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Abstract

This paper describes the method we submitted
as the Janko team in the SemEval-2023 Task 2,
Multilingual Complex Named Entity Recogni-
tion (MultiCoNER 2). We only participated in
the Chinese track. In this paper, we implement
the BERT-BiLSTM-RDrop model. We use the
fine-tuned BERT models, take the output of
BERT as the input of the BILSTM network,
and finally use R-Drop technology to optimize
the loss function. Our submission achieved a
macro-averaged F1 score of 0.579 on the test
set.

1 Introduction

Named entity recognition (NER) is to identify en-
tities with specific meanings from a given text.
Named entities generally refer to entities with a
specific meaning or strong referential meaning in
the text, usually including personal names, place
names, organizational structure names, etc. NER
is a key task in natural language processing, and
it is very useful in NLP tasks such as information
extraction (Toda and Kataoka, 2005), question an-
swering system (Molla et al., 2006), and machine
translation (Babych and Hartley, 2003). However,
due to the nature of the language, NER is also a
challenging problem. First, a word often has mul-
tiple meanings, leading to different categories of
entities in different sentences. For example, Wash-
ington can mean either a place name or a person’s
name. Secondly, the boundary of the named entity
is vague, and its forms are various. It can be a
simple noun, a gerund phrase, or even a complete
sentence.

MultiCoNER 2 (Fetahu et al., 2023b) aims to
identify named entities with finer precision, and
the organizers divided the whole competition into
13 tracks based on language. Each data set (Fe-
tahu et al., 2023a) is composed of a training set,
a validation set, and a test set. The training and
validation set provides labels for named entities,
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and the test set provides text only. Compared with
MultiCoNER (Malmasi et al., 2022b), the number
of entity tags has been increased from 6 (Malmasi
et al., 2022a) to more than 30, while the semantics
are vaguer and the text length is shorter. In addition,
mock errors are added to the test set to make the
task more realistic and difficult. Similar to other
NER tasks, MultiCoNER 2 uses B-I-O tags to label
the tokens, where “B” indicates the first token of
a concept, “I” indicates tokens inside of a concept,
and “O” indicates tokens that don’t belong to any
entity.

This paper explains our submission to the Chi-
nese track in MultiCoNER 2. We implemented
a simple neural network system based on a pre-
trained language model. Our submission ranked
14th among 21 teams with 0.579 F1 score in the test
set. This paper is organized as follows: In Section
2, we will briefly introduce the research status of
the NER task in Chinese. Section 3 describes the
models and methods used. Section 4 introduces the
implementation details and experimental results.
Finally, this paper is summarized in Section 5.

2 Related Work

English NER task is based on characters, but the
Chinese NER task is more difficult than the En-
glish NER task because the meaning of words is
much larger than a single word and Chinese has
no space and the basic unit is the word(Geng et al.,
2022). The development of NER in Chinese can be
roughly divided into three categories: rule-based
approach, traditional machine learning approach,
and deep learning approach.

2.1 Method based on rules

In arule-based NER system, rules can be artificially
designed based on domain-specific gazetteers and
syntactic patterns (Krupke and Hausman, 1998;
Humphreys et al., 1995; Mikheev et al., 1998). This
method performs well when the vocabulary is suf-
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ficient. However, due to the characteristics of the
Chinese language, the rule-based NER method is
time-consuming and can not exhaust the rules and
patterns in Chinese entities. In practical applica-
tion, the recall rate is low and the effect is poor.
Moreover, a specific system can only be applied to
a specific domain and has no generalization ability.

2.2 Method based on traditional machine
learning

Under this category, there are two methods: un-
supervised learning and supervised learning. A
typical approach to unsupervised learning is time-
clustering, a cluster-based NER system (Collins
and Singer, 1999; Nadeau et al., 2006) obtained
different clusters according to text similarity, and
extracted related entities by representing different
entity category groups through clusters.

Supervised learning converts NER into a multi-
class classification task or a sequence labeling task.
Given annotated data samples, machine learning
algorithms are used to learn the features of training
samples, and to identify similar patterns from un-
known data. Common NER models of supervised
learning include HMM (Bikel et al., 1999), C4.5 de-
cision Tree (Sekine et al., 1998), MEM (Borthwick,
1999) and CRF (Lafferty et al., 2002).

2.3 Method based on deep learning

Deep learning has attracted a lot of attention for its
success in various fields, and quite a few studies
have applied deep learning to NER over the past
few years (Guan and Liu, 2021; Mai and Zhou,
2022; Zhu and Wang, 2022; Ma et al., 2022). Com-
pared with traditional linear models, deep learning-
based models can learn complex and potential fea-
tures from data through nonlinear activation func-
tions. Therefore, it has become a trend to use deep
learning models such as BILSTM (Wei et al., 2016)
and BERT (Devlin et al., 2018) to deal with NER
problems in Chinese and remarkable results have
been achieved.

For example, Huang et al. (2015) for the first
time, applied the BILSTM-CRF model to the NER
task. In this model, first of all, the word is mapped
to a word vector, and the scoring probability of
each word corresponding to each label is obtained
by learning context information from the BiILSTM
layer. By learning the sequence-dependent infor-
mation between tags, the final prediction results are
obtained. Lattice-LSTM (Zhang and Yang, 2018)
model encodes all words matched by a single char-

acter in a sentence as directed acyclic graphs. There
is no word segmentation error in this model, and
the Lattice-LSTM model has achieved good results
on each data set. However, Lattice-LSTM may
encounter conflicts when using external dictionar-
ies. LR-CNN (Gui et al., 2019) model proposes to
deal with such conflicts by using advanced seman-
tics to narrow the weight of words. TENER (Yan
et al., 2019) model improves location coding and
self-attention in the transformer. By replacing ab-
solute position coding with relative position coding
and improving attention allocation, the transformer-
based model can improve performance in the NER
task and obtain excellent results. Li et al. (2020)
proposed a FLAT model containing lexical infor-
mation, which converted the Lattice structure into a
set of fragments and incorporated trainable relative
position coding.

Based on the above results, we first use BERT
pre-training model to obtain word embeddings. To
better obtain the scoring probability of the word
corresponding to each label, we used bidirectional
LSTM to obtain the context information. Finally,
we used the R-Drop technique to compensate for
the inconsistency of Dropout during training and
testing.

3 Methodology

In this section, we will introduce the system ar-
chitecture we use in the Chinese NER task. The
system will be composed of three parts. The model
we will eventually use to predict the test set files
is called BERT-BiLSTM-RDrop.The architecture
of the BERT-BiLSTM-RDrop model is shown in
Figure 1.

3.1 BERT Embeddings

Transformer is an encoder-decoder architecture.
BERT is a bidirectional encoder based on the trans-
former that uses an attention mechanism to extract
information from the surrounding context. Models
based on transformer architecture (Vaswani et al.,
2017) have achieved very good performance in
NER tasks. The Bert-based model uses only one
of the encoders and is pre-trained using masking
language modeling (MLM) (Taylor, 1953) and next
sentence prediction (NSP) tasks. In this task, we
treat the last layer of BERT as an embedding of
text. In this task, we treat the last layer of BERT as
an embedding of text.
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Figure 1: The architecture of the BERT-BiLSTM-
RDrop model.

3.2 BiLSTM Neural Network

LSTM (Hochreiter and Schmidhuber, 1997) is a
kind of RNN, which is very suitable for modeling
sequential data, but it cannot encode information
from back to front. BILSTM is a combination of
forward LSTM and backward LSTM, with one
forward processing input sequence and the other re-
verse processing sequence. After the processing is
completed, the output of the two LSTMs is joined
together. BILSTM does a better job of capturing
bidirectional semantic dependencies when classi-
fying at a finer level, especially when the output at
the current moment is not only related to previous
states but may also be related to future states.

3.3 R-Drop

Dropout (Srivastava et al., 2014) is a regularization
technology widely used for deep learning. It ran-
domly ignores or blocks some neurons in a certain
proportion during training so that the model is dif-
ferent each time the prediction is made, which can
solve the problem of overfitting. R-Drop (Liang
etal., 2021) strengthens the robustness of the model
to Dropout by adding a regularization term. R-Drop

acts on the output layer of the model to make up for
the inconsistency of Dropout during training and
testing and can be widely applied to training differ-
ent types of deep models. During training, R-Drop
will make the same input Dropout twice. Due to
the characteristic of Dropout, two different output
distributions will be obtained. R-Drop operation
attempts to minimize the Kullback-Leibler (KL)
divergence between these two output distributions
to regularize model prediction, which is:

]
k1 =5 (Prr (PY (yi | 2:) Py (yi | 1))
+ D (Py (yi | @) )]

The loss function from the two Dropout is:

Liypp = —log Py (yi | zi) —log P (yi | =)
2

The final loss function is the sum of the two:
L'=Lhp+a- Ly 3)
4 Results

We used the Pytorch and Huggingface libraries to
implement all the models in our experiment. Ex-
periments were performed on a machine equipped
with Intel® i7-12700F CPU, Nvidia® 3080 GPU,
and 32 GB of RAM running Windows 10. The
training time of the BERT-BiLSTM-RDrop model
is about 4 hours. We used BERT-base-chinese as
the training model. The results are evaluated by F1
scores:

TP
Precision = TP+ FP 4)
TP
Recall = m (5)

Precision x Recall
Pl =2+ Precision + Recall ©)
During the training process, the BERT-BiLSTM-
RDrop model trains the data set provided by the or-
ganizer and saves the parameters of the 50th epoch
for the subsequent test set prediction. The results
are shown in Table 1. All results are final submis-

sions to the system.

Model Precision | Recall F1

BERT 0.5329 0.5881 | 0.5514
BERT-BiLSTM 0.5458 0.6067 | 0.5683
BERT-RDrop 0.5305 0.6047 | 0.5578
BERT-BiLSTM-RDrop 0.5513 0.6251 | 0.5790

Table 1: Results of Chinese track
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An ablation experiment was performed as shown
in Table 1. It can be seen that BILSTM can bring
a large improvement because BiLSTM allows the
network to obtain both forward and backward in-
formation about character sequences at each time
step. Limited improvement from RDrop is ex-
pected since RDrop only reinforces the robustness
of the model to Dropout by making up for incon-
sistencies in training and testing.

The initial learning rate was set to le-5 with a
batch size of 4 and the o hyperparameter was set to
1. The hyperparameters used are shown in Table 2.

Parameters | Chinese track
Epochs 50
Batch size 4

Initial Ir le-5
Optimizer Adam
Drop rate 0.1

Table 2: Hyperparameters

We tried some popular models in the verification
set, and the results are shown in Table 3. It can be
seen that the BERT-BiLSTM-RDrop has a better
effect. We also tried other Bert-based models, such
as BERT-base-uncased, RoBERTa-base, and XLM-
RoBERTa-base, and surprisingly, the results were
not as good as BERT-base-chinese. In addition,
we tried to use the integrated network of BiLSTM
and CNN to replace the single BILSTM and aver-
age method of voting method selection, but it is
a pity that there is no significant improvement in
measurement.

Model F1

RoBERTa-BiLSTM-CRF 0.7297
RoBERTa-BiLSTM-RDrop | 0.7343
BERT-BiLSTM+CNN 0.7240
BERT-BIiLSTM-CRF 0.7360
BERT-BiLSTM-RDrop 0.7452

Table 3: Results of Different Models

The best test set prediction submitted by our
team was generated by the BERT-BiLSTM-RDrop
model. Finally, Janko team ranked 14 out of 21
teams with a 0.579 F1 score.

5 Conclusion

In this paper, we described our method, which is
based on the pre-trained BERT model and is used

961

to predict the NER task SemEval 2023 Task 2:
Multilingual Complex Named Entity Recognition.
We implemented the BERT-BiLSTM-RDrop model
and prove the validity of the different model compo-
sitions. Our submission achieved a macro-averaged
F1 score of 0.579 on the test set. In the future, we
will continue to improve the system, use more ad-
vanced models, and try model integration methods.
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