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Abstract

Semi-supervised learning has promising perfor-
mance in deep learning, one of the approaches
is consistency training on a large amount of
unlabeled data to constrain model predictions
to be invariant to input noise. However, The
degree of correlation between unlabeled data
and task objective directly affects model pre-
diction performance. This paper describes our
system designed for SemEval-2023 Task 10:
Explainable Detection of Online Sexism. We
utilize a consistency training framework and
data augmentation as the main strategy to train
a model. The score obtained by our method
is 0.8180 in subtask A, ranking 57 in all the
teams.

1 Introduction

Sexism is an increasingly serious network problem.
It may harm targeted women, make cyberspace
inaccessible and unpopular, and perpetuate social
asymmetry and injustice. Explainable Detection
of Online Sexism task targets to predict whether a
sentence is sexism (Jane, 2014).

A small amount of labeled data limits the improve-
ment of supervised learning model performance.
In contrast, semi-supervised and self-supervised
learning methods can learn from massive unlabeled
data (Chen et al., 2020), even better than supervised
learning. Bidirectional Encoder Representation
from Transformers(BERT) and Robustly optimized
BERT approach(RoBERTa) (Zhuang et al., 2021)
are classic models that are trained by unlabeled
data in unsupervised learning tasks. In this work,
we aim to apply a semi-supervised learning method
to accomplish the task, using labeled data as the
train data of supervised training and augmented
labeled data as the train data of unsupervised
training(consistency training), respectively. Due
to the difficulty of selecting domain-relevance
unlabeled data in consistency learning and the
fact that the labeled data is domain-relevance
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data that matches with task objective, we decide
to augment labeled data instead of unlabeled
data that mismatch the distributions of labeled data.

Improving model performance is as important
as ensuring model stability (Gunel et al., 2020),
which is why we choose to use consistency learn-
ing. Our method guarantees the same prediction
result for the same sentence expressed with differ-
ent words in a certain probability. In other words,
it improves the model’s performance in detecting
synonymous sentences. To not lose BERT’s origi-
nal performance as much as possible, we combine
two strategies: consistency training and synonym
replacement method based on TF-IDF to fine-tune
BERT, instead of directly retraining BERT (Gha-
landari et al., 2022). Compared with the super-
vised learning method training our baseline model
in this paper, our main training strategies have
significantly improved model performance from
0.8004 to 0.8180. We have released the code at
https://github.com/vincent-hyx/task_10.

2 Background

There are two main directions of research work,
one is consistency training (Tarvainen and Valpola,
2017), and the other is unsupervised data augmen-
tation(UDA) (Xie et al., 2020). The consistency
training method relies on unmarked data training
to overcome the weakness of supervised learning
that requires a large number of labeled data (Tian
et al., 2022). It evaluates the consistency between
corresponding sentences that contain a pair of sen-
tences with similar semantics. Data augmentation
has achieved outstanding results (Baek et al., 2022).
For instance, EDA(Easy Data Augmentation) (Wei
and Zou, 2019)applies to most NLP tasks limited
by a small amount of labeled data. Besides, to solve
the problem of limited annotation data, computer
vision tasks utilize auto-augmentation (Cubuk et al.,
2019) to generate additional data. It is worth noting
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that the proposed UDA method provides a way to
obtain high-quality, unlabeled and supplementary
data for consistency learning.

The general consistency training framework
uses KL divergence as an evaluation of the
consistency between the augmented data and the
original data, and simultaneously combines it with
a supervised learning approach. UDA method
Using consistency training in the research of text
classification proposes two data augmentation
methods, back-translation and TF-IDF word
replacement (Xie et al., 2020), to generate the data
required for consistency training.

3 System Overview

3.1 Model Structure

In our model, we follow the semi-supervised learn-
ing framework(Figure 1) for consistency training,
and use different loss functions in the supervised
learning part of the framework to improve the
model’s performance. Formally, the full objective
can be written as follows:

Hbin E(e) = ['sup + Eunsup (1)
Esupl = CE(y(I’), fg(l’)) (2)
»CsupZ = FL(y(I), f@(ﬂ?)) (3)

Eunsup = KL(fg(J?*), fg(l‘)) €]

where CE and KL denote cross entropy and
KL-divergence respectively, y(x) is the correct
label vector with respect to x, fp(z) is the label
vector predicted by the model with 6 as weight
parameters, and z* is augmented data with respect
to labeled data x. FL here refers to Focal Loss (Lin
et al., 2020), we find that Focal Loss replacing
the cross entropy of the supervised learning part
improves the results of our method.

In the model design, we choose the structure
of the pre-training language model BERT-base
(Devlin et al., 2019) with three linear layers.

3.2 Data Augmentation Method

According to the consistency training framework,
the unlabeled data and the augmented data must be
domain-relevance data, which means the distribu-
tion of unlabeled data must match the distribution
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Lsup T
y(x ) > Lunsup

folx) ———

x fo(x")
Labeled *
Data X

Figure 1: Model Framework

of labeled data. Considering this problem is dif-
ficult to deal with, we decided to use the labeled
data and the synonym replacement method based
on TF-IDF to generate augmented data instead of
using unlabeled data to generate augmented data.
It can be written as follows:

x* = DA(x) 5)

In addition to using the officially provided
training data, we have generated additional
augmented data through the use of the synonym
replacement method based on TF-IDF. This
method first performs word frequency statistics
on the document of labeled data then calculates
TF-IDF scores (Abdelminaam et al., 2021) for
a word in the sentences. We replace the words
below the threshold in the sentence with their
synonyms to obtain the required augmented data.
Since the algorithm for calculating the TF-IDF
weight of words based on documents has been
widely used, it will not be repeated here. The spe-
cific algorithm steps are are shown in Algorithm 1.

It is worth emphasizing that, in this algorithm,
when searching for synonyms of a word, we should
find out all its synonyms, then randomly select and
replace them, which is equivalent to increasing the
richness of the vocabulary in the sentence, without
causing the word frequency of a word to be so
high that misleads model thinks that this word is
an important feature.
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Algorithm 1: synonym

method based on TF-IDF
Input: all_sentence,t fidf,threshold
Output: new_all_sentence

replacement

1 begin
2 for setence € all_sentence do
3 for word € sentence do
4 if t fidf [sentence][word] <
threshold then
5 synonyms <
findSynonyms(word)
6 word
randomSelect(synonyms)
7 end
8 end
9 end
10 return new_all_sentence
1 end

3.3 Analysis

The consistency training procedure essentially
enforces the model to be insensitive to the noise
and hence smoother with respect to changes in the
input space (Shao et al., 2021), thus improving the
model’s generalization ability. However, the out-
of-domain data can easily result in performance
loss (Oliver et al., 2018), which has been proven
when we use the given unlabeled data from Gab
and Reddit for training. This is the reason why
we only select the labeled data to generate the
augmented data required for consistency training.
The results section will also show the impact of
comparing the two kinds of data on the model.

Our data augmentation method makes the aug-
mented data still belong to the domain-relevance
data while introducing noise. Suppose that the
label data x belongs to an unknown distribution.
When we apply the previously mentioned data
enhancement method to generate x*, z* still
belongs to the distribution, because the replaced
word has a low TF-IDF weight value, which means
that the semantics will not be affected after the
synonym is replaced.

Based on the previously mentioned, the selection
of the superparameter threshold has an important
impact on the effect of data enhancement. If the
threshold is too large, it cannot increase the rich-

ness of words in the sentence and introduce the
required noise, while if the threshold is too small,
it will lead to the loss of important feature words
in the sentence. Therefore, we get the model’s
performance under different thresholds through ex-
periments, which are shown in the results section.

4 Experimental setup

In this work, our model accepts input data derived
from given train data, while the model’s output is
the probability of binary classification(sexist or not
sexist). The training data consists of 14,000 entries
in English, of which 3,398 are sexist (Kirk et al.,
2023).

In this task, we divide all tagged data into three
parts, one accounting for 90% for training(train),
one accounting for 5% for verification(dev), and
one accounting for 5% for testing(test). In addition,
the data used in the unsupervised learning setting
is derived from the dataset for training augmented
by the previously mentioned data augmentation
approach, which has 14,000 examples.

In the parameters setting, it is appropriate to set
the learning rate at 1e-5, and we use a batch size of
20 for the supervised loss and use a batch size of 40
for the unsupervised loss. Another superparameter
about the temperature in softmax function is set
to 0.8 for our experiment. If the focal loss is used
as supervised loss, we recommend setting the
parameter gamma at 2.

Because the original training data contains some
unnecessary characters and emoji expressions, we
performed a general data cleaning operation before
using the data for training, and all the related code
has been included in the project file uploaded to
GitHub.

5 Results

In contrast to our method, we trained a baseline
model which only utilizes the supervised learning
method with cross entropy as a loss function, but
it uses the same model structure as that used in
our method.According to official requirements, we
adopt macro F1(Ave F1 called in Figure 2) as eval-
uation metric to present the results.

In this task, we compare the results with and
without our method, and compare the effect of focal
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loss and cross entropy loss on our method. Our
method scored 0.8180 in task A, ranking 57 in all
the teams. All results are shown in Table 1.

Table 1: results for main strategy

score for CE  score for FL
0.8004 X
0.8180

baseline
our 0.8108

In addition to showing the macro F1 score ob-
tained through our method, we also want to show
the impact of different threshold selection on the
model performance, and the degradation of perfor-
mance caused by using unlabeled data from Gab
and Reddit for the model trained by consistency
training approach.

Table 2: results of using labeled data and using unla-
beled data from gab and reddit

score for CE  score for FL

labeled data 0.8104 0.8180
unlabeled data 0.7855 0.7933
baseline 0.8004 X

The macro F1 score of the baseline in Table 2
is identical to the one in Table 1, and we put it
here to show that the results of using unlabeled
data from Gab and Reddit are not only inferior to
those of using labeled data, but even worse than
the baseline model.

We tested some different thresholds, crucial for
the data augmentation strategy, and found that 0.8
is the optimal threshold corresponding macro F1
score is 0.818. It is shown as follows:

0.82 0.818

0815
0g1  0.8086

08112 08104
0.8091 0.8089

_, 0805 0.8042
b 0.80040-8005
o 08 07972
=
< 0795
0.79
0.785
0.5 0.6 0.7 0.8 0.9
Threshold
CE ' FL

Figure 2: macro F1 score corresponding to different
threshold

6 Conclusion

Compared with the baseline model, we use the
semi-supervised consistency training framework
and the data-augmented method of synonym re-
placement based on TF-IDF, which has signifi-
cantly improved model performance from 0.8004
to 0.8180. In the future, we will explore differ-
ent data augmentation strategies to provide more
high-quality samples for consistency training, and
research how to design better loss functions for
consistency training and more training skills.
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