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Abstract
This paper describes our fine-tuned pretrained
language model for task 9 (Multilingual Tweet
Intimacy Analysis, MTIA) of the SemEval
2023 competition. MTIA aims to quantitatively
analyze tweets in 6 languages for intimacy, giv-
ing a score from 1 to 5. The challenge of MTIA
is in semantically extracting information from
code-mixed texts. To alleviate this difficulty,
we suggested a solution that combines attention
and memory mechanisms. The preprocessed
tweets are input to the XLM-T layer to get sen-
tence embeddings and subsequently to the bidi-
rectional GRU layer to obtain intimacy ratings.
Experimental results show an improvement in
the overall performance of our model in both
seen and unseen languages.

1 Introduction

Intimacy involves lots of social information (e.g.,
social norms). (Pei and Jurgens, 2020) By evaluat-
ing the intimacy score of tweets crawled on social
media sites like Twitter quantitatively, it is possi-
ble to mine more meaningful social information.
MTIA aims to build a sentiment analysis model
(or system) to predict the intimacy scores, rang-
ing from one to five, of tweets in a Twitter dataset
containing ten languages, including English, Span-
ish, Portuguese, Italian, French, Chinese, Hindi,
Dutch, Korean and Arabic. Among those ten lan-
guages, the first six are observable (i.e., appear dur-
ing training), and the rest are unobservable (used
for zero-shot learning).

Tweets abound with online slang, emojis and
face characters, which usually contain extra inti-
mate thoughts. Thus, it is critical to extract seman-
tic information from those unconventional texts.
However, many accessible pre-trained models (e.g.,
XLM) lack consideration of non-traditional text in
the training process. The non-traditional text needs
elimination to de-noise when we perform transfer
learning on these models. Another feasible ap-
proach is to convert these non-traditional symbols

to conventional words. However, the extraction of
information from face characters remains a chal-
lenge.

Fortunately, we can perform transfer training us-
ing the XLM-T model (Barbieri et al., 2021) trained
on the Twitter dataset, thus avoiding information
loss in the symbolic text. Additionally, we sug-
gest a better way to link bidirectional GRU (Cho
et al., 2014) layers at the XLM-T. The approach,
which combines attention and memory mecha-
nisms, is inspired by the analogy to humans. We
will demonstrate experimentally that this measure
enhances the model’s overall performance, both
seen and unseen text. Our model achieved 13/45
places in terms of overall performance in the leader-
board, with both Dutch and Arabic ranking fourth.
The code will be available at https://github.
com/cskujou/tweet-intimacy.

The roadmap for this paper is as follows. Section
2 describes the work related to sentiment analysis.
Section 3 describes the architecture of our model.
Section 5 reports the experimental results. Section
6 concludes the paper.

2 Related Works

In the past, researchers have used lexicon-based
methods and machine-learning approaches for sen-
timent analysis. (Wankhade et al., 2022) Since
then, the performance of sentiment analysis tasks
has significantly increased because of the develop-
ment of deep learning algorithms. CNN (LeCun
et al., 1998), LSTM (Hochreiter and Schmidhuber,
1997), and GRU (Cho et al., 2014) are examples
of deep learning models. Wang et al. (2022) pro-
posed a contextual sentiment embedding model
that can distinguish the meaning of the same word
in different contexts and improve the performance
of the sentiment task. Recently, by resolving the
issue of long-distance dependency, BERT-based
large-scale pre-training models achieved a signif-
icant advancement in sentiment analysis (Zheng
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Figure 1: Model architecture of XLMT-GRU

et al., 2022; Bai et al., 2022). Early multilingual
NLP models included mBERT (Devlin et al., 2018),
XLM (Conneau and Lample, 2019), and mBART
(Liu et al., 2020). Goyal et al. merged the XLM
and the RoBERTa model to create the more potent
XLM-R (Conneau et al., 2020). Barbieri et al. ob-
tained the XLM-T using an identical architecture
to the XLM-R, trained on the Twitter dataset. The
XLM-T has a significant improvement in its ability
to extract symbolic information.

3 Model Description

The XLM-T model (Barbieri et al., 2021) was ap-
plied as the baseline model. Moreover, we connect
two more bidirectional GRU layers on top of XLM-
T to get the improved model called XLMT-GRU.
Figure 1 illustrates its architecture. We’ll go into
more detail about this model in the following para-
graphs.

3.1 Preprocess

Preprocessing can help to reduce the amount of
bias in the model, leading to fairer and more accu-
rate results. Notice the presence of the username in
the dataset, whose pattern is a token beginning with
"@". We eliminate all usernames after preprocess-

ing since we empirically think they are unre-lated
to intimacy. Additionally, the presence of a user-
name may interfere with predictions. For ex-ample,
a username token “@love_jenny” may increase the
intimacy of a sentence. We will maintain each
individual "@" character and only remove those
whose token length is more than one since the "@"
character may also be used to represent the word
"at".

3.2 Tokenizer
A tokenizer splits a text into tokens, which are
then used by the language model to generate re-
sponses. SentencePiece (Kudo and Richardson,
2018), a language-independent tokenizer, is used
by XLM-T. A sentence of any language can be
broken up into smaller pieces efficiently by using
it. It accomplishes this by combining the BPE and
unigram algorithms. The unigram model assigns
a probability to each word and presumes that each
is independent. The probability is calculated using
the maximum likelihood estimation method, which
assumes that the probability of each word is equal
to the number of times it appears in the corpus di-
vided by the total number of words in the corpus.
Mathematically, this can be expressed as:

P (w) =
Count (w)

N
,

where P (w) is the probability of a given word w,
Count(w) is the number of times the word appears
in the corpus, and N is the total number of words in
the corpus. The BPE algorithm examines at the fre-
quency of each subword in the corpus and assigns
a single token to the most frequent subwords. This
process is repeated until no byte pair appears more
than once in the vocabulary. The Sentence-Piece
algorithm is a modification of the BPE algorithm
that adds a smoothing factor to the probability cal-
culation, which makes the model more robust to
unseen input. Also, SentencePiece has a parameter
that allows users to specify the number of tokens
they want to generate.

A statement like "Using SentencePiece for tok-
enization." would be split up into subword units
like [’_U’, ’sing’, ’_Sent’, ’ence’, ’Pie’, ’ce’, ’_for’,
’_to’, ’ken’, ’ization’, ’.’, ’_’]. Note that the charac-
ter "_" is not an underscore, but a Unicode character
with the code value "U+2581", indicating the be-
ginning of a sentence or a space. XLM-T has a
vocabulary size of 250K and can convert tokens
into their corresponding IDs. Subword information
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can be extracted efficiently using SentencePiece.
As a result, the language model can comprehend
the statement more clearly and make a more accu-
rate sentiment analysis.

3.3 XLM-T Model
The main advantage of using pre-trained models
is that they reduce the cost and effort required
for deep learning since they eliminate the need
to spend time and money gathering and cleaning
data when training a model from scratch. Addi-
tionally, pre-trained models typically provide su-
perior results because they already have optimized
weights and can converge faster. The XLM-T is a
pre-trained model that performs superiorly on mul-
tilingual natural language processing tasks. It con-
sists of an embedding layer and twelve transformer-
based encoding layers, each with 768 hidden units
and 12 attentional heads. The most important
among them is the encoding layer. Each encod-
ing layer comprises two sublayers: a multi-head
self-attention layer and a feed-forward layer.

Each token is converted into a word embedding,
while the position of the tokenizer in the sen-tence
is converted into a positional embedding. The first
layer of encoding receives the sum of these two em-
beddings and feeds its output to the second layer,
then the second layer feeds its output to the third
layer, and so on. In the end, the token passes
through 12 encoding layers, resulting in a vector
of length 768. The main advantage of XLM-T is
that it is trained on the Twitter dataset, in line with
MINT. Thus, XLM-T is better suited to unconven-
tional text, particularly the semantics of emojis.

3.4 Bidirectional GRU
Gate Recurrent Unit (GRU) can learn representa-
tions from both the past and future time sequences
to capture long-term dependencies, and it can help
to reduce the vanishing and exploding gradients
issue. In comparison with the LSTM, the GRU
has fewer parameters, resulting in faster training
and less data. Two GRUs make up a bidirectional
GRU, also known as a BiGRU. One processes the
input moving ahead, while the other moves back-
wards. GRU comprises two gates: the update gate
and the reset gate. The update gate instructs the
model on which parts of the input are important or
insignificant, whereas the reset gate instructs the
model on how to keep track of the context and how
much of the previous state to pass on to the next
step. By doing this, the model can capture long-

term dependencies in both directions. Finally, the
output values of the two GRUs are concatenated
and used as the bidirectional output. For instance,
input a token of length N and then BiGRU will
output a matrix of 2H×N , where H is the number
of hidden cells in BiGRU.

3.5 Linear Layer
The goal of the linear layer is to transform the
BiGRU result into a scalar. Due to the GRU output
being a sequence, we concatenate the first and last
outputs to obtain a vector of length 4H . A linear
layer with 4H hidden cells is then used to translate
the vector into a value.

The loss function in our model is the MSE func-
tion. Assume that the actual value is y and the
model’s predicted value is ŷ, where i is the index.
Then the MSE can be calculated by the following
formula.

1

n

n∑

i=1

(y − ŷ)2,

where n is the size of training set.

4 Experimental Setup

In this section, we first introduce the dataset and
the evaluation metric and then go over the model
implementation detail. Next, we demonstrate the
improvement of our model over the baseline model
through experiments. Further, we will include two
models for comparison purposes.

• XLM-R: XLM-RoBERTa-base model

• XLMR-GRU: Similar structure to the XLMT-
GRU, except that the XLM-T layer has been
replaced by the XLM-RoBERTa-base.

The experiments are divided into two parts. The
first part reveals the performance of our model on
the observable language, while the second part
shows the performance on the unobservable lan-
guage.

4.1 Datasets
The dataset used for the experiments is the MINT
provided by Pei et al. (Pei et al., 2022) There are
13,384 tweets in the MINT, and there are tweets in
ten different languages. Table 1 lists the number
of tweets in each language. The model will be
trained using the first six languages in the table, and
the final four languages will be used as test data
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Language # Train # Total Avg Len Vocab
English 1,587 1,984 19.64 8,056
Spanish 1,592 1,991 20.07 7,938
Portuguese 1,596 1,996 17.44 6,346
Italian 1,532 1,916 18.13 7,383
French 1,588 1,981 20.02 6,987
Chinese 1,596 1,996 27.46 9,928
Hindi 0 280 28.80 4,882
Korean 0 411 27.40 4,068
Dutch 0 413 19.82 5,183
Arabic 0 416 23.71 4,421
Total 9491 13,384 36,90 4,4971

Table 1: Sample size of the MINT dataset

to evaluate the performance of zero-shot learning.
We split the training set in the ratio of 8:2 into
a training set and a development set for the fine-
tuning phase. Only the training set is used to train
the model of different hyperparameters. And we
choose the model that outperforms the others on
the development set.

4.2 Evaluation Metrics

MTIA requires the model to output a number be-
tween one and five as a predictor of the intimacy
score, where one means not intimate and five means
most intimate. We will use Pearson’s r as an eval-
uation metric of model performance. The closer
this indicator is to 1, the more closely the model’s
prediction resembles the actual number, indicat-
ing a higher degree of accuracy. The formula of
Pearson’s r is as follows.

r =

∑m
i=1(ŷi − ¯̂y)(yi − ȳ)√∑m

i=1(ŷi − ¯̂y)2
∑n

i=1(yi − ȳ)2
.

4.3 Implementation Details

To implement the entire model, we used the trans-
former library from the Hugging Face community
and the PyTorch deep learning framework. The
pre-training parameters of the model are twitter-
xlm-roberta-base developed by cardiffnlp. Regard-
ing the hyperparameters, we keep the parameters
of XLM-T as default (i.e., twelve encoding layers,
768 hidden units and 12 attention heads). There are
two bidirectional GRU layers containing 256 hid-
den units. The dropout ratio between the XLM-T,
BiGRU and linear layers is 0.1. We use the Adam
optimizer to train the model. Adam can often con-
verge faster than other algorithms, and it helps to
mitigate the weight decay problem. The learning
rate is 5e-6, the number of epochs is 3, the size of

(a) Seen Language

(b) Unseen Language

Figure 2: Performance of XLMT-GRU

the batch at training is 8, and the size of the batch
at evaluation is 16.

4.4 Comparative Results

Table 2 and Figure 2 (a) show the performance of
models on seen languages. Note that XLMT-GRU
greatly enhances the model’s overall performance
in the seen languages by significantly increasing
prediction accuracy in both English and Spanish.
On the other hand, the XLMR-GRU also signif-
icantly outperforms the XLM-R, confirming the
GRU layer’s capability to boost the performance
of the XLM model. We observe that XLM-T out-
performs XLM-R in general. It motivates us to be-
lieve that pre-trained models and tasks should cor-
respond as closely as possible, particularly for the
dataset. To our disappointment, the performance of
XLM-T on Chinese is somewhat weakened. This
is because the Chinese text in the Twitter dataset
is relatively small, roughly one thousandth the size
of the English text. Moreover, the Pearson’s r be-
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Model English Spanish Portuguese Italian French Chinese Seen
XLM-R 0.593 0.645 0.572 0.662 0.591 0.700 0.638
XLMR-GRU 0.636 0.662 0.601 0.671 0.644 0.735 0.670
XLM-T 0.689 0.710 0.661 0.711 0.687 0.687 0.701
XLMT-GRU 0.711 0.739 0.661 0.710 0.694 0.687 0.710

Table 2: Performance in seen language

Model Hindi Dutch Korean Arabic Unseen
XLM-R 0.228 0.585 0.402 0.456 0.353
XLMR-GRU 0.205 0.621 0.342 0.536 0.375
XLM-T 0.209 0.595 0.344 0.613 0.400
XLMT-GRU 0.185 0.645 0.352 0.657 0.435

Table 3: Performance in unseen language

tween our model’s predictions and the actual values
is 0.7109 on the test set and 0.7064 on the develop-
ment set. The similarity between the two numbers
suggests that our model is not overfitting.

Table 3 and Figure 2 (b) show the performance
of models on unseen languages. Note that the
XLMT-GRU’s performance in Hindi has regressed.
However, there is a significant improvement in per-
formance in Dutch and Arabic. Thus, our model
outperformed the baseline model on zero-sample
learning. The same results can also be obtained by
comparing the XLMR-GRU with the XLM-R. To
explain why the performances of zero-shot learn-
ing results are so different, we analyze them in
terms of linguistic similarity. First, Dutch and Por-
tuguese are both Romance languages and share
several similarities in terms of grammar, syntax,
and vocabulary. Second, the typology and script of
Arabic differ from that of English, but the represen-
tations are quite similar. However, Hindi and the
six seen languages have very different grammati-
cal rules and writing systems. Finally, the Korean
language has been influenced by Chinese and there-
fore performs slightly better than Hindi. However,
Korean is an agglutinative language and Chinese
is an analytic language, and they have different
grammar and morphology. Those facts support our
experimental results: all models performed much
better in Arabic and German than in Hindi and Ko-
rean. Figure 3 illustrates the prediction errors of
the XLMT-GRU model in various languages. The
horizontal coordinate represents the difference be-
tween the predicted and actual values, while the
vertical coordinate represents the probability den-
sity. Notice that the expectation of the error on

Figure 3: Probability Density of Prediction Error

the seen languages is close to 0. The maximum
deviation value is around 1.8. On the unseen lan-
guages, the expectation deviates significantly from
0. The larger the offset value, the worse the pre-
diction. Our model underestimates the intimacy of
Hindi and Korean and slightly overestimates the
intimacy of German and Arabic. Comparing the
two experiments together, we find that integrating
the attention and memory mechanisms results in
an improvement in model performance. This is be-
cause GRU converges more quickly on small data
sets and tends to outperform a simple linear layer.

5 Conclusion

In this paper, we study the multilingual intimacy
analysis task. We attempted to combine XLM-T
and BiGRU and found that the overall performance
of our model outperformed the baseline model.
Our model ranked 13th on the leaderboard and
11th on unobservable languages. Combining at-
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tentional and memory mechanisms can boost the
performance of our model for sentiment analysis
on small datasets. In the future, we will also try to
integrate other models (e.g., TreeLSTM), mainly to
complement the shortcomings of our current model
on Hindi.
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