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Abstract

This paper describes the system and experi-
mental results of an ensemble-based approach
to multilingual framing detection for the sub-
mission of the ACCEPT team to the SemEval-
2023 Task 3 on Framing Detection (Subtask 2).
The approach is based on an ensemble that com-
bines three different methods: a classifier based
on large language models, a classifier based on
static word embeddings, and an approach that
uses external commonsense knowledge graphs,
in particular, ConceptNet. The results of the
three classification heads are aggregated into
an overall prediction for each frame class.

Our best submission yielded a micro F1-score
of 50.69% (rank 10) and a macro F1-score of
50.20% (rank 3) for English articles. Our ex-
perimental results show that static word embed-
dings and knowledge graphs are useful compo-
nents for frame detection, while the ensemble
of all three methods combines the strengths
of our three proposed methods. Through sys-
tem ablations, we show that the commonsense-
guided knowledge graphs are the outperform-
ing method for many languages.

1 Introduction

The SemEval 2023 Task 3 by Piskorski et al. (2023)
(Subtask 2) consisted in detecting different types
of frames in newspaper articles in six different lan-
guages (English, French, German, Italian, Polish,
and Russian). Beyond these seen languages, three
more languages were added in the testing phase
(Spanish, Greek, and Georgian).

Different framings represent different perspec-
tives on one and the same reported event. Being
able to categorize them helps to cluster such news
articles and guides the analyses of different as-
pects (Card et al., 2015). In the particular task at
hand, the applied generic MediaFrames set (Boyd-
stun et al., 2014) categorizes articles into 14 frame
classes: “Economic”, “Capacity and resources”,

“Morality”, “Fairness and equality”, “Legality, con-
stitutionality and jurisprudence”, “Policy prescrip-
tion and evaluation”, “Crime and punishment”, “Se-
curity and defense”, “Health and safety”, “Quality
of life”, “Cultural identity”, “Public opinion”, “Po-
litical” and “External regulation and reputation”.

In this paper, we describe the system and exper-
imental results for submitting team ACCEPT to
the shared task. Our approach consists of an en-
semble of three different methods, each relying on
a fully connected classification layer on top of i)
a large language model (LM), ii) static word em-
beddings and iii) a Graph Neural Network (GNN)
architecture exploiting a commonsense knowledge
graph (CSKG), ConceptNet in particular. To han-
dle inputs in multiple languages, as required by the
task, we explore language-specific and language-
agnostic methods, and determine the best config-
uration for each language. As an interesting re-
sult, we found that the overall best configuration is
language-specific by using commonsense knowl-
edge graphs for inference, while LMs do not per-
form well without further guidance.

We publish our highly adjustable ensem-
ble framework, including the three proposed
methods at https://github.com/phhei/
SemEval233FramingPublic.

2 Related work

The challenge of detecting and tracing frames in
newspaper articles goes back to seminal work of
Boydstun et al. (2014) and Card et al. (2015), who
provided a dataset with articles annotated with
frames. One of the first automatic approaches
to inferring frames for articles was proposed by
Naderi and Hirst (2017), who relied on recurrent
networks based on static word embeddings. This ar-
chitecture performed with an accuracy of up to 71%
in distinguishing between the five most frequent
MediaFrames on the text-span level. Building on
these first encouraging results, the task of frame
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detection also received attention in the field of ar-
gument mining (Ajjour et al., 2019; Ruckdeschel
and Wiedemann, 2022) and even aspect-tailored
language generation with pretrained large language
models (Schiller et al., 2021; Chen et al., 2021) that
were also successfully applied for frame classifica-
tion (Jurkschat et al., 2022).

Beyond exploiting text only, some methods in ar-
gument mining have integrated external knowledge
and found it to improve performance on tasks such
as the prediction of the quality of argumentative
conclusions (Heinisch et al., 2022), or the predic-
tion of sentiment-related human needs categories
following the hierarchy of human needs (Maslow,
1943) and basic motives (Reiss, 2004), in the anal-
ysis of narratives (Paul and Frank, 2019). How-
ever, to the best of our knowledge, the inclusion
of background knowledge for framing prediction,
as proposed in our work, has not been investigated
before.

Inspired by the success of combining dif-
ferent approaches to the task of frame detec-
tion (Heinisch and Cimiano, 2021) and related
shared tasks (Herath et al., 2020; Raj et al., 2020;
Luo et al., 2022), we experiment with various
method selections and hyperparameter settings to
explore advantages and disadvantages across dif-
ferent methods for detecting frames in newspaper
texts.

3 Dataset

We used the provided dataset for the shared task
by (Piskorski et al., 2023), containing 2,069 propa-
ganda or political news article published between
2020 and 2022, split into 1,251 articles for training,
361 articles for development, and 457 for training.
Each article is annotated with 1-10 out of 14 differ-
ent frame classes. While the annotators select some
frame classes frequently (e.g. “Political” and “Se-
curity and Defense”), other frame classes are about
four times less selected (e.g.: “Cultural identity”
and “Public opinion”).

The articles are multi-lingual, including six lan-
guages in all splits (English, French, German,
Italian, Polish, and Russian) and three languages
(Spanish, Greek, and Georgian) only in the test
split. The average number of tagged frames classes
per article differs across languages (e.g., 1.2 frame
classes per Russian article and 5.9 frame classes
per Polish article, both averaged on the test split).

Figure 1: Our general ensemble approach in our stan-
dard configuration

4 System Overview

We present an ensemble approach that combines
three different multilabel classification models to
predict the frames of a given news article. The
methods are based on large language models (LMs),
static word embeddings (WE) and GNNs using
commonsense knowledge subgraphs (KG), as il-
lustrated in Figure 1. They are described in detail
below.

Method using Large Language Models (LM)
We fine-tune existing pre-trained large language
models for the task of framing detection. As many
language models have an input size limit of 512 to-
kens, which is not sufficient to process the majority
of the articles, besides experimenting with special
language models that are able to process longer se-
quences (Beltagy et al., 2020; Zaheer et al., 2020;
Guo et al., 2022), we chunk the input into sentences
and accumulate the predictions for each sentence.
We use a standard linear classification layer on top
of the language model for multilabel classification.

Method using Static Word Embeddings (WE)
Motivated by Heinisch and Cimiano (2021), we
experimented with static word embeddings. We
map each token to a static word embedding using
the English-only GloVe-Embeddings (Pennington
et al., 2014) as well as the multilingual word embed-
dings of Lample et al. (2018). We further encode
the word embeddings by a neural feed-forward
layer. To adapt to the varying length of the input
texts, we compute the component-wise average and
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standard deviation for the encodings of all words
(reflecting the content, length, and variance of the
input text). We concatenate this average vector
and the deviation vector, processed by a simple
feed-forward classification layer.

Method using a Knowledge Graph model (KG)
We designed this model to incorporate common-
sense knowledge by retrieving subgraphs of Con-
ceptNet (CN) (Speer et al., 2017) that are related
to chunks of text, and processing them using graph
neural networks (GNNs). In CN, nodes are con-
cepts in free-form text, and edge labels specify
relations between pairs of concepts.

In order to extract relevant subgraphs from CN,
we rely on a method proposed in Plenz et al. (2023).
The method extracts contextualized subgraphs from
CN that enrich the texts with relevant common-
sense knowledge that i) matches the meaning of
the texts, including ii) potentially implicit infer-
ences. In order to select contextually relevant CN
subgraphs, the method internally computes short-
est paths weighted by semantic similarity, which
strengthens the semantic relatedness and hence the
relevance of the extracted knowledge subgraphs,
compared to traditional unweighted (shortest) path
searches. Semantic similarity is estimated using
SBERT (Reimers and Gurevych, 2019).

In order to apply this method to longer texts, we
first split the articles into sentences and construct
contextualized CN-subgraphs between all pairs of
subsequent sentences. We then merge the obtained
graphs into one single graph that spans the entire
article, by merging matching nodes from different
graphs. Some CN relations have clear head and
tail concepts (e.g. IsA), i.e., CN contains directed
edges. However, for the GNN we consider all edges
to be undirected, to ease knowledge propagation in
the graph. GNNs can not process text, and hence,
we need to compute meaningful node vectors that
can be processed by a GNN. We apply semantic
embeddings obtained from SBERT (Reimers and
Gurevych, 2019). Note that the SBERT model is
frozen, i.e. the weights of the SBERT model itself
are not updated during training.

To solve the frame prediction task, we train di-
verse GNN types on the CN subgraph(s), where
each layer consists of the GNN layer followed by a
nonlinearity. In the final layer, we apply sigmoid
instead of the non-linearity used in the other layers.

Addressing multilingual frame detection For
multilingual frame detection, we apply different
strategies. In a language-agnostic approach, we
leverage high-quality MT systems in order to trans-
late non-English articles to English.1 This has
the advantage that the training data available in
English for frame detection grows considerably
(from 433 articles to 1,238 articles). In a language-
sensitive approach we leverage multilingual static
word embeddings and multilingual pretrained lan-
guage models that map input texts to a cross-lingual
embedding space that can be used for language-
agnostic further processing.

In the knowledge graph model approach, we pur-
sue a hybrid strategy: We first use a multilingual
SBERT to extract contextualized subgraphs from
the English part of CN. Then, we use a monolin-
gual SBERT to compute the node features that the
GNN processes.

5 Experimental Setup and Results

We participated in Subtask 2: Framing Detection
and experimented with various configurations. Our
ensemble framework is implemented in Python
3.9 based on the pytorch-library (Paszke et al.,
2019). In training, we used a standard learning rate
of 5e−4 or 5e−5 in case of LM-based method. We
trained up to eight epochs using an early-stopping
criterion to load the best-performing checkpoint
with respect to the product of micro-F1 and macro-
F1 on the development data.

To aggregate the frame predictions of our en-
semble, we average the predictions made by the
applied methods. Additionally, in the case of our
final submissions, we experimented with weighting
the frame prediction of each method by introducing
a trainable weight vector.

In inference, we determine optimal probability
thresholds to decide when to select a frame as ob-
servable in an article. We compute one threshold
for each frame class separately using the develop-
ment data as well. However, to avoid an empty or
unrealistically large set of finally predicted frames,
we enforce selecting between 1 and 8 frames per
article based on a ranked list of frames, sorted by
their prediction likelihood.

1We used the Cloud Translation API https://cloud.
google.com/translate/docs
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5.1 Selected setup of the different methods

Based on the best-performing single method setups
with respect to the micro-F1 on the development
split, we fix the hyperparameters described below
(Appendix B.3 reports a detailed hyperparameter
study of the single methods).

For our method based on large language mod-
els, we used the transformers library (Wolf
et al., 2020) and experimented with several trans-
formers as different versions of RoBERTa and
transformers which are able to process longer se-
quences than 512 tokens. We obtained the best
results with roberta-base, applied for every
single sentence of the article. To aggregate the
returned set of frame predictions, we applied the
harmonic mean.

For the method using static word embeddings,
we used the glove.840B.300d2 word embed-
dings. To introduce non-linearity in the learning
module of this method, we experimented with dif-
ferent activation functions that we applied after the
linear word vector encoding layer. We observed
outperforming results with the tanh-function on
the development split.

For the Knowledge Graph model, we use the
spaCy-library by Honnibal et al. (2020) to split
each article into sentences, for all languages ex-
cept Georgian. Since Georgian is not supported by
spaCy, we split the Georgian articles by newlines,
which correspond to paragraphs. Most paragraphs
are relatively short, consisting of only a few sen-
tences, so this crude approximation is still capa-
ble of splitting articles into reasonable segments.
With the obtained sentences, we use the subgraph
extraction method described in Section 4 to en-
rich the articles with contextually relevant Concept-
Net (Speer et al., 2017) subgraphs. To compute the
similarity between article segments and CN con-
cepts, we employ a multilingual SBERT (Reimers
and Gurevych, 2020) model3. Independently from
the articles’ language, the extracted CN subgraphs
consist of English concepts only. We, therefore,
use a monolingual English SBERT (Reimers and
Gurevych, 2019) model4 to obtain node features.

2https://nlp.stanford.edu/data/glove.
840B.300d.zip – to process articles in their origi-
nal languages, we have to switch to MUSE (https:
//github.com/facebookresearch/MUSE)

3We use distiluse-base-multilingual-cased-v2 from
https://www.sbert.net

4The SBERT model we use is all-mpnet-base-v2
from https://www.sbert.net

We use the language-agnostic approach for lan-
guage models and static word embeddings in our
final submissions for the shared task and the abla-
tion study. Thus, we used all (translated) articles
for training, development, and testing, respectively.
For the knowledge graph model, we always use the
hybrid strategy that processes all articles in their
original language (see Section 4).

5.2 Results

In this section, we present our results, reporting
first the scores of our submitted systems in Sec-
tion 5.2.1. Since the submission system of the
shared task restricts the submission to one predic-
tion file per language, we present other method
combinations and ablation studies in Section 5.2.2,
including multiple runs per configuration to esti-
mate variance.

To measure the performance of our systems, we
follow the official metrics used by the shared task,
namely the aggregated F1-score across all 14 frame
classes.

5.2.1 Shared Task Results
In order to select which configuration of our pro-
posed ensemble to submit for each language, we
rank the configurations for each language accord-
ing to the micro-F1 score on the development split.
In this split, the ensemble combining all three meth-
ods, as well as an ensemble combining static word
embeddings and the knowledge graph model, were
determined as the best configuration for at least one
out of the six development languages. To estimate
the transferability of our system to the three test-
only languages, we run experiments by excluding
all Polish and German articles from training, moni-
toring the prediction performance of our system on
these held-out languages. Choosing the top-ranked
ensemble configuration for each language, we fi-
nally trained the superior ensembles with a new
train-dev-split which adds 50% of the development
data to the training data. Table 1 reports our final
scores for the final configurations submitted.

Regarding the micro-F1 score, we accomplish
scores between 22% (Georgian), and 50.98% (Pol-
ish) by combining all three methods with the
weighted average, placing us between ranks 10.
(English, French, and Spanish) and 17. (Polish).
According to the macro-F1 score, we range be-
tween 24.85% (Russian) and 50.2% (English) by
combining only static word embeddings and knowl-
edge graphs and all three weighted methods to-
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Language Ensemble F1-micro F1-macro

English LM*+WE+KG 50.69 50.20
Italian LM*+WE+KG 49.47 43.92

Russian WE+KG 25.37 24.85
Polish LM+WE+KG 50.98 49.03
French LM*+WE+KG 46.87 42.85
German LM+WE+KG 49.61 45.97
Spanish* LM*+WE+KG 38.81 38.66
Greek* LM*+WE+KG 35.52 36.95

Georgian* LM+WE+KG 22.00 28.98

Table 1: Results of official submission for the shared
task. In the case of an ensemble of three methods, we
applied an aggregator of weighted average. LM* marks
LM modules truncating input articles exceeding 64 sen-
tences, exclusively applied on the final submissions.

Configuration ∅ languages

LM WE KG micro macro

✓ ✓ ✓ 43.88 39.79

✗ ✓ ✓ 40.91 39.48
✓ ✗ ✓ 40.70 36.53
✓ ✓ ✗ 36.11 26.52

✓ ✗ ✗ 24.74 15.92
✗ ✓ ✗ 41.68 37.48
✗ ✗ ✓ 45.31 41.12

Table 2: Ablation study – language models and word
embeddings using translations of non-English articles.

gether, respectively. Compared to submissions
from other participating teams, our approach stands
out in being relatively accurate for rare frame
classes, resulting ranks ranging between rank 3
(English) and 15 (German) according to the micro-
F1 score.

5.2.2 System exploration beyond official task
results

To gain a better understanding of the contribution,
advantages, and disadvantages of each method, we
perform an ablation study of our ensemble using
the official train-dev-split, reporting F1-scores on
the test data, averaging results over 10 random
seeds and all languages.

While using the provided train-dev-split, the
ensemble of all three methods has a language-
averaged F1-performance of 43.88% and 39.79%
for the frame-class-micro-average and frame-class-
macro-average, respectively. We observe lower F1

scores by removing one or more methods from our

ensemble: removing the language model lowers
the micro-F1 score by 2.97%-points, discarding
the static word embeddings decreases the micro-F1

score by 3.18%-points, and removing the knowl-
edge graph model results in losing 7.77%-points
regarding the micro-F1 score. Hence, the knowl-
edge graph model has the highest impact for both
micro-F1 and macro-F1. We observe the same
pattern when analyzing our three methods as sin-
gle classifiers, starting with a mediocre perfor-
mance of 24.74% micro-F1 using an LM only,
41.68% micro-F1 using static word embeddings,
and 45.31% micro-F1 using the knowledge graph
model. Hence, using a single knowledge-graph
model outperforms the ensemble that, in addition,
includes the two remaining methods, by 1.43%-
points and 1.33%-points for the frame-class-micro-
average and frame-class-macro-average, respec-
tively. However, this observation does not hold for
each particular language. The complete ensemble
performs slightly better for German and Spanish
and especially provides better results for rare frame
classes in Italian and Polish. Despite those edge
cases, the knowledge graph model performs well,
especially in English, yielding the overall best re-
sults with 55.26% and 50.46% for micro-F1 and
macro-F1, respectively, in this language.

However, there is one language (Georgian) in
which the knowledge graph model worsens the
overall performance: the best micro-F1 score of
33.61% is observable with static word embeddings
standalone, and the configuration with the best
macro-F1 score of 30.17% uses an ensemble with-
out knowledge graph models. Since Georgian is an
under-resourced language (resulting in the absence
of sentence tokenizers) that is not related to any of
the other languages, processing the non-translated
articles using the knowledge graph model does po-
tentially incur errors. Additionally, the usefulness
of a commonsense knowledge base that is domi-
nated by the western culture is limited in the case
of Georgian due to the existence of cultural dif-
ferences in commonsense (Anacleto et al., 2006) –
also observable in an uncommon frame class distri-
bution in this language due to often higher macro-
F1 scores in comparison to the micro-F1 scores.

Appendix B lists further system explorations out-
side the competition.
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6 Conclusion

Predicting the occurring frame classes in long mul-
tilingual articles is challenging due to the variety
of articles and differences between languages and
cultures. This paper describes our participation in
the SemEval-2023 Task 3 for which we proposed
an ensemble combining three different methods
(large language models, static word embeddings,
and knowledge graphs). In order to handle inputs
in all relevant languages, we leveraged machine
translation software as a preprocessing step or alter-
natively relied on pre-trained multilingual language
models that map texts into a language-agnostic se-
mantic space.

Ablation analysis of our ensemble suggests that
using a graph neural network on extracted common-
sense knowledge subgraphs provides the strongest
results for most of the nine languages. This shows
the strength of knowledge-based methods for frame
detection in multilingual settings.
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A Implementation of our ensembling
framework

Our implementation of the ensembling approach is
highly adjustable by separating the task of frame
prediction into an arbitrary number of (different
configured) methods that should be applied and an
optionally trainable aggregator which combines all
frame predictions of each applied method to a final
frame prediction.

A.1 Implemented aggregators
Our framework implements several kinds of ag-
gregators: besides calculating the average, we in-
troduce the harmonic mean and several pooling
aggregators. We also introduce an option to learn
weights for each module in order to learn an effec-
tive prioritization of N module predictions.

In particular, given N frame probability predic-
tions {n = (pn(c1), · · · , p(c14)|n ∈ N}, we im-
plemented and experiment with the following ag-
gregators:

• Average-Aggregators

– Standard-Mean: p(ci) =
∑

n∈N pn(ci)

N

– Harmonic-Mean: p(ci) = N∑
n∈N

1
pn(ci)

• Pooler-Aggregators (potentially exclude mod-
ules from weight adaptation when their pre-
dictions are not pooled during training)

– Max-Pooling: p(ci) =
max({pn(ci)|n ∈ N})

– Min-Pooling: p(ci) = min({pn(ci)|n ∈
N})

• SoftPooler-Aggregators

– SoftMax-Pooling: p(ci) =
max({pn(ci)|n ∈ N}) −
α

∑
m∈N |pm(ci)−max({pn(ci)|n∈N})|β

N

– SoftMin-Pooling: p(ci) =
min({pn(ci)|n ∈ N}) +

α
∑

m∈N |pm(ci)−min({pn(ci)|n∈N})|β
N

A.2 Training and loss
In training, we applied a standard multi-class loss,
namely the cross entropy loss for each frame class.
However, due to our multi-module architecture, we
have several options where to calculate the loss,
resulting in different flows of backpropagation. Let

Loss = λLossfinal + (1− λ)


ωp

∑

p∈P
Lossp




(1)
with Lossfinal as loss using the final aggregated

frame prediction and Lossp as loss applied for
every single module separately with a method-
specific scaling factor ωp in order to address dif-
ferent sensitivities regarding learning rates. One
option is to set λ = 1, which only applies the loss
at the end by using the final aggregated frame pre-
diction, which trains the single modules only indi-
rectly and potentially suffers from the combination
of random weight initialization and different sensi-
tivities regarding learning rates. Another option is
to set λ = 0. In this case, we have an approach that
only tunes its single parts but not the aggregation of
those. To combine the advantages of both options,
we follow the strategy of first tuning the single
modules separately and incrementally applying the
loss toward the aggregation of the modules to avoid
unwanted training effects by distortion due to a sin-
gle modules with a random weight initialization by
smoothly increasing λ from 0 to 1.

A.3 Inference
For inference, a frame class is predicted when its
final predicted probability exceeds a frame-class
individual probability threshold. This threshold is
F1-score-optimized using the development data.

The restriction of predicting at least one at most
eight frame classes for an article results from a
manual inspection of the development data. While
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all articles are labeled with at least one frame class,
the largest observed frame set contains ten out of 14
frame classes. However, nine and ten frame classes
are long-tail exceptions (five and one articles in the
entire dataset, respectively). Hence, for the sake
of precision, we limited the maximum amount of
predicted frame classes to eight.

B Further system explorations outside
competition

B.1 Further studies regarding the submitted
systems

Since we were limited to submitting only a single
system (configuration/ run) for each language in
Section 5.2.1, we explore the performance across
our three preferred method ensembles, based on
the insights on the development split, in this sec-
tion. We average the results over ten runs per
method ensemble in order to cancel out the ef-
fects of the random weight initialization of our
non-pretrained neural parts, trained with the mod-
ified train-development split explained in Section
5.2.1, having 90% of all articles as training data and
the remaining 10% of all articles as development
data (excluding test data).

Table 3 lists or results. While the scores are com-
parable to the submission results listed in Table 1
for many languages, the detailed insights from this
study counter our insights from only looking at the
development data. Introducing the weighted aver-
age (and hence, more trainable parameters) wors-
ens the generalizability in most cases. The decrease
is often minor (especially in English) but tends to
be severe in the unseen languages (in Spanish, the
micro-F1 score is reduced by 2.21%-points, and in
Georgian, the micro-F1 score is reduced by 3.14%-
points). Especially the detriment of Georgian frame
detection using trained weights for the average
aggregation is explainable by the learned empha-
sis on the knowledge graph model, which has a
poor performance in Georgian. Another insight is
the increased micro-F1 score when we ensemble
only the static word embeddings and the knowl-
edge graph model in English (52.36%, increase
of 0.72%-points), in Polish (59.16%, increase of
0.28%-points) and in Greek (38.49%, increase of
0.06%-points) but not in Russian (24.7%, decrease
of 2.88%-points).

B.2 Further insights into the ablation study

In order to provide further insights into our abla-
tion study presented in Section 5.2.2, we present
in Table 4 an extension of Table 2 by showing the
performances for each language including the stan-
dard derivation across ten runs using the official
train-dev-split. An interesting insight from this de-
tailed view is the high derivation when relying on
large language models. We observe that large lan-
guage models are often stuck in local optima with
simple repetitive prediction patterns. Depending on
the preferred set of predicted frames, the F1-scores
vary much.

B.3 Hyperparameter studies of our three
methods

B.3.1 Large language models
To analyze large language models further, we
explore in Table 5 additional settings, trained
on the official train-dev-split and evaluated on
the test split across five runs, averaged on all
nine languages. To include a test regarding the
language-sensitive approach, we use the multilin-
gual pretrained xlm-roberta-base instead of
roberta-base.

The scores on test data contrast the performance
on development data due to a stronger tendency
to fall back into repetitive predictions for articles
and topics, which are neither seen in training nor
for model and threshold selection. While using
the average as the aggregation of split predictions
or applying the language-sensitive approach out-
performs the language-agnostic harmonic-mean-
averaged setting by +4.45%-points and +5%-points,
respectively, regarding the micro-F1 score, other
tendencies were confirmed by the test split. For ex-
ample, not chunking the article into sentences and
hence, missing the later text parts of large articles
reduces the overall performance (-5.6%-points and
-3.05%-points regarding the micro-F1 and macro-
F1, respectively).

B.3.2 Static word embeddings
To get deeper insights into our static word
embeddings processed by our shallow neural net,
we explore in Table 6 additional settings, trained
on the official train-dev-split and evaluated on
the test split across five runs, averaged on all
nine languages. To include a test regarding the
language-sensitive approach, we use the multilin-
gual adjusted MUSE-word-vectors (https://
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LM+WE+KG w/ avg LM+WE+KG w/ weighted avg WE+KG w/ avg

English
micro 51.64 ± 2.0 51.67 ± 3.1 52.36 ± 1.7
macro 47.97 ± 3.3 47.66 ± 3.1 47.81 ± 2.8

Italian micro 53.43 ± 1.9 51.22 ± 3.7 51.94 ± 1.7
(translated for LM/WE) macro 46.62 ± 1.9 45.06 ± 3.6 44.65 ± 3.6

Russian micro 27.58 ± 2.9 27.07 ± 2.9 24.7 ± 1.4
(translated for LM/WE) macro 25.28 ± 2.0 24.19 ± 2.9 22.98 ± 1.4

Polish micro 58.88 ± 2.0 57.54 ± 2.6 59.16 ± 3.2
(translated for LM/WE) macro 54.90 ± 1.7 53.51 ± 2.5 52.19 ± 4.2

French micro 47.79 ± 1.3 47.06 ± 1.6 47.78 ± 1.4
(translated for LM/WE) macro 47.20 ± 2.5 45.12 ± 2.4 45.84 ± 2.6

German micro 54.51 ± 1.3 52.25 ± 3.5 53.51 ± 1.2
(translated for LM/WE) macro 50.53 ± 1.8 47.95 ± 3.3 47.48 ± 2.9

Spanish* micro 40.61 ± 0.6 38.40 ± 4.0 39.13 ± 2.0
(translated for LM/WE) macro 38.10 ± 1.1 36.43 ± 3.9 37.34 ± 1.6

Greek* micro 38.43 ± 2.9 37.47 ± 4.6 38.49 ± 3.1
(translated for LM/WE) macro 36.96 ± 1.6 35.83 ± 3.0 35.96 ± 2.3

Georgian* micro 23.08 ± 2.4 19.94 ± 2.0 19.29 ± 1.9
(translated for LM/WE) macro 24.97 ± 3.2 23.54 ± 3.8 21.79 ± 3.7

Table 3: Results for 90%-10% train-dev-split, averaged over 10 seeds. Languages marked with * were without
training and development data

github.com/facebookresearch/MUSE)
instead of the GloVe-word-vectors
(https://nlp.stanford.edu/data/
glove.840B.300d.zip). However, MUSE
does not support Polish and Georgian. For those
two languages, we always use translated articles,
even for the language-sensitive approach.

The results show interesting trends. While the
most complex activation functions (tanh, Sigmoid)
are superior on the development split, the perfor-
mance on the test split votes for the simple ac-
tivation functions as the ReLU-function (+4.2%-
points and +5.28%-points regarding the micro-F1

and macro-F1, respectively). Even disabling an
activation function (equal to the use of a linear
identity activation function) outperforms the tanh-
activation function on the test split (+3.81%-points
and +1.17%-points regarding the micro-F1 and
macro-F1, respectively). The option of splitting
the articles into sentences, predicting the frame
for each sentence, and then averaging all predic-
tions tends to reduce the misses of infrequent frame
classes with respect to the test split (+1.37%-points
and +3.05%-points regarding the micro-F1 and
macro-F1, respectively). Although these contrast-
ing insights regarding the performance on the test
data, the low performance using the language-
sensitive approach is confirmed (-6.45%-points and
-10.02%-points regarding the micro-F1 and macro-
F1, respectively). The multi-lingual MUSE-word-
vectors are more sparse than the English GloVe-

word-vectors and suffer from a smaller text corpus.

B.3.3 Knowledge graph model
We process the extracted CN subgraphs with GNNs,
which can leverage the graph’s structure as well
as linguistic content via the SBERT embeddings.
However, we do not additionally incorporate graph
features explicitly.

As GNN layer we experiment with GCN (Kipf
and Welling, 2017), R-GCN (Schlichtkrull et al.,
2018), GAT (Veličković et al., 2018) and R-GAT
(Busbridge et al., 2019). GCN and GAT are edge la-
bel agnostic, i.e., they only consider node features.
By contrast, R-GCN and R-GAT train one set of
weights for each edge type. Some relations in CN
are rare, but we group similar relations for R-GCN
and R-GAT, which ensures sufficient training data
for each group of relations. Furthermore, for frame
prediction it is perhaps not necessary to have a fine-
grained differentiation between different relations,
e.g. the difference between HasSubevent and
HasFirstSubevent is most likely not relevant
for frame prediction.

Grouping of CN relations for R-GCN and R-
GAT We group CN relations into sets for the
R-GCN and R-GAT to avoid sparsity for some of
them. We test two different groupings: We either
(i) split the relations in two groups, depending on
whether they describe dissimilarity or similarity
between concepts or (ii) group similar relations
together, yielding four groups in total.
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Configuration 3 Methods 2 Methods 1 Method

LM ✓ ✗ ✓ ✓ ✓ ✗ ✗

WE ✓ ✓ ✗ ✓ ✗ ✓ ✗

KG ✓ ✓ ✓ ✗ ✗ ✗ ✓

English
micro 51.64 ± 2.3 52.8 ± 1.2 46.38 ± 7.5 39.02 ± 8.9 31.83 ± 7.4 47.08 ± 1.7 55.26 ± 1.6
macro 46.69 ± 3.3 50.27 ± 1.5 40.66 ± 8.3 27.30 ± 7.7 18.51 ± 7.2 41.96 ± 1.9 50.46 ± 2.5

Italian micro 52.02 ± 2.8 50.2 ± 1.0 49.25 ± 5.1 43.22 ± 5.1 25.37 ± 6.6 49.28 ± 3.7 54.19 ± 1.4
(translated for LM/WE) macro 45.65 ± 4.0 44.82 ± 1.2 41.38 ± 4.9 28.66 ± 6.9 14.14 ± 5.9 43.1 ± 3.8 45.44 ± 1.6

Russian micro 27.55 ± 2.0 22.75 ± 1.8 22.99 ± 3.4 22.14 ± 3.7 11.67 ± 4.5 21.58 ± 3.3 28.73 ± 2.3
(translated for LM/WE) macro 24.42 ± 3.2 22.71 ± 1.8 21.05 ± 3.1 17.63 ± 4.1 10.48 ± 4.7 22.07 ± 2.8 26.75 ± 2.1

Polish micro 53.14 ± 4.0 53.91 ± 1.9 53.83 ± 1.9 44.64 ± 11.2 37.62 ± 11.5 54.19 ± 1.1 55.01 ± 2.0
(translated for LM/WE) macro 49.47 ± 4.8 48.99 ± 1.8 47.58 ± 3.1 31.82 ± 10.4 23.04 ± 9.1 47.38 ± 3.2 48.99 ± 1.4

French micro 46.31 ± 2.9 47.05 ± 0.8 45.68 ± 2.6 32.81 ± 4.6 26.62 ± 5.8 41.01 ± 1.3 52.30 ± 1.8
(translated for LM/WE) macro 45.25 ± 4.3 46.78 ± 1.0 42.49 ± 3.6 24.19 ± 7.6 14.2 ± 5.6 39.43 ± 2.5 50.43 ± 2.2

German micro 53.02 ± 4.0 53.03 ± 2.2 51.72 ± 3.3 45.23 ± 10.9 34.43 ± 9.2 54.75 ± 2.9 52.45 ± 2.2
(translated for LM/WE) macro 48.49 ± 4.8 50.23 ± 1.7 46.99 ± 3.5 31.63 ± 9.5 21.06 ± 8.1 48.37 ± 4.7 47.82 ± 1.6

Spanish* micro 43.55 ± 2.5 36.61 ± 2.1 37.37 ± 4.6 31.69 ± 3.7 22.37 ± 3.7 34.28 ± 2.9 42.81 ± 2.6
(translated for LM/WE) macro 40.70 ± 3.1 37.28 ± 2.2 35.42 ± 4.3 25.44 ± 6.7 13.52 ± 2.7 35.8 ± 2.4 39.10 ± 1.7

Greek* micro 37.79 ± 3.1 36.52 ± 2.2 40.33 ± 3.5 34.55 ± 8.9 20.84 ± 4.5 39.38 ± 2.5 43.33 ± 2.0
(translated for LM/WE) macro 35.52 ± 3.5 35.93 ± 2.4 36.39 ± 4.4 21.88 ± 6.7 11.22 ± 4.3 35.1 ± 2.3 38.67 ± 1.5

Georgian* micro 20.92 ± 3.0 20.86 ± 1.6 18.72 ± 4.6 31.87 ± 6.3 12.09 ± 3.6 33.61 ± 2.3 20.73 ± 2.1
(translated for LM/WE) macro 21.89 ± 4.3 21.29 ± 3.0 18.83 ± 4.3 30.17 ± 5.6 17.14 ± 7.4 26.15 ± 2.0 22.40 ± 3.1

Table 4: Ablation results with official train-dev-test split, averaged over 10 seeds. Languages marked with * were
without training and development data.

Configuration ∅ languages

Agg Split Translate micro macro

HM ✓ ✓ 24.74 15.92

Avg ✓ ✓ +4.45 +2.93
Min ✓ ✓ -4.08 -4.02
n/a ✗ ✓ -5.60 -3.05
n/a ✗ ✗ -1.50 -1.88
HM ✓ ✗ +5.00 +1.39
Avg ✓ ✗ +0.46 -1.88

Table 5: Ablation study for large language models stan-
dalone (average across five runs), tested with different
aggregators (harmonic mean, average, and min-pooling)
as well as with the language-agnostic approach (trans-
lated articles) and language-sensitive approach

Configuration ∅ languages

σ Split Translate micro macro

tanh ✗ ✓ 41.68 37.48

tanh ✓ ✓ +1.37 +3.05
tanh ✗ ✗ -6.45 -10.02

Sigmoid ✗ ✓ -2.23 -6.33
ReLU ✗ ✓ +4.20 +5.28
Linear ✗ ✓ +3.81 +1.17

Table 6: Ablation study for static word embeddings stan-
dalone (average across five runs), tested with different
activation functions (σ) as well as with the language-
agnostic approach (translated articles) and language-
sensitive approach
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For option (i) the relations are grouped as fol-
lows:

• Antonym, DistinctFrom

• MadeOf, CreatedBy, DefinedAs,
ReceivesAction, CausesDesire,
MotivatedByGoal, MannerOf,
Desires, Causes, HasA, PartOf,
HasSubevent, HasLastSubevent,
HasFirstSubevent,
HasPrerequisite, HasProperty,
UsedFor, CapableOf, AtLocation,
LocatedNear, Synonym, FormOf,
HasContext, IsA, SymbolOf

and for option (ii) the following:

• DistinctFrom, Antonym

• MadeOf, DefinedAs, HasA, PartOf,
MannerOf, HasProperty, Synonym,
FormOf, IsA, SymbolOf

• CreatedBy, UsedFor,
ReceivesAction, CausesDesire,
MotivatedByGoal, Desires,
CapableOf, HasContext,
AtLocation, LocatedNear

• HasSubevent, HasLastSubevent,
HasFirstSubevent,
HasPrerequisite, Causes

We grouped relations based on our intuition, so the
grouping might be suboptimal. However, we doubt
that different groupings would drastically improve
performance.

Hyperparameters For the shared task we evalu-
ated the best hyperparameters for the GNN on the
dev set. The best setting was a GAT (Veličković
et al., 2018) with 2 layers, 8 attention heads, a hid-
den dimension of 128 and leaky ReLU activation.
To obtain a graph-representation we apply sum-
pooling over the nodes, i.e. we sum all final node
representations.

Results To gain additional insight, Table 7 shows
a selection of hyperparameters evaluated on the test
set.

The results show that the GCN and GAT out-
perform their respective relational counterparts R-
GCN and R-GAT. This indicates that relations are
less important for the task of frame prediction. Fur-
thermore, the coarser grouping option (i) showed

Configuration ∅ languages

micro macro

ST (GAT) 45.31 41.12

GCN +0.05 +0.13
GAT w/ 1 head -0.67 -1.22
R-GAT (i) -0.6 -1.38
R-GAT (ii) -1.87 -1.93
R-GCN (i) -1.64 -1.61
R-GCN (ii) -2.32 -1.73
w/ mean pool +0.32 +1.00
w/ ReLU -0.77 -0.81
3 layers -0.69 -0.80

Table 7: Ablation study for knowledge graph models
standalone. Results are relative to the Shared Task (ST)
setting described in §B.3.3 (averaged over ten seeds).
The subsequent rows show relative results when chang-
ing hyperparameter(s) ST setting (averaged over five
seeds). The number behind R-GCN and R-GAT refers
to the grouping on CN relations as described in §B.3.3.
Due to GPU memory restrictions the R-GATs are evalu-
ated with one attention head only.

better performance than option (ii), again indicat-
ing that indeed fine-grained differences between
relations are not necessary for frame prediction.

We also observe that mean-pooling outperforms
sum-pooling (i.e. averaging / summing over all
nodes to obtain a graph representation). This is
in contrast to our findings on the development set,
where sum-pooling performed better.
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