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Abstract

This report describes GMU’s sentiment analy-
sis system for the SemEval-2023 shared task
AfriSenti-SemEval. We participated in all
three sub-tasks: Monolingual, Multilingual,
and Zero-Shot. Our approach uses models ini-
tialized with AfroXLMR-large, a pre-trained
multilingual language model trained on African
languages and fine-tuned correspondingly. We
also introduce augmented training data along
with original training data. Alongside fine-
tuning, we perform phylogeny-based adapter-
tuning to create several models and ensemble
the best models for the final submission. Our
system achieves the best F;-score on track 5:
Ambharic, with 6.2 points higher F;-score than
the second-best performing system on this
track. Overall, our system ranks 5" among
the 10 systems participating in all 15 tracks.

1 Introduction

With the increasing use of the internet and social
media, the digital availability of various languages
is rapidly expanding. This expansion opens av-
enues for Natural Language Processing (NLP) ap-
plications such as Sentiment Analysis (SA) and
Machine Translation (MT). Nevertheless, despite
African languages comprising 30% of around 6,000
living languages (Skutnabb-Kangas et al., 2003),
most of them are not supported by modern lan-
guage technologies, leading to an ever-widening
gap in language technology access (Joshi et al.,
2020; Blasi et al., 2022).

Recently, SA has gained increasing attention,
with its applications in various domains, such as
public health, literature, and social sciences (Mo-
hammad, 2022). Despite the growth in this area,
most previous works do not include African lan-
guages. This shared task focuses on SA on a

*Joint contributions: MA performed model training, RX
worked on data processing and paper writing, FF constructed
the model.

Ranking Team Name Avg. F,
1 BCAI-AIR3 69.77
2 UMG6P 68.08
3 mitchelldehaven 67.85
4 tmn 65.84
5 GMNLP 65.76
6 UCAS 65.62
7 Masakhane-Afrisenti | 63.58
9 PA14 63.09
9 DN 64.10
10 FUOYENLP 59.46

Table 1: We calculate the macro-average F;-score for
the 10 systems (out of 47) participating in all 15 tracks
in this Shared Task. Overall, our system ranks 5th,

Twitter dataset in 14 African languages, includ-
ing Hausa (ha), Yoruba (yo), Igbo (ig), Nigerian
Pidgin (pcm), Amharic (am), Tigrinya (tg), Oromo
(or), Swahili (sw), Xitsonga (ts), Algerian Arabic
(dz), Kinyarwanda (kr), Twi (twi), Mozambican
Portuguese (pt), and Moroccan Darija (ma).

This paper presents a novel SA system that ef-
fectively addresses the challenge of low-resource
and multilingual sentiment classification for mul-
tiple African languages. We leverage multilingual
language models and propose data augmentation
methods to increase the training data size. In addi-
tion, we perform phylogeny-based adapter-tuning
to create several models. These models are then
ensembled to create the final model.

2 Related Work

While SA is a popular research area in NLP, its
application in African languages is relatively rare.
This is mainly due to the lack of resources, making
it challenging to obtain the data needed to train
and evaluate the models (Mabokela and Schlippe,
2022). One solution is creating resources, such
as annotated datasets. However, this requires a
significant amount of manual annotation (Shode
et al., 2022). Using augmented data to improve per-
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formance in low-resource languages is another ap-
proach that has been explored for various tasks (Xia
et al., 2019; Muhammad et al., 2022; Alam and
Anastasopoulos, 2022; Xie and Anastasopoulos,
2023, inter alia), where synthetic data is gener-
ated from existing data to increase the size of the
training set.

Leveraging pre-trained multilingual language
models is a popular choice for SA in African lan-
guages (Dossou et al., 2022; Martin et al., 2021;
Alabi et al., 2022; Muhammad et al., 2022; Martin
et al., 2022). These language models are trained on
a large amount of data from different languages, in-
cluding African languages, which enables them to
capture a wide range of linguistic features and pat-
terns. While these pre-trained models have shown
promising results, they are imperfect in handling
low-resource languages.

Adapters are designed to adapt a large pre-
trained language model to a downstream task,
enabling efficient transfer learning (Alabi et al.,
2022; Ansell et al.,, 2021). Phylogeny-based
adapters (Faisal and Anastasopoulos, 2022), simi-
lar to the hierarchical ones of Chronopoulou et al.
(2022) enable knowledge sharing across related lan-
guages from the phylogeny-informed tree hierarchy.
Our work builds on this approach to address the
challenge of SA in low-resource scenarios, demon-
strating that it can effectively adapt a pre-trained
multilingual language model to the target language
with limited training data.

3 Task Description

The AfriSenti-SemEval Shared Task 12 (Muham-
mad et al.,, 2023b) consists of three sub-tasks:
Monolingual (Task A), Multilingual (Task B), and
Zero-Shot (Task C). The primary objective of this
shared task is to determine the sentiment of a tweet
in a target language, which could be positive, neg-
ative, or neutral. A stronger emotion should be
chosen when a tweet exhibits positive and negative
sentiments.

Task A: Monolingual Task A aims to determine
the sentiment of tweets for each language in a
monolingual setting. Table 2 shows the detail of
each language. Every language is a track for this
sub-task, creating Tracks 1 through 12.!

"Track 13 through Track 15 were not included in the final
competition as the respective datasets for these tracks were
not released.

Family Genus ‘ Lang ‘ size
Ethiopic am 5,985
Afroasiatic Chadic ha 14,173
Arabic dz 1,652
Arabic ma 5,584
Volta—Congo ig 10,193
Volta—Congo yo 8,523
Niger—Congo Bantu kr 3,303
Bantu SW 1,811

Bantu ts 805
Central Tano twi 3,482

Creole ‘Creole Portuguese‘ pcm ‘ 5,122

| pt | 3,064

Indo-European ‘ Romance

Table 2: 12 languages in Task A, along with their Lan-
guage Families, Genera, and training data size (sen-
tences).

Task B: Multilingual Task B aims to determine
the sentiment for tweets using a combination of all
training data from the 12 languages in Task A. This
sub-task includes only one track, Track 16.

Task C: Zero-Shot Task C aims to identify the
sentiment of tweets from either Tigrinya or Oromo
under a zero-shot setting, i.e., no training data are
available for these languages). This sub-task is
divided into Track 17 (Tigrinya) and 18 (Oromo).

4 System Overview

4.1 Data Source

The dataset used in the system is mainly sourced
from AfriSenti (Muhammad et al., 2023a), which
is already split into train, dev, and test. In addition,
we use PanLex (Kamholz et al., 2014) and Stanford
Sentiment Tree Bank (SST) (Socher et al., 2013)
for data augmentation.

Panlex The goal of Panlex is to facilitate the
translation of lexemes between all human lan-
guages. A broader lexical and linguistic coverage
can be achieved when lexemic translations are used
instead of grammatical or corpus data. A total of
20 million lexemes have been recorded in PanLex
in 9,000 languages, and 1.1 billion pairwise trans-
lations have been recorded.

Stanford Sentiment Tree Bank (SST) The Stan-
ford Sentiment Tree Bank has a sentiment score
from O to 1 for each sentence. We labeled the sen-
tence as negative if the score was less than or equal
to 0.35. We labeled it neutral if the score was be-
tween 0.35 and 0.65, and the rest of the sentences
were positive.
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4.2 Data Pre-Processing

The AfriSenti dataset underwent some pre-
processing to remove noise, including @user and
RT handlers, URLs, extra while spaces, multiple
consecutive punctuations, and characters.> Emojis
were intentionally retained since they are an impor-
tant part of sentiment analysis, as they often convey
emotional content.

4.3 Data Augmentation

To improve the robustness of our language systems
to variations in language, we utilize data augmenta-
tion techniques to increase the amount of available
training data. Specifically, we create three datasets
using a dictionary-based augmentation approach,
an MT approach, and a combination of the first
two approaches. This is just a concatenation of the
datasets obtained by the two approaches above.

Dictionary Based To create more data and han-
dle code-mixed sentences, we employ a naive word-
to-word translation augmentation method:

* First, we obtain a Panlex bilingual dictionary
from English to a corresponding language.

* Second, we have obtained the (English) sen-
tences from the English Stanford Sentiment
Tree Bank.

* Third, we replace any word from the sentence
of the Tree Bank that matches an entry from
the dictionary with its translation in the corre-
sponding language.

The intuition behind this is that not all English
sentence words will be replaced, so it will imitate
code-mixing. Also, we anticipate that the translated
sentences will largely be ungrammatical, as they
are just word-to-word translations with no morpho-
logical information, which may lead to word order
and morphosyntax errors.

Machine Translation Based We introduce an
augmentation technique based on MT. We lever-
aged the best-performing MT model of Alam and
Anastasopoulos (2022), which handles almost all
of the task’s languages, to translate sentences from
English Stanford Sentiment Treebank to the corre-
sponding language.

2For example, "hellooooo" to "helloo".

4.4 Model Overview

Our system uses a transformer-based multilin-
gual model, AfroXLMR-large (Alabi et al., 2022).
AfroXLMR-Iarge is developed by performing lan-
guage adaptation of the XLM-R-large model (Con-
neau et al.,, 2019) on 17 distinct African lan-
guages, including Afrikaans, Amharic, Hausa,
Igbo, Malagasy, Chichewa, Oromo, Nigerian-
Pidgin, Kinyarwanda, Kirundi, Shona, Somali,
Sesotho, Swahili, isiXhosa, Yoruba, and isiZulu,
which collectively represent the major African lan-
guage families. AfroXLMR-large also incorporates
three high-resource languages: Arabic, French, and
English. When we fine-tune the model for our task,
we fine-tune only a task-adapter instead of fine-
tuning the whole model.

In addition to the base model, we utilize
phylogeny-based adapter-tuning (Faisal and Anas-
tasopoulos, 2022) to generate multiple models
for different language families. As described by
Houlsby et al. (2019), adapters are small neu-
ral components designed to adapt a large pre-
trained language model to a downstream task using
lightweight layers inserted between each layer of
the pre-trained model, enabling efficient adaptation.
Here we use phylogeny-based adapters, similar to
Faisal and Anastasopoulos (2022), which enables
knowledge sharing across similar or related lan-
guages from the same language family or genus.
Table 2 shows the language family hierarchy for
the 12 languages in Task A, and figure 1 presents
a visualization of the architecture. The language
families are chosen based on the phylogenetic re-
lationships among languages, which reflects their
evolutionary history and linguistic similarities. For
example, the Arabic languages, such as Algerian
Arabic and Moroccan Darija, are all derived from
the Afroasiatic language family and share many lin-
guistic features. The adapter creates several models
we can ensemble to hopefully obtain better results.

S Experiments

Experimental Setup We trained our model using
the Adam optimizer (Kingma and Ba, 2014), with
a learning rate of le~*. The number of epochs
was set to 5, and the batch size was 32, with a
maximum sequence length of 128. All experiments
were conducted on one A100 GPU. We report the
weighted Fy-score for the model’s performance.
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Lang | mbert-cased | mbert-uncased ‘ xlmr ‘ afro-xlmr-large | afri-berta
am 28.6 25.8 58.6 59.5 54.5
dz 59.6 58.6 61.7 41.1 31.4
ha 71.3 73.3 71.5 79.6 78.4
ig 73 77.8 76.1 77.9 77.1
kr 56.4 60.7 61.1 70.8 60.3
ma 74 72.4 77.2 79.5 60.8
pcm 45.5 46.2 48 48.7 44
pt 60.3 59.7 74.7 69.5 50.3
SW 37 343 43.6 55.6 54.1
ts 39.2 425 34.4 44.3 39.4
twi 443 45 48.4 37.8 46.2
yo 63.3 63.5 66 74.5 70.2

Average | 544 | 55 | 60.6 | 61.6 | 556

Table 3: Weighted F;-score on our unprocessed test set of different pre-trained models.

Layers + 1
A A
Igbo Yoruba
A A A
Volta Bantu
A

Niger Adpt
A
Layer ¢

Figure 1: Incorporating phylogeny into language models
with adapters: We start with an unadapted model where
we impose a phylogeny-informed tree hierarchy over
adapters.

5.1 Model Selection

We experiment with multiple pre-trained models
to decide which pre-trained model works best with
the given languages. Here we focus on the 12 lan-
guages from Task A. Note that for this analysis,
we use the unprocessed data with a slightly dif-
ferent data split, as we did not have access to the
gold labels for the dev set. In this experiment, we
split the train set into train, dev, and test sets, with
proportions of 80%, 10%, and 10%, respectively.

We experiment with the following models

e mBERT (Devlin et al., 2018): a multilingual ver-
sion of BERT, which is pre-trained on a large
amount of multilingual data from Wikipedia.

* XLM-RoBERTa (Conneau et al., 2019): a multi-
lingual version of RoOBERTa (Liu et al., 2019),
which is pre-trained on 2.5TB of CommonCrawl
data over 100 languages.

* AfriBERTa (Ogueji et al., 2021): a model based
on mBERT and (continued) pre-trained on 11
African languages.

e AfroXLMR-1large (Alabi et al., 2022): a model
that is based on XLM-R-large and pre-trained

on 17 African language.

We report the performance in Table 3 for unpro-
cessed data. Except for Algerian Arabic, Mozam-
bican Portuguese, and Twi, all the other languages
have the highest F;-score using the AfroXLMR-
large. AfroXLMR-large has the average best score,
so we decided to conduct all our further experi-
ments focusing on AfroXLMR-large.

5.2 Dataset Selection

To decide which dataset works best with the given
languages, we create monolingual models with
only that language’s training data. We test them on
the dev set provided by the shared task.

* Clean: All the pre-processed training data from
the shared task, without any data augmentation.

e Clean + Dictionary-based: All the pre-
processed training data from the shared task are
mixed and shuffled with all the Dictionary-based
augmented translation datasets. We did not find
any bilingual lexicon on Panlex for Mozambican
Portuguese.

* Clean + MT-based: All the pre-processed train-
ing data from the shared task are mixed and shuf-
fled with all the MT-based augmented transla-
tion datasets. The model we used for translation
does not support Twi, Mozambican Portuguese,
Nigerian Pidgin, Moroccan Arabic, and Algerian
Arabic. Therefore, we do not use the MT data
for these languages.

e Clean + Both: All the pre-processed training
data from the shared task are mixed and shuffled
with all the MT-based augmented translation and
Dict-based augmented translation if both datasets
are available for a language.

Table 4 shows the result on the dev set when
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Lang ‘ Clean ‘ Clean + Dictionary-based | Clean + MT-based | Clean + Both

am 62.8 63.6
dz 58.6 58.6
ha 79.7 79.2
ig 73.1 72.9
kr 66.5 67.7
ma 73.3 77.8
pem | 759 76.1
pt 64.4 -
SW 59 61.8
ts 41.7 39.2
twi 48.5 51.2
yo 74.7 74.8

61.7 63.2
78.3 79.1

74 74.4
224 66.4

62 60.1
51.3 441
74.9 74.5

Table 4: Weighted F;-score on the dev set of our monolingual models on different datasets. The best score per

language is highlighted.

under each of our 4 dataset settings. The first take-
away is that for almost all languages, data augmen-
tation helps. The only exception is Hausa (and Por-
tuguese) which is comparably high-resource. We
observe improvements in languages well-supported
by the MT system, like Igbo, Swahili, Xitsonga,
or Yoruba. Table 4 also shows which dataset type
works best for a certain language.

We use that information to compile a combined
dataset termed "Best" throughout the rest of the
paper. The Best dataset combines the different
datasets based on the highest score from different
languages. We present the combination of the Best
dataset in Table 9 and use it to finetune multilingual
models as above.

5.3 Language ID Information

In a multilingual setting, all sentences of all the
languages from Task A are combined to create the
training set. To assess the impact of language ID in-
formation on the model’s performance, we train the
model using fagged and untagged versions based
on the five datasets described in Section 5.2. Lan-
guage ID information is not provided in the un-
tagged datasets, which is the same as in the original
multilingual dataset. The language ID information
is included for the tagged datasets by adding a to-
ken denoting the language id at the beginning of
each sentence. We evaluate the model on all lan-
guages from Task A and their combination. Table 5
presents the performance of our model with tagged
and untagged datasets.

We observe that models trained with the tagged
dataset generally performed better in the multilin-
gual setting. This indicates that language ID infor-
mation is helpful for the model to make accurate

predictions when dealing with examples from dif-
ferent languages. This observation further supports
our decision to use the phylogeny-based adapter,
which incorporates language family and genus in-
formation into the training.

In addition, comparing the results in Table 6, we
find that the multilingual model outperforms the
dedicated monolingual models, suggesting that a
multilingual model can more effectively capture
sentiment across multiple African languages than
one single model. For all future experiments, hence,
we only use multilingual models.

5.4 Phylogeny-based Adaptation

In all the experiments up until now, we have fine-
tuned only the task-adapter. We will now adapter-
tune the AfroXLMR-large by inserting phylogeny-
based adapter stacks (see Figure 1) inside the
Language Model (LM). The intuition behind this
is that leveraging the phylogenetic relationships
between languages can transfer knowledge and
alleviate low-resource scenarios. We will call
these adapters family-adapter, genus-adapter, and
language-adapter. When adapter-tuning, all the
other parameters of the LM will be kept frozen,
and only the adapter parameters will be updated
through a joint training scheme. Here, we will train
the adapters with the Masked Language Model-
ing task. After the fine-tuning, we will have four
adapter components to use in four stack combina-
tions to get our final model. We do not train the
task-adapter at this stage but use the previously
trained task-adapters.

We benchmark the different combinations as:

1. Task-Adapter

2. Lang-Adapter + Task Adapter
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Lang Clean MT-based Dict-based  Both Best Clean MT-based Dict-based Both Best
(tagged) (tagged) (tagged)  (tagged) (tagged) | (untagged) (untagged) (untagged) (untagged) (untagged)
am 64.3 63.4 63.5 63 63.7 62.6 63.1 62.9 62.9 64.2
dz 67 53.2 67.1 49.8 66.9 64.3 50.9 67.4 50.1 66.1
ha 80.2 79.3 79.1 79.2 79.8 79.3 79.7 79.2 78.9 79.8
ig 75.7 76.5 77.2 76.3 75.8 73.4 75.1 74.7 74.6 74.2
kr 71.8 68 71.4 70.5 71.2 70.2 68.9 71.9 70.3 70.9
ma 78.4 58.8 78.2 59.9 78.2 76.7 59.5 77.9 58.3 71.3
pem 76.8 57 76 55.3 75.6 75 56.4 74.6 52.6 75
pt 70.9 58.7 56.6 60.3 68.6 70.9 60.2 59.5 60.1 67.9
SW 63.8 60.1 63.5 60.9 62.3 64.7 60.4 64.4 59.1 61.4
ts 50.9 49.6 53.1 52.1 544 52 50.9 50.2 454 49.1
twi 55.8 239 55.1 25.5 57.1 56.4 17.8 58.6 21.6 54.5
yo 76.5 76.3 76.4 75.8 76.6 76.4 76.6 76.5 771 76.7
multi ‘ 74.2 66.7 73.2 66.7 73.8 ‘ 72.9 66.4 72.7 65.7 73

Table 5: Weighted F;-score on the dev set of our multilingual models on different datasets.

Model ‘ am dz ha ig kr

ma

pcm  pt SW ts twi  yo

Mono | 63.6 58.6 79.7

Multi

744 677 778 76.1
643 674 802 772 719 784 76.8 709 64.7 544 58.6 77.1

644 62.1 513 512 749

Table 6: Weighted F;-score on the dev set of monolingual and multilingual model.

3. Genus-Adapter + Lang-Adapter + Task-
Adapter
4. Family-Adapter + Genus-Adapter + Lang-
Adapter + Task-Adapter
Table 7 shows the results with the best out of
the above four configurations. We adapter-tune the
MLM using the Clean dataset. For task-adapter we
use the ones that got the highest scores in Table 5
for different languages. We also adapter-tune the
MLM using the Clean + Dictionary-based, Clean
+ Both, and Best datasets. See Appendix B for all
the results.

6 Results and Discussion

Monolingual Performance For Task A, we en-
semble the best five models we found for each
language. We use majority voting to obtain the
final output, resolving ties randomly.

Our system’s test performance in 12 languages is
presented in Table 8. Notably, our system demon-
strates impressive results on Track 5: Amharic,
ranking first on the leaderboard and outperforming
the second-place system by a significant margin
of 6.2 points. In addition, our system falls only
0.8 points short of the top-performing system in
Track 9: Kinyarwanda. In both Track 5 and Track
9, the best data are from Clean and Dictionary-
based. While our system does not achieve the top
performance for other tracks, it still achieves highly
competitive results across all tracks, with a top-10

ranking in 4 out of the 12 tracks.

Our success in fine-tuning AfroXLMR-large can
be attributed to several factors. First, AfroXLMR-
large is a powerful pre-trained language model
specifically designed for African languages. This
provides an excellent starting point for fine-tuning
specific tasks. Second, we carefully selected the
best dataset for each language, which ensures that
our system is trained on the most appropriate data
for the particular language.

Multilingual Performance For Task B, we can
not follow the same procedure as in Task A, as
the language ID information is absent; we cannot
utilize phylogeny-based adapter-tuning to enable
information sharing between similar languages dur-
ing inference time. We could have used a Lang ID
model but chose not to because langID for African
languages is untrustworthy. So, we use the best
model from Table 5 for this task. Table 8 presents
the performance of our system, which falls only
3.82 points short of the top-performing system,
achieving a respectable 7th place ranking. While it
is not ideal, it still demonstrates the potential of our
approach in real-world scenarios where language
ID information is often missing.

One possible reason for the suboptimal perfor-
mance could be the limitations of the available data.
Although we carefully select the best dataset from
each language, the amount and quality of the data
are still limited. In addition, the absence of lan-
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Lang Clean Best Dict-based | Clean Both Dict-based
(tagged) (tagged) (tagged) (untagged) (untagged) (untagged)
am | 64.3 [T] 63.8 [FGLT] 64.2 [FGLT] | 63.4 [FGLT] 62.9 [T] 62.9 [T]
dz | 67 [T] 67.1 [GLT]  67.6 [GLT] | 64.3 [T] 67.4 [T]
ha | 80.2 [FGLT] 79.9 [FGLT] 79.3 [FGLT] | 79.8 [LT] 79.7 [GLT]1  79.5 [LT]
ig | 75.7 [T] 76.3 [FGLT] 77.2[T] 74.1 [LT] 76 [LT] 75.6 [LT]
kr | 71.8 [T] 723 [FGLT] 72.5 [FGLT] | 719 [GLT] 723 [LT] 719 [T]
ma | 78.5 [LT] 78.4 [LT] 78.2 [T] 76.7 [T] 779 [T]
pem | 76.8 [FGLT] 75.6 [LT] 76.1 [FGLT] | 75.8 [LT] 75.8 [GLT]
pt | 70.9 [T] 68.6 [T] 709 [T]
sw | 63.8 [T] 62.5 [FGLT] 63.5[T] 64.7 [T] 59.3 [LT] 64.4 [T]
ts | 50.9 [T] 55.1 [FGLT] 53.1[T] 55.5 [FGLT] 493 [FGLT] 50.2 [T]
twi | 56.3 [GLT]  57.7 [LT] 55.1 [T] 56.4 [T] 58.6 [T]
yo | 76.5 [T] 76.9 [LT] 76.4 [T] 76.4 [T] 77.1 [T] 76.5 [T]

Table 7: Weighted F;-score on the dev set of our Phylogeny-based models trained with the Clean dataset. The
Column indicates which task-adapter has been used. [n] indicates which configuration gives us the best F;-score.
[T] = Task, [LT] = Lang + Task, [GLT] = Genus + Lang + Task, [FGLT] = Family + Genus + Lang + Task

guage ID information makes it more challenging
to distinguish between closely related languages,
which can lead to a higher degree of semantic am-
biguity and reduce the accuracy of our system.

Zero-Shot Performance For Task C, we use
the same model as Task B. Table 8 also shows
the zero-shot performance of our system on Track
17: Tigrinya and Track 18: Oromo. Our system
ranks 11th and 13th on the leaderboards, falling
short of the top-performing models by 9.34 and
4.36 points, respectively. It highlights the potential
of our system for zero-shot cross-lingual transfer
learning, although further improvements may be
needed to achieve state-of-the-art performance in
these languages. For example, we could have used
additional unlabeled data in the two languages to
continue training the base model as (Muller et al.,
2021). We leave these explorations for future work.

7 Conclusion

This paper describes GMU’s SA systems for the
AfriSenti SemEval-2023 shared task. We partici-
pated in all three sub-tasks: Monolingual, Multilin-
gual, and Zero-Shot. As a starting point for our sys-
tem, we leverage AfroXLMR-large, a pre-trained
multilingual language model specifically trained on
African languages and then fine-tuned with original
and augmented training data. To further enhance
our system, we utilize phylogeny-based adapter-
tuning, which involves adapting to the target lan-
guages using knowledge from related languages
in the phylogenetic tree. Multiple models are cre-
ated and ensembled to obtain the best results. Our
system outperforms all other systems in track 5:

Task ‘ Lang ‘ Weighted F1(A) ‘ Ranking

ha 79.6 (-3.1) 1735
yo 70.8 (-9.3) 21/33

ig 75.3 (-7.6) 24/32

pcm 68.8 (-7.1) 11/32

am 78.4 (0) 1/29

dz 68 (-6.2) 15/30

Task Ao 55.2(-9.6) 19/32
SW 63.7 (-2) 6/30

kr 71.8 (-0.8) 5/34

twi 56.5(-11.8) 28/31

pt 71.9 (-3.1) 10/30

ts 51.7 (-9) 15/31

Task B | multi | 71.2(-3.8) | 7/33
tg 61.5(-9.3) 11/29

Task C 1 o 41.9 (-4.4) 13/27

Table 8: Weighted F;-score on the test set of the 15
tracks we participated in. A shows the offset of our
scores from the best-performing system for each track.
Highlighted are the ones that have A smaller than -1.

Ambharic, achieving the highest Fi-score with a
remarkable 6.2-point higher than the second-best
performing system.
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A Best Dataset

Lang Dataset
ha Clean
yo Clean + MT-based
ig Clean + Both

pcm | Clean + Dictionary-based
am | Clean + Dictionary-based
dz Clean + Dictionary-based
ma | Clean + Dictionary-based
SW Clean + MT-based
kr Clean + Dictionary-based
twi | Clean + Dictionary-based
pt Clean
ts Clean + MT-based

Table 9: The dataset combination of the Best dataset.

B Adapter-tuning

Tables 10 and 11 present adapter-tuning results on Dict-based datasets, Best, and Both datasets, respec-
tively.

Lan Clean Best Dict-based Clean Both Dict-based
g (tagged) (tagged) (tagged) (untagged) (untagged) (untagged)
am 64.3[1] 63.6[1] 64 [4] 62.6 [1] 63.3 [4] 62.9[1]

dz 67.7[2] 68.2]3] 68.5 [4] 64.4 [3] - 67.4 (1]
ha 80.2[1] 79.8[1] 79.3 2] 79.5 [2] 79.8 [2] 79.5 (2]
ig 76.1[2] 75.8[1] 77.2[1] 73.8 [2] 74.8 [2] 74.7[1]
kr 71.8[1] 71.21[2] 71.6 [3] 71.0 [4] 70.9 [2] 71.9 1]

ma | 784[1] 793[2] 78201 | 767[1] - 779 [1]
pem | 76.8[4] 75.6[1]  76.1[4] | 76.0[4] - 759 [3]
pt - -

SW 64 [1]  62.8 [43] 63.5 [1] 64.7 [1] 59.1[1] 64.4 [1]
ts 509[1] 54.41[1] 53.1[1] 57.1[2] 50.1[2] 50.2 [1]
twi | 55.8[2] 57.712] 55.1 (1] 56.8 [2] - 58.6 [1]
yo 76.5[1] 769 (2] 76.4 [1] 76.4 [1] 77.1[1] 76.5 (1]

Table 10: Weighted F;-score on the dev set of our Phylogeny-based models trained with Dict-based datasets. The
column indicates which task-adapter has been used. [n] indicates which configuration gives us the best F;-score. [1]
= Task, [2] = Lang + Task, [3] = Genus + Lang + Task, [4] = Family + Genus + Lang + Task
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Lang Clean Best Dict-based Lang Clean Best Dict-based
(tagged) (tagged) (tagged) (tagged) (tagged)  (tagged)
am 64.3[1] 63.6[1] 64.4 [3] am | 64.1[3] 629]1] 63.2 [2]
dz 67.1[2] 67.4[3] 68.2 [4] dz - - -
ha 80.2 [3] 80 [3] 79.3 [4] ha 80.2[2] 79.8 4] 79.7 [2]
ig 75.7[11 75.8[1] 772 [1] ig 74.1[2] 75.4[2] 74.7 [1]
kr 71.8[1] 71.2[1] 71.4 (1] kr 71.6 [3] 71.3[2] 72.3 [2]
ma | 784[1] 782[1] 78.2 [1] ma - - -
pcm | 76.8 [4] 75.6[1] 76.1 [4] pcm - - -
pt 70911 68.6[1] - pt - - -
SW 63.8[1] 62.4][2] 63.5[1] SW 64.8 [3] 59.1[1] 64.1[1]
ts 509 [1] 57.3[3] 53.1[1] ts 56.5[4] 52.4][3] 53.6 [2]
twi | 55.8[2] 57.5][2] 55.1[1] twi - - -
yo 76511 76.2[2] 76.4 [1] yo 76411 77.1[1] 76.6 [2]

Results using the Best dataset.

Results using the Both dataset.

Table 11: Weighted F;-score on the dev set of our Phylogeny-based models trained with Best (left) or Both (right)
datasets. The column indicates which task-adapter has been used. [n] indicates which configuration gives us the
best Fy-score. [1] = Task, [2] = Lang + Task, [3] = Genus + Lang + Task, [4] = Family + Genus + Lang + Task.
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