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Abstract

The MultiCoNER II shared task aims at de-
tecting complex, ambiguous named entities
with fine-grained types in a low context set-
ting. Previous winning systems incorporated
external knowledge bases to retrieve helpful
contexts. In our submission we additionally
propose splitting the NER task into two stages,
a Span Extraction Step, and an Entity Classifi-
cation step. Our results show that the former
does not suffer from the low context setting
comparably, and in so leading to a higher over-
all performance for an external KB-assisted
system. We achieve 3rd place on the multilin-
gual track and an average of 6th place overall.

1 Introduction

The 2022 MultiCoNER shared task (Malmasi
et al., 2022b,a) aimed at addressing the challenges
present in processing semantically-ambiguous and
complex Named Entities (NE) in short and low-
context settings. The top-performing systems
made use of existing knowledge in the form of
knowledge-bases (Wang et al., 2022b) and gaze-
teers (Chen et al., 2022). The organisers of the Mul-
tiCoNER task noted, however, that such solutions
are not robust against NEs which are not present
in the existing knowledge or are noisy1. Such find-
ings are the key motivators behind the 2023 Multi-
coNER shared task (Fetahu et al., 2023b), with a
far more fine-grained set of classes and noise intro-
duced into some additional datasets (Fetahu et al.,
2023a).

We propose splitting the standard Named En-
tity Recognition (NER) task into two stages: (1)
Span Extraction and (2) Entity Classification. The
reason being that span extraction is closely tied to
language and thus the noisiness of the entities or
their existence in the knowledge, should not greatly

1Examples of noisy Named Entities are ones with spelling
mistakes and typos.

affect its results. Following which, the classifica-
tion of the extracted spans should be simpler, as
the spans will have already been extracted. Further-
more, we make use of different types of additional
contexts based off of the Wikipedia dumps for each
language (Wang et al., 2022b). The details of which
can be found in sub-section 3.2.

2 Related Work

Recent approaches to NER can generally be split
into three groups 1. CRF-based, 2. Linear, and
3. Span Enumeration.

CRF-based approaches such as Lample et al.
(2016) and Straková et al. (2019) use a bidirec-
tional LSTM with a Conditional Random Field
(CRF) as a sequence tagger, relying on one or a
combination of word embeddings, character repre-
sentations, and transformer representations as input
features to the combined LSTM-CRF decoder.

Linear approaches such as Luoma and Pyysalo
(2020) and Schweter and Akbik (2021) rely on fine-
tuning a pretrained transformer architecture with
a linear layer to greedily decode the output. The
representations passed onto the linear layer can
also include word embeddings such as in Schweter
and Akbik (2021). As an alternative to the greedy
approach, Luoma and Pyysalo (2020) combines
scores for each sentence from different positions in
the input context.

Finally, approaches such as (Yu et al., 2020; Ya-
mada et al., 2020) classify all possible spans within
a sentence. These spans are then ranked by their
highest score and each span is included in the final
output if it does not overlap with a higher scoring
span that is already included in the final output.

Regardless of the method used, most state-of-
the-art models use either a large transformer rep-
resentation and/or a combination of sources for
their word embeddings. Straková et al. (2019)
use ELMo, BERT, and Flair embeddings, while
Lample et al. (2016) use both word and character
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embeddings, and Yu et al. (2020) use BERT, fast-
Text, and character embeddings. Wang et al. (2020)
propose training a controller to automatically con-
catenate embeddings from different sources based
on the current context. Finally, Schweter and Ak-
bik (2021) rely on XLM-R embeddings and word
embeddings from different sources depending on
the target language. Yamada et al. (2020) on the
other hand, train a transformer model that produces
contextualised embeddings for words and entities
in a sentence, independent of each other. This
entity-aware transformer is then tuned on a span
enumeration task as described above.

From the 2022 MultiCoNER shared task, the two
winning systems used distinct strategies. Wang
et al. (2022b) relied on large-scale retrieval of
relevant paragraphs to the target sentence, which
were then concatenated and used as input to a
Transformer-CRF system. Chen et al. (2022) on
the other hand use a gazetteer-augmented-BiLSTM
model together with a transformer model to clas-
sify target sentences. The BiLSTM is pre-trained
to produce token embeddings similar to the accom-
panying transformer when given sequence labels
based on gazetteer matches.

3 System Description

3.1 Staged-NER

Our approach consists of two separate stages, a
Span Extraction stage and an Entity Classifica-
tion stage.

The Span Extraction stage Our first stage is a
conceptually simple variant of a standard trans-
former fine-tuning task (Figure 1a). We tune a
pre-trained transformer on the training data, but
with the modified task of classifying a token as one
of CSpan = [B,I,O]. Thus this model only de-
tects entities without needing to classify which kind
of entity it is. The token representation passed onto
the classification layer is obtained through the addi-
tive pooling of the sub-word tokens corresponding
to each token. Given a sentence’s sub-word repre-
sentation X , the final contextual representation rti
for token ti is expressed as

rti = Σ
ENDt(i)
j=START t(i)xj

where START t(i) and ENDt(i) are the start and
end indices of the sub-words constituting token ti.

(a) Span Extraction

(b) Entity Classification

Figure 1: Illustration of our approach

The Entity Classification stage Given a sen-
tence’s sub-word representation X , a set of entity
spans S = {s1, s2, ..., sm} in X , and a set of en-
tity forms F = {f1, f2, ..., fm} the entity typing
model computes an entity-aware representation of
each span in S (Figure 1b). Similar to the span
extraction stage, an entity’s encoding is the sum
of the contextual representation for each word/sub-
word in the entity span concatenated with the sum
of the representation of each word/sub-word in the
corresponding entity form.

si = Σ
ENDe(i)
j=START e(i)xj

fi = Σ
ENDf (i)

j=START f (i)
xj

rei = si � fi

where START e(i) and ENDe(i) are the start and
end indices of entity span si, and START f (i) and
ENDf (i) are the start and end indices of entity
form fi. Each entity representation is then classi-
fied using a final output layer.

3.2 Additional Context

In addition to the target sentence and the entity
forms appended to the sentence in the Entity Clas-
sification stage, we also retrieve external context
from Wikipedia. In this section we describe the
external context incorporated in various formats
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during both stages. We explain the process of ob-
taining and formatting data from Wikipedia in sub-
section 3.3.

We use BM25 (Robertson et al., 2009) to index
the summary paragraphs for all articles in each
language’s respective Wikipedia.

Matched Titles We extract any strings in the tar-
get sentence that exactly match article titles. We
found that many languages benefit from string
matching against titles from other languages in
addition to their own, likely due to code-switching.

Linked Page Titles For the top 15 paragraphs
similar to the target sentence, we retrieve the page
titles of each page linked-to in these paragraphs, in
addition to the titles of the pages in which these
paragraphs appear.

Combined We additionally experiment with
combining candidate titles from both the Matched
Titles and Linked Page Titles settings.

Paragraphs The summary paragraphs of articles
whose titles appear in the target sentence. Similar
to Matched Titles we compare to titles in all lan-
guages, but only use a single paragraph per entity.
For entities with paragraphs in multiple languages
we prioritise paragraphs in the target language, oth-
erwise we choose the language which has the most
articles in its respective Wiki.

For sentences with multiple matched entities we
concatenate their summary paragraphs separated
by the <sep> token. In order to ensure that the tar-
get sentence concatenated with relevant paragraphs
does not exceed the sequence limit, we include the
first 50 tokens of each paragraph.

Infobox Infobox labels (e.g., Born, Citizenship,
Occupation for an article about a person) were ob-
tained from Wikipedia pages. The labels of the
article title that matched the span of the given sen-
tence were used as additional context. For the mul-
tilingual dataset, all labels were translated into En-
glish using OPUS-MT (Tiedemann and Thottingal,
2020).

3.3 WikiData Database

We downloaded the latest wiki-data dump for each
language2. Once each language’s dump had been

2https://dumps.wikimedia.org/*wiki/
latest/*wiki-latest-pages-articles.xml.
bz2 where * is one of {bn, de, en, es, fa, fr,
hi, it, pt, sv, uk, or zh}

downloaded and verified, we used WikiExtractor3

to extract and clean the text and output the results
into a readable Json format. Subsequently, a Wiki-
Database was constructed. The structure of our
database is illustrated in Figure 2.

Figure 2: Figure showing structure of our database con-
structed from Wikipedia dump.

3.4 BM25 Candidate Retrieval

The first paragraphs of Wikipedia in each language
was used as a corpus, and the similarity to the given
sentences was calculated using BM25. The top
15 similar paragraphs were retrieved from the cor-
pus and used as the candidates. For the multilin-
gual dataset, we combined the first paragraph of
Wikipedia in all 12 languages and used it as the
corpus. Our indexing parameters for BM25 were
k1=1.5 and b=0.75.

3.5 Final Model

For each stage we train models for different context
types. For each context setting we train 5 models
with different initial random seeds and pool the
resulting scores. While the contexts types listed
in Section 3.2 allow for many combinations, we
experimented with a limited set due to time and
computational constraints.

Span Extraction Ensemble we train three vari-
ants with three context types for each language;
(1) Matched Titles, (2) Linked Page Titles, and (3)
Combined.

Entity Classification Ensemble we train mod-
els for four context types for each language; (1)
Matched Titles, (2) Linked Page Titles, (3) Para-
graphs, and (4) Infobox.

3https://github.com/attardi/
wikiextractor/wiki
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Our final model for each stage is an ensemble
of all the trained models above, with the final pre-
diction obtained through voting by all models. The
Entity Classification models were trained on pre-
dicted spans produced by the Span Extraction En-
semble for each language on both the train and
development sets.

4 Experimental Setup

Implementation Details We implement our
models in Pytorch and use pretrained models pro-
vided through the HuggingFace transformers li-
brary. We demonstrate our approach using XLM-
Roberta(XLM-R)4 (Conneau et al., 2020).

Training & Hyperparameters We ran a limited
grid search similar to Luoma and Pyysalo (2020)
to obtain the best hyperparameters for each model.
The settings explored were learning rate ∈ {5 ×
10−6, 2 × 10−5}, batch size ∈ {4, 16}. The loss
function used for both stage models was a softmax
cross-entropy.

p(r∗c ) =
exp(Score(r∗c ))

∑C
ĉ=1 exp(Score(r∗ĉ ))

loss = −
N∑

i=1

C∑

c=1

yic log(p(r∗c ))

where r∗ is rt for span extraction and baseline
models, re for entity classification models, C ∈
{CSpan, CEntity} depending on the task, y is the ex-
pected output, and N is the batch size. We ran all
our experiments for 5 epochs with a linear decay
schedule and no warm-up.

5 Results and Analysis

We present the results of our approach on the de-
velopment sets in Tables 1 & 2. In order to get an
accurate view of how well each stage is performing,
we calculate F1 scores both with and without tags.
We call this Labelled F1 and Unlabelled F1 respec-
tively. In both cases we calculate span F1, where
an entity is correct if the start and end of the span
are correct, and for labelled F1 the assigned tag
must also be correct. Following the organisers we
present macro-F1 scores for our labelled F1 results.

The results of the Span Extraction stage is shown
in Table 1. As we hypothesised, span extraction is

4https://huggingface.co/
xlm-roberta-large

comparably easier than entity classification, with
our model achieving an unlabelled F1 score above
90% on 11 of the 13 languages. This holds for
both the pooled model, and all three variants with
different contexts.

Additionally, while Matched Title and Liked
Page Title contexts don’t clearly outperform each
other across languages, the Combined context beats
both on 11 of the 13 languages, with a negligible
drop in performance on the remaining two.

The results of our Entity Classification stage are
shown in Table 2. For this stage we compare our
results to two baselines provided by the authors
of the winning system of last year’s MultiCoNER
shared task (Malmasi et al., 2022b,a). The first
baseline is a simple tuned XLM-R model with a
CRF Layer. The second baseline, RaNER, is a
variant of this same model that utilises the retrieval
augmented approach used by the winning team of
the last shared task (Wang et al., 2022a).

Our models outperform the weaker CRF base-
line across the board for all languages, including
all individual models, with the exception of our
Matched Titles model for Hindi. Additionally,
our final pooled models outperformed the stronger
RaNER baseline on 7 of 12 languages (multilingual
baseline scores were not available).

While the Matched Title and Linked Page Ti-
tle models beat the RaNER baseline on 6 of 12
languages, they are generally outperformed by the
Infobox and Paragraphs models. The improved
performance of the Infobox model is a result of
the class specific properties present in the Infobox
of the matched entity. For example Albert Ein-
stein’s Infobox has keys such as Born, Citizenship,
and Education which are all clearly properties of a
person and thus make labelling Albert Einstein as
person a simpler task. Similarly, the improved per-
formance of the Paragraph model is a consequence
of the more complete context provided by the first
paragraph of the matched entity. For example, the
wikipedia page of J. Robert Oppenheimer says that
they are a professor of physics at the University of
California, Berkeley where physics is a hyperlink
and will be present in the additional contexts for
Matched Title and Linked Page Title models but
what is actually important in that sentence is that
they are a professor of physics, indicating that they
are a scientist.

Paragraph-based models were generally the best
performing models, beating the other contexts on 9
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Context Type bn de en es fa fr hi it pt sv uk zh multi
MT 96.25 94.24 92.44 90.41 83.17 91.71 95.77 93.55 91.66 93.28 88.60 92.54 92.45
LPT 94.48 93.70 93.29 91.27 80.45 91.54 92.03 94.10 92.70 92.95 88.37 90.52 92.04
COMBINED 95.96 94.68 93.85 91.51 83.10 91.89 96.50 94.27 92.55 93.91 88.94 92.51 92.78
POOLED 96.47 95.09 94.01 91.35 82.93 92.56 95.91 94.42 92.52 93.96 89.05 92.88 93.11

Table 1: Unlabelled F1 results on the dev. sets for the Span Extraction stage. MT is MATCHED TITLES, LPT is
LINKED PAGE TITLES. Best results are in Bold, and second-best results are underlined.

Context Type bn de en es fa fr hi it pt sv uk zh multi
Baselines
CRF 77.06 73.17 60.68 65.04 59.40 61.41 83.80 71.12 63.94 68.40 65.71 72.60 -
RANER 89.12 76.78 71.32 68.24 76.76 74.61 88.78 83.43 76.70 77.06 78.26 75.84 -
This Work
MT 85.69 78.75 73.40 77.04 71.50 77.05 83.76 76.39 76.60 79.67 73.36 75.85 -
LPT 84.60 80.06 74.54 76.84 72.38 77.30 84.49 77.21 75.73 78.14 73.73 72.43 81.77
INFOBOX 87.55 80.28 76.46 78.05 73.26 77.32 86.98 77.07 77.69 78.65 74.75 76.18 83.38
PARAGRAPHS 87.40 80.71 76.07 78.55 72.42 78.15 87.08 78.31 78.30 80.17 74.86 74.87 85.13
POOLED 88.45 81.93 77.26 80.14 73.84 79.26 88.31 79.01 78.78 80.98 75.66 77.45 84.16

Table 2: Labelled Macro F1 results on the dev. sets for the Entity Classification stage. MT is MATCHED TITLES,
LPT is LINKED PAGE TITLES. Best results are in Bold, and second-best results are underlined.

Lang Clean Noisy Overall Rankunlabelled labelled unlabelled labelled unlabelled labelled
bn 94.51 78.24 - - 94.51 78.24 5
de 95.42 77.67 - - 95.42 77.67 5
en 92.23 76.0 84.10 62.23 89.79 71.81 9
es 91.88 77.22 84.36 63.53 89.62 72.76 6
fa 84.55 70.76 - - 84.55 70.76 4
fr 91.68 77.12 83.76 63.40 89.30 72.85 8
hi 94.38 78.50 - - 94.38 78.50 5
it 93.91 77.45 87.90 65.88 92.10 73.71 8
pt 92.30 74.50 86.45 62.22 90.55 70.16 8
sv 94.52 79.31 89.59 67.15 93.04 75.08 6
uk 89.60 73.41 - - 89.60 73.41 5
zh 91.40 71.43 78.53 48.95 87.75 65.96 7
multi 92.39 81.02 87.32 68.32 91.30 78.38 3

Table 3: Final F1 scores on the test set.

of 13 tracks, with Infobox achieving the best results
on only 4 languages.

Our final results are shown in Table 3. The per-
formance of our Span Extraction stage remains
stable across the dev. and test sets, achieving over
90% unlabelled F1 on 11 of 13 languages on the
clean dataset, and remains above 90% on 4 of the
8 languages with additional noisy data. The noisy
data in isolation predictably harms performance by
5-8% F1, except for Chinese where performance
falls by 13%.

The Entity Classification step also generalised
fairly well from the dev. set to the clean test set,
with macro F1 scores being 1-6% lower than on
the dev. set, with the exception of Bengali and
Hindi which fell by 10%. Our approach is strongly
impacted by the introduced noise for all languages.

The contrast between our results on noisy and
clean data points to the importance of accurate
Span Extraction, which acts as an upper bound to

the performance of the Entity Classification step.
Additionally, the results of Span Extraction were
less impacted overall by the introduction of noise
than Entity Classification. This is possibly due to
the reliance of our Entity Classification on entity
matching, while Span Extraction relies primarily
on linguistic patterns, with additional context being
supplementary.

6 Conclusion

In this work we demonstrated a staged approach
to NER, where we learn to extract spans before
classifying entities. Our approach achieves strong
results on Span Extraction and is resilient to noise,
while the Entity Classification stage is far more
sensitive and dependant on the retrieved context.
We achieve 3rd place on the multilingual track and
an average of 6th place overall.
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