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Abstract
Clickbait spoiling is a task of generating or re-
trieving a fairly short text with a purpose to
satisfy curiosity of a content consumer with-
out their addressing to the document linked to
a clickbait post or headline. In this paper we
introduce an ensemble approach to clickbait
spoiling task at SemEval-2023. The tasks con-
sists of spoiler classification and retrieval on
Webis-Clickbait-22 dataset. We show that such
an ensemble solution is quite successful at clas-
sification, whereas it might perform poorly at
retrieval with no additional features. In con-
clusion we outline our thoughts on possible
directions to improving the approach and shape
a set of suggestions to the said features.

1 Introduction

Clickbait is a term for a descriptive piece of in-
formation (a headline, a snippet, a post in social
media etc.) aiming to arouse users’ interest by
summarizing the contents of a linked document in
a deceptive and/or misleading manner. The sum-
mary does not suffice to satisfy users’ curiosity,
whereas the linked document is in a way adver-
tized to do so, which encourages viewers to click
the link (and thus cover the arisen curiosity gap).
Using clickbait is frowned upon as the contents of
the linked page does not usually correspond to the
expectations of users and in some cases may be
inappropriate, offensive or harmful. Hagen et al.
(2022) address the issue with an idea of clickbait
spoiling: 1) predicting the type of a spoiler that
would satisfy users’ curiosity and thus withhold
them from following the link; 2) retrieving the
spoiler itself from the document. Upon developing
a solution Hagen et al. (2022) compiled a dataset
containing "5,000 “spoilable” clickbait posts" in
English collected from Twitter, Reddit, and Face-
book, that then were manually spoiled and classi-
fied: The Webis Clickbait Spoiling Corpus 2022
(Webis-Clickbait-22). SemEval-2023 Task 5 sug-
gests to introduce a model for clickbait spoiling

and bring new insights to the existing approaches,
basing on Webis-Clickbait-22 and (optionally) ad-
ditional resourses (Fröbe et al., 2023).

Our team presents an ensemble solution
called WebSemble (Webis-Clickbait-22 Ensemble)
mainly following the steps outlined in Hagen et al.
(2022) except for an additional (and optional) sum-
marization of the documents before the classifi-
cation. Below we briefly list actions undertaken
with our approach upon execution (more in section
System Overview):

1. Data splits are transformed into SQuAD1.1
(Rajpurkar et al., 2016) format and preprocessed;

2. The contents of the linked web pages are sum-
marized if summarization is used; summarization
is conducted with a single model;

3. The clickbait posts are spoiled:
3.1. Types of spoilers are predicted from either

summarized documents (if summarization is used)
or their titles; whether summarization is used is one
of the parameters of our model;

3.2. For each dataset entry, top k spoilers are
retrieved from the web page contents;

4. Retrieved sets of k spoilers are postprocessed
with respect to predicted labels.

Note that the ensemble approach mentioned
above comes into action only at steps 3.1 and 3.2.
For that, groups of either taken "out of the box"
or fine-tuned on Webis-Clickbait-22 dataset trans-
formers (Wolf et al., 2020) models for text classifi-
cation and question answering (QA) make separate
predictions that are afterwards collapsed into a sin-
gle ensemble decision.

Implementations of WebSemble within
SemEval-2023 Task 5 were submitted to
TIRA (Fröbe et al., 2023) dockerized. Source
code of the latest version is open and avail-
able under https://github.com/cicl-iscl/
SemEval23-Task5-John-Boy-Walton. Dock-
erized environment can be pulled from
https://hub.docker.com/repository/
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docker/maxschmaltz/websemble (tag
0.28.amd).

2 Related Work

In our research we mostly oriented ourselves at
Hagen et al. (2022). That approach put a significant
value on the fact that spoilers can generally be
divided into two classes: phrase and passage. And
so the authors pay much attention to predicting
the label type, depending on which the next steps
are forked into two branches, where the spoilers
are retrieved differently: phrases are predicted in
terms of question answering in SQuAD1.1 format,
and passages are obtained with passage retrieval
models.

Liello et al. (2022) present three novel objectives
for pre-training transformer-based models, that aim
to analyze sentence- and paragraph-level seman-
tics "within and across documents". Even though
it is not related to clickbait spoiling directly, we
reckon it might be quite helpful for improving ex-
isting and future clickbait spoiling models, since
answer sentence selection models pre-trained with
the objectives 1) have a higher performance; 2) are
capable of defining information about whether a
sentence belongs to a certain paragraph.

We believe the distinction between phrases and
passages is meaningful and justified enough yet
given a slightly heavy weight. We try to show that
spoilers might be obtained within a single pipeline
agnostic to their types and that the type is more
important during postprocessing rather than upon
spoiler generation.

WebSemble refers to the following models:

Summarization:

• Pegasus (Zhang et al., 2019)

Text classification:

• bert-base-uncased-MNLI: a fine-tuned on MNLI
(Williams et al., 2018) BERT base model (uncased)
(Devlin et al., 2018)

• deberta-v3-base-tasksource-nli (Sileo, 2023)
• DistilBERT base model (uncased) (Sanh et al.,

2019)

Question answering:

• BART (base-sized model) (Lewis et al., 2019)
• bert-large-uncased-whole-word-
masking-finetuned-squad (a fine-tuned on
SQuAD1.1 BERT large model (uncased))

• distilbert-base-cased-distilled-squad (a fine-
tuned on SQuAD1.1 DistilBERT base model
(cased))

• roberta-base-squad2 (a fine-tuned on SQuAD2.0
(Rajpurkar et al., 2018) RoBERTa base model (Liu et al.,
2019))

In future we might want to use answer sentence
selection models pre-trained with the objectives
proposed in Liello et al. (2022) for dealing with
mulipart spoilers (more in Conclusion).

3 Task Setup

3.1 Corpus

In our solution we use no additional data and stick
to Webis-Clickbait-22 dataset. The dataset includes
5000 clickbait posts crawled from Twitter, Reddit,
and Facebook, with the main contents and titles of
the linked web pages, manually retrieved spoilers
and their types and a large amount of optional ex-
tra fields referring to additional information such
as urls of the web pages, key words, metadata etc.
All entries are in English and no data in another
language is supposed to be provided for the task.
Software is expected to yield only spoiler types for
the classification subtask and textual spoilers for
the retrieval subtask. Below is a simplified exam-
ple of prototypical test input and output (human-
readable):
Test input: {
"uuid": "87239hf373f",
"postText": ["This is how to set up
a startup in 3 month"],
"targetParagraphs": ["Twice a year
Y Combinator invests $500,000 per
company in a large number
of startups.",
"You can now apply for S2023 batch
at Y Combinator!"],
"targetTitle": "Y Combinator created
a new model for funding
early stage startups",
"targetUrl": "https://www.yc.com"

}

Output: {
"uuid": "87239hf373f",
"spoilerType": "phrase",
"spoiler": "apply for
S2023 batch at Y Combinator"

}

Webis-Clickbait-22 introduces 3 types of spoilers,
namely, "phrase": a shorter single-span spoiler,
"passage": a longer single-span spoiler, "multi":
multiple-span spoiler. The dataset is not balanced
by the classes and counts 2,125, 1,999 and 876
class entries respectively. Lastly, SemEval-2023
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Task 5 divides data as follows: 3200 entries for
training, 800 entries for validation and 1000 entries
for test (inaccessible for the participants).

3.2 Baselines and Preprocessing
The participants of the tasks are provided with
naive and transformers baselines. The baselines
themselves are not used with our team as they
are extremely simple (which, however, will not
be discussed in the paper) but manage to prepare
a firm ground for preprocessing. As the first stage,
transformers baseline for the retrieval subtask trans-
forme Webis-Clickbait-22 dataset (see the structure
above) into SQuAD1.1 format and then tokenize
the textual data. We decided to keep the output
format since it fits perfectly the input structure our
models expect to be passed. The only edit we make
is incorporating spoiler type labels directly into
that dataset in order not to create a second one for
classification but rather to use a single one for both
of the subtasks. To summarize, after preprocessing
our main features are: tokenized contents and title
of the web pageg; spans of the spoilers.

4 System Overview

As mentioned in Introduction, WebSemble takes
the following steps: 1) preprocessing (described
in Baselines and Preprocessing); 2) optional sum-
marization with a single model; 3) spoiler type
prediction with an ensemble of text classification
models; 4) spoiler retrieval with an ensemble of
question answering models; 5) postprocessing. In
this section steps 3-5 will be discussed; step 2 will
be omitted because the model is used "out of the
box".

4.1 Ensemble Configuration
The behaviour of WebSemble is configured by a set
of JSON files, so-called instructions. Each instruc-
tion corresponds to a model and defines whether
it is used and, if so, whether and with which pa-
rameters it should be fine-tuned (here and further:
on Webis-Clickbait-22 dataset) and applied. The
fields of instructions with descriptions are provided
in Appendix.

4.2 Models
Models overview was given in section Related
Work. However, not all the models are being fine-
tuned:
For each model, training goes on the train split of
the dataset 2500 to 5000 steps with validation being

model fine-tuned epochs batch
size

bert-base-uncased-MNLI True 6.25 4
deberta-v3-base-tasksource-nli False
DistilBERT base model (uncased) True 12.5 8
BART (base-sized model) True 12.5 8
bert-large-uncased-whole-word-
masking-finetuned-squad

False

distilbert-base-cased-distilled-squad False
roberta-base-squad2 False

Table 1: Numbers of Fine-tune Epochs.

executed on the validation split every 250 steps;
batch sizes for training and validation are equal
within one model but may vary for different ones:
that depends on how computationally intensive the
models are (the more computationally intensive the
model is, the least the batch size for it is). Some
models we use are taken already fine-tuned for the
respective task (e.g. distilbert-base-cased-distilled-
squad is already fine-tuned for QA) and are not
fine-tuned further on Webis-Clickbait-22 dataset to
prevent overfitting. Accuracy and BLEU score are
chosen as validation metrics for the classification
and retrieval subtasks respectively. Models in the
latest version were fine-tuned on a 14GB GPU in a
Google Colab notebook.

4.3 Ensemble Approach

For both subtasks we use the same approach to
calculating joint ensemble predictions. All models
are applied independent from each other and, since
we work within PyTorch framework, return tensors
of logits that are yet to be postprocessed. First
the tensors are truncated/padded if necessary and
then collapsed into a single tensor, respresenting
the desicion of an ensemble, by calculating mean
values. That means no weightings are applied and
no model has a priority.

4.4 Postprocessing

One of the key features of our approach is referring
to predicted spoiler types not before, but rather
after spoilers prediction.

The text classification ensemble output does not
require any sophisticated postprocessing: we re-
trieve labels as indices (that correspond to ids of
the labels) with the greater logit values.

The question answering ensemble returns two
tensors of logits: they correspond to start positions
and end positions of the characters (not tokens) in
the document contents respectively. Iterating over
pairs of start and end positions logits, we can cal-
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culate the scores of pairs and, hence, get a ranking
of spoiler spans, that is, spoilers themselves. Now
looking at the ranking, we can often see a couple
of challenges:

1. A considerable amount of spoilers is mean-
ingless. Those can be empty strings, sequences of
punctuation marks, fragments of actual words etc.

2. A lesser yet noticeable number of spoilers
makes sense but does not satisfy a form of a "good"
sentence. For instance, there can be quite a few
spoilers where a bracket was never closed.

3. There are spoilers that should be cleaned in a
sense they may contain residuals such as excessive
whitespaces and punctuation marks.

In our approach we deal with those issues with
heuristics, mostly regular expressions. We prefer to
remove spoilers from categories 1 and 2 above for
they are hardly human-comprehensible; from spoil-
ers from category 3 we cut off said residuals. The
only ill-formed type of spoilers we have to keep for
now is a fragment of a token: we do not see an ad-
equate way to check meaningfulness heuristically,
so those cases are not being dealt with yet.

After cleaning the spoilers we can proceed fur-
ther, where we face another issue. Upon iteration
over spoilers we encounter numerous overlapping
spans, which we might not want to keep as they
often differ only by a couple of tokens (e.g., "single
word" vs "a single word"). That is where predicted
spoiler types might come into action. Since pas-
sages are believed to be longer sentences, hence, be
captured by longer spans, we resolve overlapping
spans greedily if we need to predict a passage. That
means in that case from two overlapping spans we
would want to pick the longest one. However, that
does not work in reverse with phrases, because in
that case most phrase spoilers turn out to be one-
character strings.

From the remaining spoilers the postprocess
function takes top k (default to 5) scored ones and
in case of label "multi", random n of them are con-
catenated at current state of WebSemble; a more
sophisticated way to treat multipart spoilers will be
proposed in Conclusion.

5 Experimental Setup

As we make software submissions, we must include
all models into the environment. That leads to a ne-
cessity to fine-tune models locally and incorporate
them into image only after. For details of fine-
tuning refer to Models. Required dependencies

(versions specified) can be found in project repos-
itory under https://github.com/cicl-iscl/
SemEval23-Task5-John-Boy-Walton.

WebSemble takes multiple arguments that are
described both in repository README and in Ap-
pendix.

6 Results

6.1 Quantitative Assessment
To investigate how different arguments and/or in-
structions impact on performance of WebSemble,
we explore the space of configurations that can be
constructed with 4 main parameters:

• Whether summarization is conducted;
• Models used within the ensembles;
• Number of fine-tuning steps (where applica-

ble);
• Whether heuristics specified in Postprocessing

are used.

Not all possible combinations are being tested
for several reasons. Submitting different config-
urations on TIRA revealed that the only GPU
available there is too small for summarization
with Pegasus so we have to omit this parameter.
Concerning ensembles, we prefer that the QA
ensemble consists of the same models in every
configuration. Besides, we increase/lower the
number of fine-tuning steps simultaneously for all
models. Therefore, not even a half of the space is
explored so far.

Judging by metrics obtained in TIRA on the
test split (2), we can briefly depict the impact
of the parameters on WebSemble performance
(omitting summarization). Adding fine-tuned
models significantly increases balanced accuracy:
cf. accuracy 0.322 with a single not fine-tuned
deberta-v3-base-tasksource-nli vs accuracy
0.577 with an ensemble consisting of it and two
fine-tuned at 5000 steps models. Now the im-
pact of the number of steps is unclear because
we do not have two runs with the same models
but different number of steps; increase of accu-
racy from 0.562 to 0.577 with a greater number of
steps for DistilBERT might as well be explained
by adding to it bert-base-uncased-MNLI and/or
deberta-v3-base-tasksource-nli.

In opposite to our intuitions, removing overlap-
ping spans and using heuristics in general seriously
harms BLEU score. With this regard the last row of
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the table is representative: since predicted spoiler
types are used for spoilers retrieval only if heuristic
postprocessing is enabled (which is the case), it is
remarkable how even with the best spoiler class pre-
dictions BLEU collapses by more than 0.2 (0.081
to 0.059).

The motivation to test exactly these three config-
urations is that they cover the space of configura-
tions in the most compact and representative way;
the three combinations involve the three parame-
ters listed at the beginning of the section (except
for whether summarization is conducted) so that
we may make observations and assumptions about
how different parameters of WebSemble impact its
performance with the lowest computational costs.
Therefore, even though we do not have metrics on
such a configuration (yet), from these three tests
we may assume the best combination of parameters
above would be 5000 fine-tuning steps, the whole
ensemble for each subtask but no heuristics.

configuration
(no summarization) balanced accuracy BLEU score

2500 fine-tuning steps or less

DistilBERT base model (uncased)
+ the whole spoiler retrieval ensemble

0.562 0.081

5000 fine-tuning steps

deberta-v3-base-tasksource-nli (NB! No fine-tuning)
+ the whole spoiler retrieval ensemble
+ heuristic postprocessing

0.322 0.039

+ bert-base-uncased-MNLI
+ DistilBERT base model (uncased)

0.577 0.059

Table 2: Balanced Accuracy and BLEU Score with
Different WebSemble Configurations

6.2 Qualitative Assessment
Comparison of WebSemble performance on the
two subtasks reveals a gap in its ability to solve
the given subtasks at a comparable measure.
When balanced accuracy at the classification task
lies approximately in the middle of the teams’
results range, BLEU score at the spoiler extractive
generation subtask leaves concerns about whether
the model can be applied for it. This may be
related to inability of heuristic and overlapping
filters to detect proper sentences and arouse a
necessity to re-estimate their usefulness and
move towards more sophisticated methods. As
WebSemble cannot detect grammatically correct
and meaningful patterns, it lets sentences, that
would not have been accepted by a human, pass.
There are some examples from predictions on the
validation split (uuid and spoiler type are omitted):

[
"For the",
"le And Other",
"or so in"

]

However, it would be unfair to assume WebSemble
cannot generate adequate spoilers at all:
[

"He Rescued This Bizarre Creature
From a Sidewalk, But He Had
No Idea What It Would Grow Into",
"Loyola Marymount University",
"guest speakers"

]

7 Conclusion

At SemEval-2023 Task 5 we developed an
ensemble-based model aimed to spoil clickbait in
four stages (preprocessing excluded): 1) optional
summarization; 2) spoiler type prediction; 3) top
k spoilers retrieval agnostic to predicted spoiler
types; 4) top k preprocessing with respect to spoiler
classes. We show that this approach is capable of
adequate spoiler type prediction, but in some cases
fails to postprocess retrieved spoilers in a way the
result could be accepted by a human, which en-
courages us to try different implementations and
conduct further research.

We see the following potential courses of further
development:

• Replacing heuristic spoiler filters with an ad-
vanced model pre-trained to predict grammat-
ical and semantic acceptability of a sentence
(in a way, determine if a sentence is "good");

• Grid search aimed to define which models
should be used and which ones not; some
models can have a strongly negative effect
on the whole ensemble decision, which can
be hard to detect;

• Weighting of single models outputs: ensemble
quality could profit if some models had less
"votes" in the joint decision;

• Using answer sentence selection models pre-
trained on objectives proposed in Liello et al.
(2022): given top k predictions and label
"multi", picking spoilers that relate to the
clickbait post at most;

• Exploring additional fields of Webis-
Clickbait-22 dataset such as key words,
platform etc. Trying to benefit from web
scraping web sites cited as relative.
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field description value required by
text

classification
models

question
answering

models
name Name of the model to be printed. any string True
use Whether to use the model.

True/False True
fine-tune Whether to fine-tune the model.

input_model_path
Path to the model before
fine-tuning; ignored
if fine-tune is False.

True
True if fine-tune is True,

otherwise False

output_model_path
Path to the model after
fine-tuning; model from
this path is used for prediction.

True

training_kwargs
Parameters to be passed to
transformers.TrainingArguments;
ignored if fine-tune is False.

dictionary with
valid parameters

True if fine-tune is True,

otherwise False
trainer_kwargs

Parameters to be passed to
transformers.Trainer;
ignored if fine-tune is False.

test_batch_size Batch size upon prediction any positive integer. True

label_mapping
Mapping from label id to its
human-readable representation.

dictionary True False

notes Anything. any False
url Url to the model card on Hugging Face. any url False

Table 3: Instruction Fields Reference.

argument description required/optional values default

input_dir

Directory containing .jsonldatasets to be preprocessed.
Should obligatory contain train.jsonl (X_train) and
validation.jsonl (X_dev) if mode=="train",
input.jsonl (X_test) if mode=="test".

required any valid path "./webis22_run"

output_dir

Directory to store output in. Output: run.jsonl
with joint predictions for the subtask and,
if mode=="train", labels.json and top_k.json
with labels and top-k spoilers respectively.

required any valid path "./out"

subtask
"1" is for the subtask 1 (spoiler classification),
"2" is for subtask 2 (spoiler retrieval).

required one of "1", "2" "2"

-i, –instructions_dir
Directory containing used models data.
Should contain subdirectories /TextClassification
and /QAwith models data for subtasks 1 and 2 respectively.

optional any valid path "./instructions_local"

-p, –preprocess_mode

"0": preprocess X_train, X_dev and X_test (if provided),
aim: for initial training (and prediction);
"1": preprocess only X_test (if provided),
aim: for prediction after training;
"2": no preprocessing,
aim: for evaluation and tests.
NB! Preprocess in the context means reading and processing
raw data; no preprocessing refers to
reading preprocessed previously and saved datasets.

optional one of "0", "1", "2" "1"

-m, –mode
"train" forces fine-tuning where applicable,
whereas "test" skips it and goes directly to prediction.

optional one of "train", "test" "test"

-s, –summarize
Whether to use summarized texts
for subtask 1 (spoiler classification); otherwise titles are used.

optional one of "True", "False" "False"

-oc,
–summarize_only_on_cuda

Whether to allow summarization only on CUDA.
Ignored if summarize=="False".

optional one of "True", "False" "True"

-save, –save_datasets
Whether to save datasets after preprocessing.
Ignored if summarize=="False".

optional one of "True", "False" "False"

-save_dir,
–saved_datasets_dir

Directory to save datasets after preprocessing to.
Ignored if save_datasets=="False"or summarize=="False".

optional any valid path "./webis22_summarized"

Table 4: WebSemble Arguments Reference.
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