the pro-
posed subtasks and integrate them with a module
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to retrieve trustworthy evidence from the scientific
literature that can help to validate or refute medical
claims on social media.

7 Limitations

We have presented a novel task of identifying key
medical elements in social media (i.e. Reddit) text
and highlighted some potential applications that
these tasks might enable. However, there are cer-
tain important limitations of our work. First, the
data released for this shared task is only a subset
of the dataset collected in (Wadhwa et al., 2023)
containing a small number of instances per medi-
cal population. Second, the entire data collection
focused solely on well-formed social media posts
in the English language. Third, high-quality refer-
ence samples are key to building effective machine
learning models. However, our reference instances
are obtained via manual annotations of free text
by laypersons (Amazon Mechanical Turk workers).
While we took steps to ensure annotation quality
we do acknowledge that these references may con-
tain some noise.

8 Ethics Statement

Our proposed task aims to motivate research to-
wards understanding how social media users per-
ceive and discuss various health conditions online.
To that end, we created a dataset consisting of per-
sonal experiences, claims, and questions of Reddit
users along with key clinical elements related to the
claims. Given the nature of the dataset and related
privacy concerns, we made sure that any individual
user could choose not to be included in our corpus.
First, we notified every Reddit user whose post we
scraped, informed them about the corpus and the
intended purpose, and provided them an option to
opt-out within a period of 30 days. Second, instead
of releasing the dataset directly, we only provide
Reddit post identifiers, related annotations, and a
script to download and combine them. The script
ensures that if a user deletes their posts they can no
longer be retrieved.
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