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Abstract
Identifying expressions of human values in
textual data is a crucial albeit complicated
challenge, not least because ethics are highly
variable, often implicit, and transcend circum-
stance. Opinions, arguments, and the like are
generally founded upon more than one guiding
principle, which are not necessarily indepen-
dent. As such, little is known about how to
classify and predict moral undertones in nat-
ural language sequences. Here, we describe
and present a solution to ValueEval, our shared
contribution to SemEval 2023 Task 4. Our re-
search design focuses on investigating chain
classifier architectures with pretrained contex-
tualized embeddings to detect 20 different hu-
man values in written arguments. We show that
our best model substantially surpasses the clas-
sification performance of the baseline method
established in prior work. We discuss limita-
tions to our approach and outline promising
directions for future work.

1 Introduction

1.1 Motivation
Human values are inextricably linked to the forma-
tion of thoughts, opinions, and actions. They under-
lie an individual’s moral, ethical, and philosophical
convictions which are manifest in their worldview.
In essence, public and private discourse are expres-
sions of human values. As online communication
platforms increasingly provide social alternatives
to the "town square," understanding written con-
tent, as it relates to the human values contained
within it, is an interesting and important NLP chal-
lenge. ValueEval presents a unique opportunity to
investigate the human values behind the formation
and presentation of opinions on controversial top-
ics, particularly those with social, economic, and
political implications (Kiesel et al., 2023).

The main objective of ValueEval1 is to detect
1https://touche.webis.de/semeval23/

touche23-web/index.html#evaluation

human values in arguments. Given an argument
with three attributes and a finite set of human value
categories, the system must classify whether or not
the argument is associated with a given value for all
values in the set. ValueEval is composed of a single
task rather than sub-tasks; however, the committee
specifies the option to focus on a subset of the 20
human value categories for classification. Here, we
employ a classification model using all 20 human
value categories.

1.2 Related Work

Since its debut, BERT (Devlin et al., 2018) has be-
come a bedrock of many NLP applications (Tenney
et al., 2019). BERT enables researchers to expedite
the task of creating contextual word embeddings.
More recently, newer alternatives to BERT have
become increasingly popular, including the GPT
models created by OpenAI. Yet, BERT continues to
transform the traditional architecture for NLP prob-
lems: provided a sample as input to a pre-trained
transformer language model, one can generate con-
textualized embeddings to then be passed to down-
stream tasks. Following in the steps of many others,
we too utilize BERT in this way in our proposed
solution to the present multi-label classification
problem.

Multi-label classification is not new, and there
are numerous methods proposed in the literature,
which typically span one of two categories: prob-
lem transformation and algorithm adaption (Zhang
and Zhou, 2014). Problem transformation methods
decompose the complexities of multi-class classifi-
cation into more familiar approaches. The simplest
method of doing so is to treat each possible class as
a binary classification problem (Zhang and Zhou,
2014), but this tends to be rather crude and ignores
potential inter-class dependencies. On the other
hand, algorithm adaption methods attempt to re-
shape existing methods to directly accommodate
the multi-label data. This, however, requires exten-

193

https://touche.webis.de/semeval23/touche23-web/index.html##evaluation
https://touche.webis.de/semeval23/touche23-web/index.html##evaluation


Human Values Conclusion Stance Premise
Achievement

Power: resources

Security: personal

Conformity: rules

Benevolence: dependability

We should ban

algorithmic trading
in favor of

Algorithmic trading allows

computers to buy and sell assets

suddenly and in massive quantities,

creating shifts in the market and

making human trading difficult.

Table 1: A glimpse at the dataset. In this training example, 25% of the possible human value categories are
represented in the given argument.

sive knowledge of the method to be adapted itself
as well as the changes to the loss metric required
to handle the new labels.

All things considered, we contend that chain
classifiers are a particularly good algorithm to ap-
proach the present problem because they grant the
simplicity of binary classifiers in tandem with the
capability to incorporate inter-label dependencies
(Read et al., 2011). Each classifier in the chain is,
in addition to the original input, provided with all
predictions from preceding classifiers. In a 10-class
setting, for instance, the first classifier in the chain
receives the base input, while the tenth (and final)
classifier receives the base input and the predic-
tions for the nine previous classes. This provides
the model more information to discover inter-class
dependencies and make informed choices. Notably,
this approach significantly relies on the order of
classifiers, the importance of which can be circum-
vented by building an ensemble of chains with dif-
ferent orderings (Zhang and Zhou, 2014).

2 Methods

2.1 Data
The data for this task2 are adapted from the task
committee’s previous work (Kiesel et al., 2022).
We used the provided Argument dataset for train-
ing. This dataset contains 5220 uniquely identified
natural language arguments (presented in English)
based on African, Chinese, Indian, and American
cultures (Mirzakhmedova et al., 2023). Each ar-
gument is comprised of a conclusion, stance, and
premise string. The conclusion of an argument con-
cisely describes the ultimate judgement or decision,
the stance indicates whether the conclusion is in
the affirmative or the opposition, and the premise
statement justifies the conclusion. Each argument
is also annotated with a binary vector of 20 human
value categories, such that a given argument can be

2https://zenodo.org/record/6818093#
.Y4pqGuzMLIA

founded upon more than one human value. Table 1
provides a sample of five of the human value cat-
egories relative to an example argument from the
dataset, which contains sentiments that evoke those
particular values.

In preparation for our model, we sample the data
uniformly at random to create a training set (80%)
and development set (20%). Figure 1 displays
the distribution of all possible human value labels
across the training and development sets. While the
representation of each human value is not balanced
across the entire dataset, our training/development
split is proportionally balanced within each human
value category, relative to the composition of the
original training dataset. We preprocess the data
using subword-based tokenization with Byte-Pair
Encoding from a small pretrained BERT model
variant intended for use with limited computational
resources (Bhargava et al., 2021; Turc et al., 2019).
We adapt the traditional pairwise input method
which is often used for question-answering models,
to create an input representation suitable for both
the BERT model and the input triples in our data
(i.e., conclusion, stance, premise).

2.2 Model

Although we tested multiple architectures, our fi-
nal model is divided into two main components,
as illustrated in Figure 2. First, we use a pre-
trained BERT model to generate contextualized
embeddings for each of the conclusion, stance, and
premise of a given sample. We then extract the
pooling layer output of BERT, which corresponds
to BERT’s <CLS> token and serves as a contextual-
ized embedding of the entire input. We pass that
output to a hidden layer, comprised of one or more
linear layers, to project to a specific dimension.

The output of the hidden layer is then connected
to the head of the classifier chain. Each classifier in
the chain is relatively simple; it includes a dropout
layer for regularization, a linear layer for the pre-
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Figure 1: The distribution of human value categories across the adapted training/development split. Each value
category is proportionally well-represented in the training and development sets, relative to the original training set.

Figure 2: Overview of our model architecture. Each
classifier in the classifier chain is comprised of a dropout
layer, one linear layer, and a sigmoid activation func-
tion. Predictions are made using the threshold before
appending each classifier’s output to the input of the
next classifier in the chain.

diction, and a sigmoid activation function. Each
classifier makes a prediction on its assigned class,
which is then appended to the input and passed to
the next classifier in the chain. This process repeats
for all 20 classifiers in the chain, at which point all
generated predictions on each class are returned.

2.3 Experimental Design

Each model is trained over 100 epochs with the
AdamW optimizer. Preliminary results show more

epochs yield no improvements. We train our model
with Binary Cross-Entropy loss in order to make
20 binary classifications. For each training session,
we change up to two of a number of model-defining
parameters–either architecture choices or hyperpa-
rameters. For our architecture, we experiment with
unfreezing BERT weights, adjusting the number of
layers in each classifier in the chain, and varying
the number of hidden layers between BERT and the
classifier chain. In terms of hyperparameters, we
experiment with varying the dropout probability,
the hidden size to project to, batch size, learning
rate, and the classification threshold.

The number of hidden layers and prediction
threshold appear to be the parameters with the
largest impact on performance. We observe that
due to the complexity of the task, adding an addi-
tional layer between BERT and the classifier chain
improves performance; yet, a third layer slightly
decreases performance, as shown in Table 3. We
use the prediction threshold to determine the binary
prediction status of an output. We initially define a
threshold of 0.5, but discover that associating the
threshold with the data label density significantly
improves performance. That is, we incorporate the
label density into the predictions in order to lever-
age the general class distribution. Our best results
are associated with a threshold of 0.3426, twice the
label density of the entire dataset. The results from
our various training sessions are listed in Table 3
in Appendix A.

2.4 Evaluation Metrics

We compare models using two different F1-scores.
We calculate a micro F1-score on the development
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set after every epoch to gauge our model’s perfor-
mance during training. This micro F1-score does
not calculate an F1-score per class, but instead as-
sumes an entry-by-entry approach. After training,
we use the provided evaluation method, which cal-
culates a per-class F1-score before averaging. In
most cases, our score is reasonably close to the
official score, so we continue to use our method for
simplicity.

3 Results

We reference the original task paper to establish a
baseline (Kiesel et al., 2022). The authors separate
tasks into different levels of granularity. We focus
on Level 1, the highest granularity. Kiesel et al.
(2022) test three Level 1 baseline models: BERT,
an SVM, and a simple model that always outputs 1.
The highest F1-score in this context is 0.25, with
BERT. Our model achieves an F1-score of 0.67,
a significant improvement from the baseline. We
compare our results with the F1 evaluation metric
in Table 2. Our competitive model performance in
the official testing session, relative to other teams,
is publicly available3.

Model Average F1-Score
BERT 0.25
SVM 0.20

Baseline-1 0.16
Our Model 0.67

Table 2: Results comparison with the original baseline
models described in Kiesel et al. (2022). Our model
significantly outperforms the baseline for the Level 1
task, which includes all 20 separate labels.

4 Discussion

4.1 Limitations and Future Work
Our most notable restriction on performance opti-
mization is model size. We do not observe evidence
of overfitting during training, which suggests that
a larger model could potentially learn more. We
further see that additional layers and parameters
in our model are associated with top results. Even
still, as model size increases, so do the demands
of computing resources and training time, both
of which posed strict limitations on our ability to
expand. Unfreezing the BERT parameters, for in-
stance, resulted in reduced model performance; if

3https://touche.webis.de/semeval23/
touche23-web/index.html#results

computationally feasible, implementing a different
learning rate for BERT than that of the newly ini-
tialized classifier may be a strategy worth pursuing.
Accordingly, we did not explore other models such
as GPT or ALBERT to generate contextualized em-
beddings, which may improve performance, at the
cost of training speed and computation complexity.

There are many multi-label classification meth-
ods to explore in this context. Classifier chains,
while superior to independent classifiers, are some-
what limited in their exploitation of inter-class de-
pendencies. Other approaches, such as ensemble
methods, may more intelligently incorporate inter-
class dependencies to identify samples correctly.
Our simple chain classifier could be augmented
with additional chains using different permutations
of class ordering.

Data augmentation is another direction worthy
of future investigation. We note that the the present
implementation of our model was developed with
the provided training dataset exclusively, prior
to the release of the official validation and test
datasets. The training set used here is not substan-
tial, despite the relatively small size of our model.
Aside from using the full official datasets, a model
like GPT could generate additional samples from
those given, as slightly noisy data could improve
training performance. A more expansive and com-
plex model might be required to leverage the bene-
fits of more data, imposing considerable tradeoffs.

4.2 Conclusions

Overall, our model offers a vastly improved alter-
native to the relatively simplistic baseline models,
and attains results competitive with the approaches
of other teams. The class labels associated with
human values in this context are, evidently, not in-
dependent. We observe values to often co-occur
in groupings, and thus emphasize that additional
functionality to account for inter-class dependen-
cies within the model is a key component to opti-
mize classification performance. We believe this
to be our main model attribute that contributes to
improvement over the baselines, none of which
contain special features to leverage inter-class de-
pendencies. Moreover, we note that our model
trains quickly, only requiring 20 to 30 minutes to
complete each training session, which we deem to
be another major strength relative to the complex
nature of the task. We acknowledge that a larger
model may outperform ours, but we underscore that

196

https://touche.webis.de/semeval23/touche23-web/index.html##results
https://touche.webis.de/semeval23/touche23-web/index.html##results


the reduction in training time and feasible computa-
tional load of small models such as ours are highly
beneficial for development. All code and data for
our implementation are available on GitHub4.
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A Appendix

Architecture Hyperparameters Scores
BERT

Frozen?
Hidden
Layers

Dropout
Hidden

Size
Batch
Size

Learning
Rate

Threshold Dev F1 Official F1

Yes 1 0.2 512 128 1x10-4 0.5 0.4104 0.3386
Yes 1 0.2 512 128 1x10-5 0.5 0.3031 0.1867
Yes 1 0.2 512 128 1x10-3 0.5 0.4468 0.4134
Yes 1 0.2 512 64 1x10-3 0.5 0.4502 0.4256
Yes 1 0.2 512 64 1x10-3 0.1713 0.4816 0.4840
Yes 1 0.2 512 64 1x10-3 0.3426 0.5034 0.5058
Yes 1 0.1 512 64 1x10-3 0.6574 0.3243 0.2919
Yes 1 0.05 512 64 1x10-3 0.3426 0.5247 0.5358
No 1 0.05 512 64 1x10-3 0.3426 0.2714 0.0884
Yes 1 0 512 32 1x10-3 0.3426 0.5343 0.5557
Yes 1 0 512 32 1x10-2 0.3426 0.5078 0.5084
Yes 1 0 512 32 5x10-3 0.3426 0.5239 0.5517
Yes 1 0 1024 32 1x10-3 0.3426 0.5423 0.5856
Yes 2 0 1024 32 1x10-3 0.3426 0.5481 0.6659
Yes 3 0 1024 32 1x10-3 0.3426 0.5438 0.6209

Table 3: Summary of results during training, with our best model bolded. Although our micro F1-score was not an
exact match with the official F1-score, it served as a good indicator for increases or decreases in model performance.
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