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Abstract

Clinical Trials Reports (CTRs) contain highly
valuable health information from which Natu-
ral Language Inference (NLI) techniques deter-
mine if a given hypothesis can be inferred from
a given premise. CTRs are abundant with do-
main terminology with particular terms that are
difficult to understand without prior knowledge.
Thus, we proposed to use domain ontologies as
a source of external knowledge that could help
with the inference process in the SemEval-2023
Task 7: Multi-evidence Natural Language In-
ference for Clinical Trial Data (NLI4CT). This
document describes our participation in subtask
1: Textual Entailment, where Ontologies, NLP
techniques, such as tokenization and named-
entity recognition, and rule-based approaches
are all combined in our approach. We were able
to show that inputting annotations from domain
ontologies improved the baseline systems.

1 Introduction

Natural Language Inference (NLI) determines
whether a given hypothesis can be deduced from a
given premise (Romanov and Shivade, 2018). Par-
ticularly in the clinical text, where there is much
variation in terminologies, NLI is more challenging
(Romanov and Shivade, 2018). The systems have
to deal with obstacles that are constantly present
in the text, such as homonyms, acronyms, or ab-
breviations, leading to ambiguity since, without
context or background, some can be mapped to di-
verse expanded forms that are not entirely correct
in the context (Krallinger et al., 2008; Couto and
Krallinger, 2020). Take, for example, a part of a
sentence with this text "Amyotrophic lateral scle-
rosis (ALS) patients..." ALS here is the acronym
for the disease Amyotrophic lateral sclerosis, but
ALS is also the gene symbol for the human gene
SOD1 superoxide dismutase 1. Without context,
when only presented with the ALS word, it is not
possible to know if it is referring to the disease, the

gene, or even another possibility not explored in
this example.

Clinical trials play a fundamental role in discov-
ering new health information (National Library of
Medicine, National Center for Biotechnology In-
formation, 2023). In these studies, the aim is to per-
form pre-defined interventions in volunteers. For
instance, the goal can be for clinicians to study the
effects of different drug concentrations on patients.
The outputs of these studies are registered in Clin-
ical Trials Reports (CTR). These reports store all
the information about the conditions to be selected
to participate in the trial, groups of participants,
information about dosage and duration, results, and
adverse events. CTRs are rich in domains with
specific terms that are not easy to grasp without
prior knowledge. Domain ontologies can provide
this external knowledge. Ontologies are defined
by Gruber (1993) as being the "specification of
conceptualization" and provide a common vocab-
ulary with represented shared knowledge (Gruber,
1993). In this scenario, it provides domain-specific
semantics to the models that can help make the con-
nection between semantics and information extrac-
tion. Because biomedical ontologies are typically
represented as directed acyclic graphs, with each
node representing an entity and the edges repre-
senting known relationships between those entities,
ancestors can be used to obtain further informa-
tion about an entity. Ancestors will contribute with
knowledge that cannot be directly assessed in the
text (Lamurias et al., 2019). Incorporating this do-
main knowledge might be significant to grasp all
the subtleties and richness of biomedical writing
when using Natural language Processing (NLP)
approaches to get more accurate predictions.

This paper presents the participation of our team,
lasigeBioTM (user dpavot), at the SemEval-2023
Task 7: Multi-evidence Natural Language Infer-
ence for Clinical Trial Data (NLI4CT) subtask 1
(Jullien et al., 2023). This task provides a collection

10



of breast cancer CTRs and statements about them
to infer the relation label of entailment or contra-
diction. Our approach combines ontologies, NLP
techniques such as tokenization and named-entity
recognition, and rule-based approaches. All code
and steps to reproduce the results regarding this
participation are available online 1. The main goal
of our participation was to assess if the introduction
of external knowledge provided by domain ontolo-
gies would improve baseline systems approaches
similar to the one provided in the challenge starter
kit.

2 Related Work

There are some instances where authors inte-
grated domain ontologies with the biomedical text.
Lamurias et al. (2019) created the BO-LSTM by
incorporating biomedical ontologies and ancestry
information alongside a deep learning Long Short-
Term Memory model. BO-LSTM was developed to
extract drug-drug interactions using the ChEBI on-
tology, and it demonstrated that integrating ontolo-
gies enhanced categorization made by the model.
Instead of the whole instance, the authors used the
Shortest Dependency Path between the target enti-
ties. Besides the word embeddings, the BO-LSTM
model incorporates WordNet as an external source
of information, a generic English language ontol-
ogy, and domain-specific ontologies. Additionally,
each entity was matched to an ontology concept in
order to obtain their ancestors.

Using the previous system as a base, Sousa and
Couto (2020) created the BiOnt, which expands
the BO-LSTM with a multi-ontology integration
(four types of domain-specific ontologies) and uses
WordNet hypernyms. It uses Gene Ontology (GO),
Human Phenotype Ontology (HPO), Human Dis-
ease Ontology (DO), and the Chemical Entities of
Biological Interest ontologies (ChEBI), which can
be combined in order to classify ten distinct types
of relations. Using three distinct datasets that rep-
resented drug-drug interactions, phenotype-gene
relations, and chemical-induced disease relations,
BiOnt had an improvement of 4.93%, 4.99%, and
2.21% of the F1-score in each dataset, respectively.

Some studies already incorporate domain knowl-
edge to perform NLI tasks. A combination of biL-
STM with attention word embeddings with defini-
tions of medical concepts provided by the Unified
Medical Language System (UMLS) was used to

1https://github.com/lasigeBioTM/SemEval2023_Task-7

perform NLI on clinical texts (Lu et al., 2019). An-
other study from Sharma et al. (2019) also employs
the domain knowledge provided by the UMLS by
incorporating it by knowledge graph embeddings
and combining it with the BERT-based language
model BioELMo.

3 Methodology

This section describes the pipeline used at the
SemEval-2023 Task 7 Subtask 1. Fig. 1 provides a
representation of our system.
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Figure 1: Preprocessing and main pipeline overview.
In the preprocessing phase, annotations and ancestors
are obtained, and then in the main pipeline, the target
section is combined with information from the shortest
dependency path, ancestors, and measurement rules.
The output is given by the similarity of the statement
and the enriched CTR section text.

3.1 Task Description

The SemEval-2023 Task 7: Multi-evidence Nat-
ural Language Inference for Clinical Trial Data
(NLI4CT) (Jullien et al., 2023) consisted in using
NLI techniques to narrow the gap regarding the
high volume of produced CTRs. In subtask 1: Tex-
tual Entailment, the main goal was to determine
the inference relation within the statement and the
CTR, if it was entailment or contradiction.

Experts in the domain created statements. They
could have two different compositions, one only
making statements about a single CTR or another
where there was a comparison between two CTRs.

The domain experts also produced the CTRs
divided into four main sections: eligibility criteria,
intervention, results, and adverse events.
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3.2 System Overview

Our system uses a generic integrated rule-based
NLP system employing external information from
ontologies. Scispacy (Neumann et al., 2019), a
python package containing models for processing
biomedical, scientific, or clinical text, was used
for the NLP functions. The tokenization and
dependency parsing model was en_core_sci_lg,
which contains 785k vocabulary and 600k word
vectors for biomedical data.

First, we performed a preprocessing step to ex-
tract annotations of entities of interest in all CTRs.
Next, we obtained the ancestors of all unique enti-
ties. In the main pipeline, using the files containing
the statements, given the CTRs IDs, the denoted
text section is selected from the annotated CTR
file. We used this section text to extract the shortest
dependency path (SDP) between pairs with the an-
cestors of the respective annotations. If a numerical
value is presented in the statement, rules for sim-
plifications of the numerical comparison are also
performed. Finally, we add the SDP, annotations,
ancestors, and rules to the text section. We com-
pare the combined information from the CTR and
the hypothesis using the similarity function from
the scispacy tokenization. The similarity function
provides a scalar similarity score between 0 and 1,
with the highest score indicating more similarity.

3.2.1 Annotations

To enrich the dataset provided by the task orga-
nizers, we annotated scientific/medical entities of
interest by linking them to eight different ontolo-
gies identified as relevant. These ontologies where
BioAssay Ontology (BAO) (Abeyruwan et al.,
2014), clinical LABoratory Ontology (LABO)
(Barton et al., 2019), Ontology of Adverse Events
(OAE) (He et al., 2014), Chemical Entities of
Biological Interest (ChEBI) (Degtyarenko et al.,
2007), Human Disease Ontology (DO) (Schriml
et al., 2022), Gene Ontology (GO) (Ashburner
et al., 2000), Human Phenotype Ontology (HPO)
(Robinson et al., 2008), and Clinical measurement
ontology (CMO) (Shimoyama et al., 2012). Re-
spectively, these ontologies target drug screen-
ing data (e.g., is substrate of, BAO:0000117),
laboratory test specifications (e.g., has maximal
value, LABO:0000119), adverse advents (e.g.,
induces, OAE:0000186), chemical entities (e.g.,
iron, CHEBI:82664), human diseases (e.g., menin-

Ontology CTR Train Dev Test
BAO 12417 200 15 42
LABO 1662 17 0 2
OAE 4486 328 36 91
ChEBI 17434 548 43 191
DO 16941 415 71 122
GO 1212 14 1 3
HPO 14906 512 51 146
CMO 874 29 2 4
Total 69932 2063 219 601

Table 1: The distribution of entities per ontology and
per type of document that was provided.

gioma, DOID:3565), gene products (e.g., sin-
gle strand break repair, GO:0000012), human
phenotypes (e.g., arachnodactyly, HP:0001166),
and clinical measurements (e.g., R wave duration,
CMO:0000271). The distribution of recognized
entities per ontology and per type of document is
presented in Table 1.

Since each entity is matched to an ontology con-
cept with a unique ID, it was possible to obtain the
ancestors. For each unique ID, a list of all ancestors
and most common labels were obtained. These an-
cestors were then used to enrich the CTRs sentence
with annotations.

3.2.2 Counts and Measurements Rules
Quantitative evidence in the form of counts and
measurements plays a crucial role in scientific
discourse, providing support for findings (Harper
et al., 2021). This type of data is essential for
obtaining accurate and precise measurements to
ensure reliable data and valid conclusions. Extract-
ing numerical data from the stext, along with its
associated entities and time scales, improves the
structure and analysis of information. Comparing
numbers in the text provides context and enhances
its meaning, leading to better-informed decisions
and analysis. This process can lead to a better com-
parison between the given Statements and the CTR
information available.

Considering the following example:

Clinical Trial ID: NCT02953860
Statement: "Patients in NCT02953860 receive
more mg of Enzalutamide than Fulvestrant over the
course of the study."
Label: "Entailment"
CTR line: "500mg of Fulvestrant will be given
IM on days 1, 15, 28, then every 4 weeks as per
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standard of care (SOC) and 160mg of Enzalutamide
will be given, in conjunction with Fulvestrant, PO
daily."

From this CTR text, it is important to extract:

• count: 500, measure: mg, of: Fulvestrant,
days: [1,15,18], weeks: every 4;

• count: 160, measure: mg, of: Enzalutamide,
days: daily.

With this information is possible to conclude
that more milligrams of Enzalutamide were given
when compared to Fulvestrant, making the label of
the statement Entailment.

3.2.3 Shortest Dependency Path
One method to decrease information noise is using
the Shortest Dependency Path (SDP). The SDP
allows filtering the minimal necessary informa-
tion between two identified entities in the text
(Xu et al., 2015). For each sentence with an-
notated entities, we obtain the Shortest Depen-
dency Path (SDP) between each pair of entities.
Given the sentence "known untreated or active cen-
tral_nervous_system (cns) metastases" the result-
ing SDP is ’active’ - ’untreated’ - ’metastases’ -
’central_nervous_system’.

4 Results and Discussion

Our team (user dpavot) reached the overall rank-
ing in the 21st position, obtaining a 0.661 (18) F1-
score, 0.511 (23) precision, and 0.936 (5) recall.
Although this shows some improvement, the ob-
tained scores in a balance binary task are the result
of the model mainly predicting the entailment class.
The best-performing combination consisted in hav-
ing ancestors on single CTRs while removing them
from the CTRs comparison.
CTRs comparison statements were the ones that
provided a significant challenge to our pipeline.
Comparison statements consisted of 30% (60) of
the development set. For these occurrences, our
approach consisted of joining the section text from
each CTR as a unique text. This method resulted
in noise since the text’s origin was lost, and it was
impossible to distinguish which part of the text
belonged to which CTR. The approach also re-
sulted in a massive comparison text, with much
non-relevant information to compare with the state-
ment.
Regarding count rules, we explored in which sit-
uations it fails. One of the reasons count rules

may fail is if the measurement of the number is
not included in the list of created measurements.
This is also true for timespan measurements ("day",
"week", "month", et cetera).

Spacy is used to verify the entity "of" to which
the number refers. However, it’s important to note
that Spacy may not always accurately identify the
children or the right entity of the number, which
can lead to inaccurate conclusions. One practical
example of this occurrence is demonstrated in the
following example:

Considering the CTR text: "Documented
menopausal status premenopausal (having men-
strual periods or FSH <35) or postmenopausal
(12 months since last menstrual period with intact
uterus and at least one ovary or FSH 35 or previ-
ous bilateral oophorectomy." Our rules, wrongly
extract:

• count: 35, of: postmenopausal, months: 12.

4.1 Ablation Studies

In order to understand if the introduction of the
annotations produced a positive effect on the base-
line systems, we performed ablation studies using
the development set. Although we did not insert
annotations in the starter kit, it was used as the pri-
mary baseline of comparison. Our ablation studies
consisted in running the pipeline without annotated
CTRs, without the SDP, and without the Counts
and Measurements Rules. The results are present
in Table 2.

Method F1 P R
NLI4CT Starter Kit 0.502 0.486 0.520
No Annotated CTRs 0.522 0.515 0.530
No SDP 0.66 0.500 0.970
No Count Rules 0.662 0.500 0.980
Full Pipeline 0.667 0.500 0.980

Table 2: Scores from the development set.

These results showed that each one of the
inserted methods improved the baseline results.
Moreover, it showed that the combination of these
three achieves the highest scores.

4.2 Complementary Experiments

In developing our pipeline, several ensembles were
tested to find which combination would result in
better performance. The tried approaches are de-
scribed in this section.
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Leaving all the full text from the section pro-
duced worse results than using only the annotated
sentences. This outcome may be because the rele-
vant entities regarding the statement are identified
in the annotation process discarding sentences that
do not contribute meaningfully to the inference.
Annotations with SDP were also tested on the state-
ments, but the ensemble got worse results than just
using the statement text without additions. These
results could be due to the short size of the state-
ments, making the annotations so close that the
produced path did not hold enough relevant infor-
mation.

5 Conclusion

Although the state-of-the-art employs deep learn-
ing techniques, these are very "hungry" for data
and sometimes do not have the pervasiveness abil-
ity when encountering different conditions from
those on the training set (Romanov and Shivade,
2018). Since the provided dataset was small, we
explored the combination of rule-based NLP en-
riched with external information. As previously
stated, our goal was to evaluate if inputting anno-
tations from domain ontologies could improve the
baseline systems. Our results showed that the ad-
dition of the entities annotations improved these
systems.

As for future work, we wish to explore incor-
porating thresholds regarding non-specific anno-
tations and ancestors to generate more significant
annotations.
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