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Abstract

This paper presents the Visual Word Sense Dis-
ambiguation (Visual-WSD) task. The objective
of Visual-WSD is to identify among a set of ten
images the one that corresponds to the intended
meaning of a given ambiguous word which is
accompanied with minimal context. The task
provides datasets for three different languages:
English, Italian, and Farsi. We received a total
of 96 different submissions. Out of these, 40
systems outperformed a strong zero-shot CLIP-
based baseline (Radford et al., 2021). Partic-
ipating systems proposed different zero- and
few-shot approaches, often involving genera-
tive models and data augmentation. More in-
formation can be found on the task’s website:
https://raganato.github.io/vwsd/.

1 Introduction

Word Sense Disambiguation (WSD) is the task of
associating a word in context with its intended
sense, generally from a pre-defined sense inven-
tory. While there has been significant progress in
the last few years (Bevilacqua et al., 2021; Loureiro
et al., 2021), mainly powered by progress in lan-
guage models, WSD has been mainly limited to
settings with textual content only. In most settings,
WSD uses sense inventories obtained from lexical
resources, such as WordNet (Miller, 1998). How-
ever, in real-world scenarios, WSD is often asso-
ciated with other modalities, such as images. The
Visual Word Sense Disambiguation (Visual-WSD)
task aims at filling this gap: given a word and some
limited textual context (often a single word), the
task is to select among a set of candidate images
the one which corresponds to the intended meaning
of the target word. Figure 1 provides a simplified
overview of the task.

To make the task more challenging, the dataset is
constructed with the following objectives in mind:

crane habitat

Figure 1: Three examples for the Visual-WSD task.
The target (ambiguous) word (in bold) is provided with
minimal context (one or two words). The task is to
associate the intended sense with the relevant image
(underlined). Note: For the task, nine negative images
were provided, but for the sake of simplicity, we only
show three negative images.

(1) at least one image associated with an incorrect
meaning of the word is listed among the options; (2)
minimal context (one or two words) is provided for
the target word to increase the disambiguation diffi-
culty; and (3) other negative examples are sampled
from the same domain as the target sense. Objec-
tive (1) guarantees that the task pinpoints systems’
abilities in not only identifying the correct class,
but also in doing that at the more fine-grained word
sense level. Objective (2) ensures a challenging
disambiguation setting in which the system is pro-
vided with a very limited set of contextual triggers
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to identify the intended meaning. This is relevant
given the well-known disambiguation issues for
image recognition models, as also observed for re-
cent image generation systems, such as DALLE-2
(Ramesh et al., 2022; Rassin et al., 2022). In objec-
tive (3), we build a ‘challenge set’ where we source
images from the same domain as the domain of the
target sense, and include a large number of these
incorrect images for disambiguation.

The Visual-WSD task can be viewed from two
different perspectives. The task is a fine-grained
image classification task (in a constrained setting)
where the model needs to have knowledge about
the different meanings of an ambiguous word. Al-
ternatively, Visual-WSD is a novel disambiguation
task where the sense distinctions are given in the
visual modality rather than the conventional textual
definitions obtained from lexical sense inventories
(Miller et al., 1990; Navigli and Ponzetto, 2012).

Task formulation. Given a target ambiguous
word (e.g., coach) and a limited context (e.g. pas-
senger) along with ten images, the Visual-WSD
task consists of identifying the most appropriate
image for the intended meaning of the ambiguous
word. Figure 1 shows a simplified summary of the
task with three examples.

Applications. Multimodality is highly inter-
twined with different aspects of our day-to-day
lives. In fact, retrieving and understanding text
with textual data is relevant for a myriad of tasks,
from object detection to image retrieval (Calixto
and Liu, 2017; Gella et al., 2017; Li et al., 2020).
Our task enables the in-depth investigation of one
aspect often neglected, which is the inherent ambi-
guity in language (Calabrese et al., 2020a).

Multilinguality. In addition to English, we pro-
vide labeled data (context words for given ambigu-
ous targets) for Italian and Farsi. This data serves
to analyse the performance of models in languages
other than English, and in practical cross-lingual
settings where initial training data might not be
available for a given language.

2 Data

In this section we detail the data collection and
annotation process carried out for the training and
testing data. We then provide some statistics on the
datasets.

2.1 Data sources

The data for this task is mostly obtained from Wiki-
data,! OmegaWiki,? and BabelPic (Calabrese et al.,
2020b). Wikidata and OmegaWiki are both collab-
orative projects to produce a free and open knowl-
edge base and dictionary respectively. Each article,
in both resources, can be considered as a concept
(or named entity) for which one or multiple related
images are provided. BabelPic provides images as-
sociated to BabelNet (Navigli and Ponzetto, 2012),
a large multilingual encyclopedic dictionary, about
non-concrete or abstract concepts.> We use Babel-
Net as a bridge to link the three resources: Wiki-
data, OmegaWiki and BabelPic. In the following
section we describe the semi-automatic process to
construct the Visual-WSD dataset.

2.2 Construction procedure

Each instance in the dataset consists of a target
word in the context of one or two trigger words,
associated with 10 different images: one image
corresponding to the intended meaning, and the
others referring either to the other meanings of the
ambiguous target word, to similar words from the
same domain, or other randomly-selected concepts
from the used resources.

Training data. We provide silver training data
in English by leveraging BabelNet semantic net-
work structure. Specifically, we first collect a list of
senses, either ambiguous or monosemous, belong-
ing to the WordNet portion of BabelNet, together
with their associated picture provided by BabelNet.
Context words are provided based on each concept
hypernym (e.g., chef cook as the context for the
word chef). Moreover, to avoid human faces as
potential target images, we also filter out senses
denoting people through the associated WordNet
category.* This training data is intended for silver
data only.

Testing data. We provide gold testing data in
English, Farsi and Italian. In detail, we first col-
lect a list of ambiguous word senses (the potential
target words) with their respective images and defi-
nitions from BabelNet. Then, for each word sense,
we ask an annotator to provide one or two trigger
words (the context) that are enough to identify the

"https://www.wikidata.org/

http://www.omegawiki.org/

3For our task, we use the gold version only.

*https://wordnet.princeton.edu/
documentation/lexnames5wn
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Trial Training Test
English 16 12869 463
Farsi - - 200
Italian - - 305

Table 1: Number of instances for trial, training and test.

intended meaning of the word sense when consid-
ering the association between definition and image.
These trigger words were also selected to be chal-
lenging enough as not to give away the meaning of
the image in isolation (i.e., the target word is gener-
ally necessary to understand the full context). This
step is to ensure a challenging text disambiguation
task. In the case of English, annotators were profi-
cient English speakers, including the authors of this
paper, while in the case of Farsi and Italian, native
speakers performed the task. To build the negative
sample images, we pick them in a manner to en-
sure we mitigate model bias to unwanted dataset
artifacts. To this end, we construct an extension set
containing both a set of random images and images
that correspond to words other than the target that
belong to the same domain (e.g., in Figure 1 we
add “zebra” for the target word “crane”). These
domains, referred to as BabelDomains (Camacho-
Collados and Navigli, 2017), extend the Wikipedia
featured article page domains> to cover most Word-
Net and Wikipedia. Finally, for each previously
validated instance, a human annotator selects nine
images from the extension set of candidate images,
fulfilling the criteria of selecting related images but
different from the target one.

2.3 Statistics

Table 1 shows the number of instances in each split,
trial, training, and test. The trial data provided
with a few gold examples only, was used for early
development purposes during the initial phase of
the shared task. Similarly to the test set, trial in-
stances were validated by annotators. English is the
largest dataset, including more than 12 thousand
silver training instances, and 463 gold test annota-
tions. Concerning Farsi and Italian languages, we
provide gold testing data only, with 200 and 305
annotations respectively.

Shttps://en.wikipedia.org/wiki/
Wikipedia:Featured_articles

3 Evaluation

We first introduce the metrics that are used to eval-
uate the participating systems (Section 3.1). Then,
we provide a brief description of the baseline sys-
tem (Section 3.2) as well as the participting systems
(Section 3.3), and present the overall results of the
task (Section 3.4).

3.1 Evaluation metrics

We use mean reciprocal rank (MRR) and hit rate
at 1 (HIT@1) as the evaluation metrics. Given
r = [r1,...,7y] as the image ranking predictions
provided by a given system, MRR is defined as:

Tew 1
MRR = =Y = 1
e o

where n is the number of images. HIT@1 is the
ratio of instances ranking the true image as first,
that is defined as:

1 n
HIT@1 = — 14 (r; 2
nz_; 1(rg) 2)

where 1;(r) is an indicator function that returns
1if r is 1, and otherwise 0. HIT@1 can also be
viewed as accuracy when only one prediction is
provided.

3.2 Baselines

As a baseline for the Visual-WSD task, we use
CLIP (Radford et al., 2021), a recent language-
vision multi-modal embedding model. We compare
the CLIP embedding of the query phrase with the
CLIP embedding of each candidate image, and the
candidate image with the highest cosine similarity
to the query is considered as the prediction. We
use the original CLIP for English and multilingual
CLIP released by Sentence Transformers (Reimers
and Gurevych, 2019) for non-English, where the
model’s weights are shared via HuggingFace (Wolf
etal., 2020).°

3.3 Participating systems

Most of our participants’ submissions used pre-
trained vision-and-language models in a zero-shot

®Specifically, we used the openai/
clip-vit-large-patchl4-336 model
for CLIP and sentence-transformers/
clip-ViT-B-32-multilingual-vl for multi-
lingual CLIP. The code to reproduce the baseline can
be found at https://github.com/asahi4l7/
Visual-WSD-baseline.
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Team Name (Run) HIT@l MRR Team Name (Run) HIT@l MRR
TAM of SCNU (run#2) (Yang et al., 2023) 72.56 82.22 Samsung Research China (SRC) - Beijing (run#2) 84.02 89.56
SRC - Beijing (run#2) (Zhang et al., 2023b) 71.83 80.72 Rahul (run#1) 83.15 88.80
zywiolak (run#2) (Dadas, 2023) 70.49 79.80 yixuan_giao (run#2) 81.86 87.08
Rahul (run#1) (Patil et al., 2023) 69.81 78.23 TAM of SCNU (run#2) 80.13 87.42
Chicky (run#2) 68.51 78.80 chrisz (run#2) 78.83 85.87
taralO1 (run#2) 62.36 74.20 zywiolak (run#2) 77.97 85.88
ResearchTeam_HCN (run#1) 61.82 72.13 Chicky (run#1) 74.08 83.80
ML Mob (run#1) (Poth et al., 2023) 58.94 71.43 xiaohuaaa (run#1) 74.08 83.49
calpt (run#1) 58.05 71.27 taralOl (run#2) 74.08 83.49
arshandalili (run#2) (Ghahroodi et al., 2023) 57.46 71.13 ResearchTeam_HCN (run#2) 72.35 80.80
ECNU_MIV (run#2) (Li et al., 2023c) 5643  70.10 ML Mob (run#1) 7106  82.22
QiZhang (run#2) 54.85 68.65 calpt (run#1) 71.06 82.18
PolitoTeam (run#1) (Vaiani et al., 2023) 53.88 68.13 mgrebowiec (run#1) (Grgbowiec, 2023) 70.84 81.70
mmdreza.molavi (run#2) (Molavi and Zeinali, 2023) 53.50 67.92 omid (run#2) 69.76 80.51
begab (run#1) (Berend, 2023) 52.96 68.17 arshandalili (run#1) 69.76 80.51
PDS2022/23 (run#l) 48.97 63.70 shan95 (run#1) 68.47 79.17
UAlberta (run#1) (Ogezi et al., 2023) 48.41 65.17 GLP (run#l1) (Zhang et al., 2023a) 68.47 79.17
CMC MSU (run#1) 47.83 63.76 begab (run#1) 67.82 80.00
xiaohuaaa (run#2) 47.38 61.88 teamPN (run#2) 66.95 78.64
floschne (run#1) (Schneider and Biemann, 2023) 46.49 62.19 CMC MSU (run#2) 66.31 78.55
Iky 199606 (run#2) (Li et al., 2023b) 44.87 60.81 Straw hat & Mustache (run#1) 65.87 78.22
xiaotian (run#l) 43.00 50.50 QiZhang (run#2) 65.66 78.08
Silvilla (run#1) 40.75 48.31 PMCoders (run#2) 65.44 78.01
abaabalO1l (run#1) 40.27 48.14 PolitoTeam (run#l1) 65.23 77.81
Baseline organizers (CLIP) 37.20 54.39 PDS2022/23 (run#l) 65.23 77.46
PMCoders (run#2) (Pirhadi et al., 2023) 36.64 54.46 Weilinroad (run#1) 64.58 76.97
omid (run#2) 35.59 52.18 floschne (run#2) 64.36 77.52
teamPN (run#2) (Katyal et al., 2023) 32.54 48.97 keyi_li (run#1) 63.93 76.57
yjs (run#l) 30.56 48.32 1ky 199606 (run#2) 63.93 76.57
zsbf (run#2) 30.42 41.58 ECNU_MIV (run#2) 62.20 75.53
StEX NLP (run#2) (Wei and King, 2023) 29.39 46.29 rishabhgarodia (run#1) 60.91 74.59
liligiqi (run#2) 28.48 46.41 Baseline organizers (CLIP) 60.48 73.88
keyi_li (run#2) 28.30 39.41 HU (run#2) (Diem et al., 2023) 59.61 73.81
newtonysls (run#1) 26.60 45.79 jiesli (run#1) (Li et al., 2023a) 59.18 73.21
RCLN (run#2) (Mijatovic et al., 2023) 22.68 35.02 StFX NLP (run#1) 59.18 73.01
Anderson (run#2) 58.96 73.45

Table 2: HIT@1 and MRR averaged over all the lan- liligigi (run#1) 5745 7183
. K mmdreza.molavi (run#l) 57.24 72.05

guages, where only the best run is displayed from each HHU (run#1) 5680 7222
unique user. Best result in each metric is shown in bold. Ebham (run#1) (Taghavi et al., 2023) 56.80  71.68
UAlberta (run#1) 56.80 71.75

zsbf (run#l) 53.56 69.08

js (run#l 47.73 64.20

setting, similarly to our baseline (i.e., CLIP). A i/QJCiN (ruzl# 1 8341 6248
common approach across submissions involved us- newtonysls (run#1) 3218 52.62
. . . stefy_rzv (run#l) 26.78 46.75
ing generative models and data augmentation. For UoRNCL (run#2) (Markchom et al., 2023) 2052 4148

text inputs, participants used pretrained language
models to generate sentences that include the con-
text words, and back-translation (Sennrich et al.,
2016) for data augmentation. In the multimodal
setting, participants used pretrained text-to-image
models (Rombach et al., 2021) to generate can-
didate images, and used measures of distance be-
tween the generated images and the candidate im-
ages as a way to find the correct image for some
text input. Finally, participants have also used lexi-
cal knowledge graphs such as WordNet to enrich
input text with sense information, as well as exter-
nal resources such as Wikipedia as a source from
which to retrieve sentences.

In the following, we describe the top four per-
forming systems in more detail, which include
the top-performing models for each individual lan-
guage.

Table 3: HIT@1 and MRR on English test set, where
only the best run is displayed for each unique user.

TAM of SCNU (Yang et al., 2023) This system
is based on a Fine-grained Contrastive Language-
Image Learning (FCLL) model that learns fine-
grained image-text knowledge through a new fine-
grained contrastive learning mechanism. The con-
textual information is enriched by establishing a
relationship between concepts and sentences. Fi-
nally, this model benefits from a newly constructed
multilingual and multimodal knowledge base for
ambiguous words. This system achieved the top
overall result in the task with an average 72.56 ac-
curacy (or Hits@1) performance, which highlights
its robustness across languages.
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Team Name (Run) HIT@l MRR Team Name (Run) HIT@l MRR
zywiolak (run#2) 64.0 74.39 Rahul (run#l1) 84.26 89.05
TAM of SCNU (run#2) 60.5 73.19 jp854 (run#2) 80.00 84.40
Samsung Research China (SRC) - Beijing (run#2) 59.0 70.51 TAM of SCNU (run#2) 77.05 86.05
Chicky (run#2) 59.0 70.51 ResearchTeam_HCN (run#1) 73.77 81.87
xiaotian (run#l) 58.5 70.50 Chicky (run#2) 72.46 82.08
abaabalO1 (run#1) 58.5 69.91 Samsung Research China (SRC) - Beijing (run#2) 72.46 82.08
Silvilla (run#1) 57.0 67.90 xiaotian (run#1) 70.49 80.98
ECNU_MIV (run#2) 53.0 65.80 zywiolak (run#2) 69.51 79.15
taralO1 (run#2) 53.0 65.80 Silvilla (run#1) 65.25 77.02
arshandalili (run#2) 49.5 64.23 calpt (run#1) 64.59 76.21
mmdreza.molavi (run#2) 48.5 63.14 ML Mob (run#1) 64.26 75.85
ResearchTeam_HCN (run#1) 43.0 55.78 abaabalO1 (run#1) 62.30 74.51
QiZhang (run#2) 42.5 57.19 xiaohuaaa (run#1) 60.00 73.31
Rahul (run#1) 42.0 56.84 taralO1 (run#2) 60.00 73.31
PDS2022/23 (run#1) 42.0 56.58 PolitoTeam (run#2) 56.72 70.77
ML Mob (run#l1) 41.5 56.23 QiZhang (run#2) 56.39 70.68
PolitoTeam (run#1) 41.0 56.64 begab (run#1) 56.07 71.05
calpt (run#1) 38.5 55.41 mmdreza.molavi (run#2) 54.75 68.56
CMC MSU (run#l) 38.0 55.54 UAlberta (run#1) 54.43 70.69
begab (run#1) 35.0 53.47 ECNU_MIV (run#2) 54.10 68.96
UAlberta (run#1) 34.0 53.07 arshandalili (run#2) 53.11 68.65
Baseline organizers (CLIP) 28.5 46.70 floschne (run#l) 52.46 67.30
newtonysls (run#1) 24.0 43.04 lky 199606 (run#2) 49.18 64.09
floschne (run#l1) 235 42.77 CMC MSU (run#1) 44.59 60.33
Iky 199606 (run#2) 21.5 41.79 PDS2022/23 (run#l) 39.67 57.07
xiaohuaaa (run#2) 21.5 38.61 zsbf (run#2) 37.70 55.66
yjs (run#1) 21.0 38.99 PMCoders (run#2) 31.48 50.43
omid (run#2) 17.0 35.92 RCLN (run#2) 26.56 46.00
PMCoders (run#2) 13.0 34.94 newtonysls (run#1) 23.61 41.69
yjs (run#l) 22.95 41.79

Table 4: HIT@1 and MRR on Farsi test set, where only Baseline organizers (CLIP) 2262 4261
.. . StFX NLP (run#l) 21.97 41.28

the best run is displayed from each unique user. Keyi_li (run#2) 2098  41.66
liliqiqi (run#2) 20.00 39.81

omid (run#2) 20.00 40.10

teamPN (run#2) 19.67 37.99

Samsung Research China - Beijing (Zhang et al.,
2023b) In this model, definitions and synonyms
of the target word are collected from WordNet, Ba-
belNet, Wikipedia and vocabulary.com to build
the reference sense inventory. Moreover, images
of phrases are collected from the LAION open
dataset (Schuhmann et al., 2021) using CLIP re-
trieval (Cherti et al., 2022). Then, the most suitable
definition from the sense inventory is selected us-
ing a biencoder architecture with SimCSE (Gao
et al., 2021) as the backbone. The matching model
is a large version of CLIP trained on LAION-2B
from Open CLIP. For Farsi and Italian, senses
are directly translated from English. This system
achieved the overall second best performance and
the best result by a substantial margin in the En-
glish test set.

zywiolak (Dadas, 2023) This hybrid system com-
bines multimodal embeddings and knowledge-
based approaches. The main classifier is based on
the CLIP model, whose results are enriched with
additional information retrieved from Wikipedia
and lexical databases. The various modules of the
system are integrated using a learning to rank (LTR)
model. This model takes as input a feature vector

Table 5: HIT@1 and MRR on Italian test set, where
only the best run is displayed from each unique user.

describing the results of the individual components
of the system and outputs a relevance ranking of
candidate images. This system ranked third overall,
while being the top performing system in Farsi.

Rahul (Patil et al., 2023) This system presents
an ensemble of different neural models. First, CLIP
models are used for English, with text-to-text trans-
lation models for Farsi-to-English and Italian-to-
English. Additionally, this system integrates mul-
tilingual BERT-base embeddings (Devlin et al.,
2019) for text and ResNet101 embeddings (He
et al., 2016) for the image. This system ranked
fourth overall in terms of accuracy (Hits@1) and
first in the Italian test set.

3.4 Results

Table 2 shows the overall results (averaged over the
three languages, English, Italian and Farsi) of all
participating systems. Across the board, systems
in the top block, i.e. top five submissions, achieve
better results than all the others. Tables 3, 4, 5 show

2231


vocabulary.com

language-specific performances for each submis-
sion (English, Farsi and Italian, respectively). As
can be seen, although top systems for English and
Italian achieve similar results, their performance
appears to be relatively weaker in managing Farsi
data.

4 Conclusions

In this paper, we presented the first task on Vi-
sual Word Sense Disambiguation. Instead of the
usual single-modality tasks of textual word sense
disambiguation and image recognition, our pro-
posal merges these two paradigms into a single
unified task. In particular, WSD is reframed by re-
placing the usual sense inventory based on lexical
resources by a dynamic inventory based on images.
The task received 96 submissions. The evaluation
showed promising results with 40 submissions out-
performing a very competitive image recognition
baseline based on a zero-shot CLIP model for dif-
ferent languages. Nonetheless, given the recency
and challenging nature of the task, there is clear
room for improvement for future work.
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