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Abstract

This paper presents our system for the
SemEval-2023 Task 4, which aims to identify
human values behind arguments by classify-
ing whether or not an argument draws on a
specific category. Our approach leverages a
second-phase pre-training method to adapt a
RoBERTa Language Model (LM) and tackles
the problem using a One-Versus-All strategy.
Final predictions are determined by a majority
voting module that combines the outputs of an
ensemble of three sets of per-label models. We
conducted experiments to evaluate the impact
of different pre-trained LMs on the task, com-
paring their performance in both pre-trained
and task-adapted settings. Our findings show
that fine-tuning the RoOBERTa LM on the task-
specific dataset improves its performance, out-
performing the best-performing baseline BERT
approach. Overall, our approach achieved a
macro-F1 score of 0.47 on the official test set,
demonstrating its potential in identifying hu-
man values behind arguments.

1 Introduction

The ValueEval task aims to develop a system for
automatically detecting the values expressed in
natural language arguments within English texts
(Kiesel et al., 2023). Identifying human values is
critical for gaining insights into people’s behav-
ior, evaluating content, personalizing experiences,
and resolving conflicts. Analyzing the values ex-
pressed in language, including beliefs, attitudes,
and motivations, can help us understand the quality
and relevance of content and its potential impact
(Kiesel et al., 2022). Moreover, identifying indi-
vidual values can be useful in conflict resolution
by enabling us to comprehend the underlying be-
liefs and motivations of opposing viewpoints. This
can facilitate finding common ground and working
towards a resolution that is acceptable to all. There-
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fore, identifying human values has the potential
to play a significant role in various fields, includ-
ing psychology, sociology, marketing, and others
dealing with human behavior and communication.

In this paper, we propose a Transformer-based
Language Model (LM) system for the ValueEval
task, which utilizes second-phase pre-training in an
One-Versus-All (OVA) setting to identify the hu-
man values expressed in arguments. Our approach
combines both data and algorithm adaptation con-
cepts, whereby we second-phase pre-train an LM
to better adapt to the domain and transform the
data to better represent the task. To align with the
nature of the task and the dataset (Mirzakhmedova
et al., 2023), we implement a form of prompt en-
gineering. This involves transforming the premise,
stance, and conclusion inputs into a single sentence
while replacing the stance with a predefined tem-
plate. Moreover, we task-adapt the ROBERTa LM
by aligning it with the masked language-modeling
objective to predict the probability of each stance
given an argument and conclusion. To improve the
model’s performance, we train multiple models for
each label, based on different hyperparameters and
versions of the dataset that are sampled differently.
Finally, we use majority voting to form the final
predictions.

In addition to the system description presented
in this paper, we make the following observations
based on our approach and experiments: Firstly,
we observed that second-phase pre-training in the
form of task-adaptation allows the underlying LM
to better represent the task in the embedding space.
This leads to improved performance in identifying
the human values expressed in arguments. Sec-
ondly, we found that utilizing an OVA approach,
also known as One-Versus-Rest, dramatically im-
proves performance compared to using a single
multi-label classifier. Finally, we observed that the
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effectiveness of data sampling techniques varied
per label, with a subset of per-label models perform-
ing better without it. This highlights the importance
of experimenting with different techniques to find
the optimal approach for each label.

2 Background

While human values have long been an impor-
tant consideration in formal argumentation, this
task represents the first attempt to computation-
ally identify the values behind arguments. To that
end, Kiesel et al. (2022) presented the first dataset
containing the conclusion, the premise’s stance to-
wards the conclusion, and the premise itself, as
show in the example in Table 1.

Argument ID | A01010

Conclusion ‘We should prohibit school prayer
Stance against

Premise it should be allowed if the student wants

to pray as long as it is not interfering
with his classes

Table 1: Example that includes the conclusion, stance
and premise of an argument.

The task involves determining whether a given
textual argument relates to a specific category from
a set of 20 value categories of human values derived
from the social science literature. The baseline ap-
proaches for this multi-label classification problem
include a “1-Baseline” where the positive label is
assigned to all instances, a label-wise “SVM” and
a Transformer-based approach, called “BERT”.

One of the main advantages of Transformer-
based LM approaches is their ability to capture
complex linguistic structures and dependencies,
which can be difficult to model using traditional
approaches. In general, LM models can learn to
understand context, ambiguity, and figurative lan-
guage, which are all important aspects in argumen-
tation mining, which is reflected by the published
results as well, where “BERT” significantly outper-
forms the other approaches. This approach utilizes
the BERT language model (Devlin et al., 2018) that
uses stacked Transformer-based encoders (Vaswani
et al., 2017), pre-trained on a large corpus of text
data.

RoBERTa (Liu et al., 2019) is a variation of the
BERT LM that was designed to improve upon some
of its limitations, using a similar architecture, pre-
trained on a larger and more diverse corpus of text
data, with longer sequences and fewer masking

tasks. This approach is intended to help RoBERTa
capture more complex linguistic patterns and rela-
tionships than BERT. RoBERTa also uses a differ-
ent pre-training objective, which involves training
the model to predict the correct order of sentences
in a document. This allows the model to better
understand the relationships between different sen-
tences in a document and to capture a wider range
of linguistic knowledge.

By fine-tuning the pre-trained RoBERTa model
on a specific task, the model can be optimized to
better handle the specific requirements of that task
and can result in improved performance. Accord-
ingly, second-phase pre-training (Gururangan et al.,
2020) can further improve an LM’s performance
with domain or task-adaptive pre-training that al-
lows the model to learn task-specific features and
patterns that are not captured by the general lan-
guage model. The transfer of knowledge (transfer
learning) allows a pre-trained LM to adapt to a
specific task with less labeled training data and
build upon the wide range of linguistic patterns and
relationships previously learned.

3 System Overview

In this section, we describe our proposed
Transformer-based system for the identification of
human values behind argument in detail, where,
given a conclusion, a stance and a premise, the in-
put is classified into one of the 20 pre-defined val-
ues categories. Our system consists of an LM adap-
tion (TAPT pre-train), data transformation, OVA
training and tuning phase, as shown in Figure 1.

LM Second- | TAPT models O
> Phase ————— | Trainer
Pre-training and

Raw
dataset

HP
Tuning
Dataset

— | Transformations

Ensemble
with majority
voting

Figure 1: Overview of our proposed ensemble system
with second-phase pre-training (task-adaption) and ma-
jority voting.
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3.1 Language model alignment (Task
adaption

Task adaptation refers to the process of second
phase pre-training a LM with domain-specific unla-
beled data that can potentially lead to performance
improvements in that specific topic or domain (Gu-
rurangan et al., 2020). Towards that end, we imple-
mented a slightly different approach where instead
of aligning the LM on the task dataset, we trained
the underlying language model on a different task.
BERT-based models are trained using two types
of sentences, Sentence A and Sentence B with the
first being a sentence of a given input sequence,
while the latter is a second sentence. This approach
is commonly used in question answering or text
classification tasks, where the input consists of a
pair of sentences, where sentence A is a question
or a prompt, and sentence B is the text to be classi-
fied or used to answer the question. In some cases,
Sentence B might be the next sentence that fol-
lows Sentence A, but in other cases, it might be a
sentence that is randomly chosen from the same
document as Sentence A.

During the pre-training phase, BERT-based mod-
els are trained to learn a joint representation of both
Sentence A and Sentence B using either Masked
Language Modeling (MLM) or Next Sentence Pre-
diction (NSP) tasks. In the MLM task, the model
is trained to predict the masked words in Sentence
A, while in the NSP task, the model is trained to
predict whether Sentence B follows Sentence A in
the original text or not.

We followed a supervised training approach to
task adaption by training the model for the classifi-
cation of the stance using the premise as Sentence
A and the conclusion as Sentence B. Based on the
argument presented in Table 1, the premise, “It
should be allowed if the student wants to pray as
long as it is not interfering with his classes” is used
as Sentence A, while the conclusion, “We should
prohibit school prayer” is used as Sentence B. By
training the LM on this type of input, it can learn
to classify the stance of a given text based on the
relationship between the premise and conclusion.
In this example, the model should predict that the
stance is against school prayer since the premise
argues for allowing it, while the conclusion argues
for prohibiting it. By training on both Sentence A
and Sentence B, BERT-based models can learn to
understand the relationship between different sen-
tences in a given text and capture the contextual

meaning of the input sequence.

3.2 Per Label Task adapted models

Our proposed system is built on the task-adapted
RoBERTa base language model, where we train
separate binary classification models for each label.
We use an OVA approach, where each model is
trained to differentiate between instances of one
class and instances of all other classes combined,
effectively identifying instances of its correspond-
ing label, while ignoring instances of all other la-
bels.

To form the final input sentence string, we im-
plement prompt engineering by concatenating the
conclusion C' to the premise P, using a connecting
phrase that reflects the stance St and connects the
premise and conclusion. Specifically, we use the
format S = C' + Rg; + P, where Rg; represents
the appropriate connecting phrase. This process
enables the model to take into account the relation-
ship between the premise and conclusion, and the
stance expressed in the connecting phrase.

After forming the input sentence, it is passed
through the model’s transformer layers, which
takes in the tokenized sentence and the attention
mask. The resulting output is then processed using
either mean pooling or the model’s pooled output
and passed through a classification layer to produce
the final per label binary output prediction.

3.3 Ensemble Module with Majority Voting

Given the total number of labels N;, = 20, we
trained and tuned two distinct models for each label,
resulting in a total of 40 models. We then grouped
these models into three sets of OVA classifiers.
Each set followed the architecture described in
Section 3.2, and was individually hyperparameter-
tuned, but trained on a different subset of the task
dataset. One set was trained on the original dataset
without any sampling, one set was trained on a
down-sampled dataset, and the final set consisted
of the best-performing models from the first two
sets, which could either be non-sampled or down-
sampled models.

During inference, we used each binary classifier
corresponding to each class to predict the proba-
bility that a given sample belongs to that class. To
generate the final prediction, we employed a ma-
jority voting approach. Specifically, we assigned a
binary label based on a fine-tuned threshold, and
the final label was determined by the majority vote
among the three sets of models.
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4 Experimental Setup
4.1 Dataset and Evaluation Methodology

We transformed the dataset for two different ap-
proaches by replacing the stance with a connect-
ing phrase and by balancing the dataset by down-
sampling to the majority label instances for a per
label (OVA) approach. By replacing the stance
from a set of phrases, as shown in Table 2, we con-
catenate conclusion and premise sequences with
a randomly selected connecting phrase. For ex-
ample, the argument presented in Table 1 would
become “We should prohibit school prayer so it is
wrong to say that it should be allowed if the student
wants to pray as long as it is not interfering with
his classes”. This process allows the model to learn
from a continuous context and learn semantically
relevant representations that take the complete argu-
ment into account. On the other hand, transforming
a dataset for OVA involves converting the original
multi-class labels into binary labels to create a set
of binary labeled datasets, each corresponding to a
single class.

Label Phrases

against “so it is not valid to say that”

“so it is wrong that”

[P

in favor of SO

“thus”

“therefore”

“. Subsequently”

. As aresult”

. So it is valid to say that”
, SO it is true that”

113

«

113

Table 2: Pool of phrases that would connect the conclu-
sion with the premise depending on the label.

The dataset had pre-defined train, validation and
test splits, with labels for both the training and
development sets. We created a development set
from the train dataset by splitting it into 80% for
training and 20% for development and used the
provided validation set as test set. We follow the
tasks evaluation strategy using the label-wise F1-
score and its means over all labels (macro-averaged
F1), which is the harmonic mean of the Precision
and Recall metrics, applying the same weight to all
classes.

4.2 Training

We trained each model on a single label and tuned
the hyperparameters using the Optuna library (Ak-
iba et al., 2019) using the search space as shown

in Table 3 and trained for 100 epochs with an early
stopping patience of 20. The best hyperparam-
eters for each per label model are shown in the
Appendix A.1 (Table 6).

Parameter | Search space
dropout 0.2...0.25
learning_rate le-6 ... le-5
weight_decay | le-4 ... le-3

warmup_steps | 0.5, 1 ... 10 epoch(s)

batch_size 160, 192, 224, 256
max_norm 1.0, 2.0, 3.0
threshold 0.3...045

Table 3: Hyperparameter search space for each binary
classification model.

We trained the models without sampling and
with down-sampling to create the two sets of OVA
classifiers and used the best performing model per
label as to create the third set. Additionally, we
experimented with different pre-trained language
models, such as BERT (Devlin et al., 2018), Al-
BERT (Lan et al., 2019), MPnet (Yee et al., 2019),
XLnet (Yang et al., 2019) and DistilBERT, Distil-
RoBERTa (Sanh et al., 2019), both base and the
large variant of RoOBERTa (Liu et al., 2019). We
task-adapted these models and trained them on the
downstream task using the best per label hyperpa-
rameters and compared their average performance
on the labeled validation set.

We implemented our described system with
the Python programming language (3.8.16)
and the PyTorch (1.10.2) and Transformers
(4.23.1) libraries on a single computer with
a 24-core Intel CPU and two Nvidia RTX
A6000 graphics cards. The code is avail-
able at: https://github.com/d1mitriz/aristoxenus-
semeval23-task4/

5 Results

This section describes the overall results compared
to the best approach and our experimental results
that led to our proposed system.

5.1 Overall results

In the ValueEval task, 40 teams submitted a total
of 182 entries, including those from the organizers.
Table 4 shows the official results for our system, as
well as the baselines (1-Baseline and BERT), the
top-performing approach, and the best-performing
systems for each category. Our system achieved a
macro-F1 score of 0.47 on the official test set, out-
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performing both baselines and the BERT approach
in 19 out of 20 value categories.

Despite our system’s strong performance com-
pared to the baselines, it fell short compared to the
best approach. Nevertheless, our approach demon-
strates that an ensemble approach utilizing different
training regimens using an OVA strategy can im-
prove over a single multi-label classifier.

5.2 Experimental results

Initially, we developed a single multi-label clas-
sifier that could predict all value categories using
a single architecture and classification head. Our
goal was to explore how the model could lever-
age the inter-dependencies between the categories
and the nature of the data. However, this approach
resulted in the lowest performance among our ex-
periments.

Despite our initial expectations, we found that
the single classifier struggled to capture the subtle
differences between the value categories and the
complex relationships between them. Additionally,
the relatively large number of categories and the
imbalanced distribution of the data made it chal-
lenging for the model to learn meaningful represen-
tations for each category. As a result, we decided
to explore alternative approaches, such as using
separate classifiers for each category and incorpo-
rating additional features to improve the model’s
performance.

To address the limitations of the single classifier
approach, we decided to split the responsibility
across 20 models, each focused on predicting a
single label using an One-Versus-All strategy with
a majority vote system. The foundation of our
approach was the underlying LM that generated
semantically and contextually relevant embeddings
for the input data.

To determine the best LM for this task and set-
ting, we experimented with various base and large
versions and evaluated their adaptation capabilities
on the evaluation set. Table 5 summarizes the re-
sults of the LM experiments. Overall, we found
that the base version of ROBERTa achieved the best
results in terms of macro-F1 score.

Furthermore, we observed that fine-tuning the
LM to the task-specific data improved its perfor-
mance, suggesting that the LM could effectively
learn to represent the unique features and nuances
of this task. These findings informed our final sys-
tem, which incorporated a second phase pre-trained

RoBERTa-based model fine-tuned on the ValueE-
val dataset and achieved competitive results in the
task.

6 Conclusion

In this paper, we describe our Transformer-based
Language Model system for the ValueEval task,
which utilizes second-phase pre-training in an One-
Versus-All (OVA) setting to identify the human
values expressed in arguments. We task-adapt the
RoBERTa LM to the domain by training the model
to predict the stance that connects the conclusion to
the premise. Furthermore, we transform the input
data to better capture the semantic and contextual
information in a continuous way, by replacing the
stance with a connecting phrase. Our system pre-
dicts based on a majority vote from predictions by
an ensemble of three different sets of per label mod-
els. We show that the task-adaption improves on
the systems performance, indicating the language
models can learn to generate better embeddings
by aligning them to this task. A possible direc-
tion for future work would be to investigate the
impact of different language models as well as data
transformation techniques on the systems predic-
tive capabilities.
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A Appendix
A.1 Hyperparameters

Table 6 shows the hyperparameters for each model
and label based on an extensive hyperparameter
search as described in Section 4.2.

1042


https://doi.org/10.48550/ARXIV.1909.11942
https://doi.org/10.48550/ARXIV.1909.11942
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.2301.13771
https://doi.org/10.48550/ARXIV.2301.13771
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.48550/ARXIV.1906.08237
https://doi.org/10.48550/ARXIV.1906.08237

2 -
s 8 @ ) g

| o | N = =}

5 o - -

g, EE ® E 5§ 4 3

S | B3 s = s g

Label S L z E g L=
Self-direction: thought 0.2346715251  1.7632e-06 le-3 1 192 30 044
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Stimulation 0.2472472153  2.75292e-05 1le-3 10 160 3.0 044
Hedonism 0.2721909443  2.4005e-06 le-3 1 192 1.0 032
Achievement 0.2270782147  6.6925e-06 le-3 1 224 1.0 041
Power: dominance 0.2560592491  1.53487e-05 1e-3 10 192 3.0 0.33
Power: resources 0.2208751188  4.6915e-06 le-3 1 224 3.0 042
Face 0.2262817676  3.82328e-05 le-3 1 192 20 0.35
Security: personal 0.2845563742  1.42097e-05 1le-3 2 160 3.0 0.33
Security: societal 0.2468968908  8.324e-06 le-3 2 192 20 043
Tradition 0.2071445925 4.45584e-05 le-3 2 224 20 045
Conformity: rules 0.2284257602  9.5028e-06 le-3 2 160 3.0 0.32
Conformity: interpersonal 0.2013318981 4.63617e-05 1le-3 9 192 1.0 0.34
Humility 0.2905871324  1.28707e-05 1le-3 1 224 20 045
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Universalism: objectivity 0.2252762583  8.3819e-06 le-3 2 224 3.0 0.32

Table 6: Results of optimal hyperparamaters obtained from tuning with Optuna for each label and model.
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