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Abstract

This paper elaborates on our work in designing
a system for SemEval 2023 Task 12: AfriSenti-
SemEval, which involves sentiment analysis
for low-resource African languages using the
Twitter dataset. We utilised a pre-trained model
to perform sentiment classification in Hausa-
language tweets. We used a multilingual ver-
sion of the roBERTa model, which is pre-
trained on 100 languages, to classify sentiments
in Hausa. To tokenize the text, we used the
AfriBERTa model, which is specifically pre-
trained on African languages.

1 Introduction

Sentiment analysis is a subset of Natural Language
Processing (NLP), in which the intent is to classify
the sentiment present in textual data (Kincl et al.,
2016). It is mostly done in languages that have
high resources but not in low-resource languages
like Hausa, Yoruba, Igbo, and other African
languages, despite the fact that they are being
used by nearly one-third of human beings. It is
essential for us to respect every language and
perform NLP research in all languages. Performing
NLP research in all languages is crucial for both
political and business reasons (Polpinij, 2014).
The rapid growth of the Internet and usage of
social platforms like Facebook, Twitter, etc. have
expanded the area of NLP research (Martin et al.,
2021). The task we participated in involved
performing sentiment classification in tweets of
an African language, and we chose to focus on
the Hausa language (Muhammad et al., 2023b).
In this task, tweets must be classified as positive,
negative, or neutral. Performing sentiment analysis
in low-resource languages like Hausa is crucial not
only because it is used by many people but also
because of the need to interpret the sentiment of
every single person.

rajalakshmis@ssn.edu.in,
mirnalineett@ssn.edu.in

Our strategy involved tokenizing textual data,

fine-tuning a pre-trained model with the tokenized
data, and measuring the model’s performance on
the development dataset. We fine-tuned a model
(Muhammad et al., 2022) that was pre-trained on
the NaijaSenti corpus (Muhammad et al., 2022),
which was provided in the task overview.
Our strategy involved tokenizing textual data,
fine-tuning a pre-trained model with the tokenized
data, and measuring the model’s performance on
the development dataset.

Our system ranked 13** among the 35 sub-
missions in the track we participated in, with a
weighted F1 score of 80.32%. The top-ranked team
achieved a score of 82.62%. Although our model
performed excellently on training and development
data, it did not perform well on the test datasets,
i.e., it could not make accurate predictions on new
data.

2 Background

Task A: monolingual sentiment classification was
the sub-task in which we participated. The task
required us to determine the polarity (positive, neg-
ative, or neutral) of tweets in a target low-resource
language, Hausa, through sentiment classification.
The dataset(Muhammad et al., 2023a) comprised
IDs, tweet texts in Hausa, and their corresponding
labels. The training and development datasets were
of sizes 14,172 and 2,677, respectively. The test
dataset consisted of 5,303 samples. Figure 1 shows
examples of the dataset.

Table 1 shows the distribution of the data in the
training and development dataset across the various
labels (positive, negative and neutral). As the table
shows, the dataset comprised of more or less equal
number of samples in each class label and thus data
augmentation was not necessary.
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ID text label

ha_train_00001 @user Da kudin da Arewa babu wani abin azo aga... negative

ha_train_00002 @user Kaga wani Adu ar Banda @ ® wai a haka Shi... negative

ha_train_00003 @user Sai haquri fa yan madrid daman kunce cha... negative

ha_train_00004 @user Hmmm yanzu kai kasan girman allah daxaka... negative

ha_train_00005 @user @user Wai gwamno nin Nigeria suna afa kw... negative

Figure 1: Examples of data set

Label Train | Dev | Test
Positive | 4687 887 | 1755
Negative | 4573 | 894 | 1759
Neutral | 4912 | 896 | 1789
Total 14172 | 2677 | 5303

Table 1: Data distribution

3 Related Work

Sentiment analysis or classification is a topic that
has been researched for many years for high-
resource languages like English. Recently it gained
attention for the low-resource languages also. A
survey of the neural techniques used for low-
resource languages are discussed by (Ranathunga
et al., 2023). Models are trained for low-resource
languages like Persian, Urdu, Indonesian, Arabic,
Tamil, Marathi, Hindi, Malayalam etc., by many
researchers. Deep learning models, transformers
models or transfer learning approaches are mainly
used for most of the situations. The comparison of
lexicon based approach and bert based approaches
for Italian language is done by (Catelli et al., 2022)
and the advantages of Bert based models are dis-
cussed.

Long Short Term Memory model is used to ana-
lyze four thousand Indonesian tweets and achieved
an accuracy of 73.2% in (Le et al., 2016). The is-
sues in collecting large corpus for low resource lan-
guagues are addressed in (Ekbal and Bhattacharyya,
2022). They have used a deep multi-task multi-
lingual adversarial framework to analyze the sen-
timents in Hindi with 60% accuracy in movie
reviews and 72.14% in product reviews dataset.
Multi-Task Text Graph Convolutional Networks
is used for sentiment classification in Telugu lan-
guage by (Marreddy et al., 2022). Recently we
worked on structured sentiment analysis in (Anan-
tharaman et al., 2022) and emotion analysis for
Tamil language in (S et al., 2022). Multilingual pre-
trained language model with adaptive fine-tuning is
used for African languages by (Alabi et al., 2022).

4 System Overview

The first step we took was the tokenization of the
training dataset. This involved converting textual
data into numerical data since textual data can-
not be fed into the model. We used the Trans-
formers library to perform both tokenization and
fine-tuning. Tokenization was carried out using a
pre-trained tokenizer obtained from a model called
"naija-twitter-sentiment-afriberta-large" (Muham-
mad et al., 2022) which is available on Hugging
Face. We then fine-tuned the XLM-RoBERTa-
Large model, which had been pre-trained on the
NaijaSenti corpus (Muhammad et al., 2022). Fi-
nally, we made predictions using the development
dataset and measured the model’s performance.
Figure 2 shows the distribution of various tweet
labels in 14 different African languages. Since the
Hausa language (hau) had the highest number of
samples, we used that dataset for sentiment classi-
fication.
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Figure 2: Data distribution of African languages
(Muhammad et al., 2023a)

5 Experimental Setup

We trained the model on the entire training dataset,
as separate development and testing datasets were
available. Prior to training, we mapped the labels
in the dataset ('positive’, ‘negative’, and ’neutral’)
to integers. The dataset was tokenized and dy-
namically padded. We used a pretrained XLM-
RoBERTa-large model (Conneau et al., 2019) to
fine-tune the Hausa dataset. XLM-RoBERTa is a
multilingual version of the ROBERTa transformer
model, pre-trained on 100 different languages with
masked language modeling (MLM). Figure 3 il-
lustrates the architecture of the XLM-RoBERTa
model (Ranasinghe and Zampieri, 2020).

The XIL.M-RoBERTa-large model consists of
around 125M parameters, 12 layers, 768 hidden
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Figure 3: XLM-RoBERTa model
(Ranasinghe and Zampieri, 2020)

states, 3072 feed-forward hidden states, and 8
heads. It takes an input sequence of no more than
512 tokens and outputs the sequence representa-
tion. The first token of the sequence is always
[CLS], which contains the special classification
embedding. We used the Adam optimizer and a
linear scheduler with an initial learning rate of 2e-5.
The model was trained for 10 epochs with a batch
size of 32. Given the large number of parameters
in XLM-RoBERTa-large and the model’s strong
performance despite a high batch size, the batch
size was set to 32. We used the weighted F1 score
as the evaluation metric. The following is a list of
the required libraries.

o Transformers

* Pandas 2

+ NumPy 3

» Scikit-learn 4
6 Results

Our system achieved weighted F1 scores of 99.94%
and 80.07% on the training and development gold
data sets, respectively. In the competition, our
system ranked 13" with a weighted F1 score of
80.32% on the test data set. Figure 4 shows the
confusion matrix for the development data set.

'Version: 4.26.1 https://huggingface.co/transformers
2Version: 1.3.5 https://pandas.pydata.org/

3Version: 1.21.6 https://numpy.org/

*Version: 1.0.2 https:/scikit-learn.org/stable/
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Figure 4: Confusion matrix for development data set

Sentiments | Precision | Recall
Positive 0.79 0.77
Negative 0.75 0.78
Neutral 0.86 0.86

Table 2: Precision and Recall for all three labels

Table 2 shows precision and recall for all three
labels for the development dataset.

7 Conclusion

We have fine-tuned a model for Hausa that was
pre-trained on four African languages. On the test
dataset, we achieved an F1 score of 80.32%, while
the top-ranked team achieved 82.62%. Eventhough
the model performed better in training, for the new,
unseen data, it has not performed well. There-
fore, it is essential to provide the model with more
training data to prevent overfitting and improve
its ability to predict test data. The score can be
increased by fine-tuning the hyperparameters and
increase the number of epochs. We intend to work
on improving the pre-processing stage to get better
results and also expand our work into other lan-
guages. Pre-processing steps, such as stemming
and lemmatization, can be used to enhance per-
formance. Additionally, negating and intensifying
words should be handled with care as they can af-
fect the text’s sentiment. An approach based on lex-
icons, which involves assigning sentiment scores to
words based on the collection of sentiment lexicons
and their corresponding sentiments, can be consid-
ered in the pre-processing pipeline. This approach
may yield better results.
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