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Abstract

Neural machine translation (NMT) for low-
resource local languages in Indonesia faces sig-
nificant challenges, including the need for a rep-
resentative benchmark and limited data avail-
ability. This work addresses these challenges
by comprehensively analyzing training NMT
systems for four low-resource local languages
in Indonesia: Javanese, Sundanese, Minangk-
abau, and Balinese. Our study encompasses
various training approaches, paradigms, data
sizes, and a preliminary study into using large
language models for synthetic low-resource lan-
guages parallel data generation. We reveal spe-
cific trends and insights into practical strategies
for low-resource language translation. Our re-
search demonstrates that despite limited com-
putational resources and textual data, several of
our NMT systems achieve competitive perfor-
mances, rivaling the translation quality of zero-
shot gpt-3.5-turbo. These findings significantly
advance NMT for low-resource languages, of-
fering valuable guidance for researchers in sim-
ilar contexts.

1 Introduction

Neural Machine Translation (NMT) holds a crucial
role for local languages in Indonesia, supporting
language documentation (Abney and Bird, 2010),
native language preservation (Bird and Chiang,
2012; Costa-jussà et al., 2022), and bridging so-
cioeconomic gaps (Azzizah, 2015). However, chal-
lenges unique to low-resource languages have hin-
dered progress in this field (Aji et al., 2022). Our
work addresses these challenges for four prominent
local languages in Indonesia: Javanese, Sundanese,
Minangkabau, and Balinese.

Impressive NMT advancements often come from
well-resourced entities (i.e., Google’s PaLM2 (Anil

§Equal contributions.

et al., 2023), OpenAI’s gpt-3.5-turbo (Brown et al.,
2020), Facebook’s NLLB-200 (Costa-jussà et al.,
2022)), focusing primarily on high-resource lan-
guages like English. This phenomenon highlights
a research gap for languages with limited resources
in data availability and computing power. For in-
stance, benchmark NMT systems like NLLB-200
(Costa-jussà et al., 2022) rely on substantial com-
puting power, a luxury many researchers lack, es-
pecially those working with local Indonesian lan-
guages (Cahyawijaya et al., 2022). This hampers
progress due to the difficulty of gauging whether
a new approach, method, architecture, or data aug-
mentation would help improve model performance.

In this work, our contribution is a replicable
benchmark of NMT systems for these local In-
donesian languages trained on publicly available
data and tested on the publicly available FLORES-
200 dataset. We prioritize accessible computing
resources. Our base cross-lingual (Conneau and
Lample, 2019) XLM model uses only a modest
compute setup. It is trained with only two lan-
guages at a time and on a single GPU with at most
48GB of memory, which we believe is within the
reach of most researchers in this domain. We also
only use publicly available data sources to train,
including the NusaCrowd repository of Indonesian
languages (Cahyawijaya et al., 2022) and parsed
wikidumps results 1. Extending prior work, such as
(Winata et al., 2023), we benchmark NMT models
on multiple domains.

In addition, in a preliminary study, we explore
the impact of using gpt-3.5 (Brown et al., 2020)
for synthetic low-resource language data genera-
tion to augment training. We also investigate code-
switching’s potential (Kuwanto et al., 2021) for
improving low-resource language NMT that was

1Wikidumps Page

https://dumps.wikimedia.org/
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previously unexplored for Indonesian languages.

2 Related Work

2.1 NMT Benchmarks for Low-resource
Local Languages in Indonesia

Neural Machine Translation (NMT) benchmarks
are pivotal in documenting and preserving low-
resource local languages like those in Indonesia.
Prior works (Costa-jussà et al., 2022; Cahyawijaya
et al., 2022; Winata et al., 2023) have contributed
to the creation of these NMT Benchmarks in two
significant ways: (1) the creation and compilation
of datasets accompanied by (2) exploration and
evaluation of different methodologies.

Costa-jussà et al. (2022) focused on develop-
ing NMT Benchmarks for low-resource languages.
Their NLLB-200 model supports 200+ languages
with more than 40K translation directions. Among
these 200+ languages, some are local languages in
Indonesia. They obtain state-of-the-art results for
many translation directions through massive data
collection efforts and computing resources.

Similarly, Winata et al. (2023) also collects a
multilingual dataset for both machine translation
and sentiment analysis for ten local languages in
Indonesia. They use the collected dataset to cre-
ate a benchmark for both tasks, obtaining impres-
sive results in the machine translation tasks for the
review domain by fine-tuning pre-trained models.
Winata et al. (2023) also shows that fine-tuning a
non-English-centric pre-trained model on local In-
donesian languages outperforms its English-centric
counterpart for the machine translation task.

However, it is essential to recognize that the
NMT benchmark created by Costa-jussà et al.
(2022) is challenging to replicate. Many re-
searchers and institutions, including top Indonesian
universities (Cahyawijaya et al., 2022), do not have
access to massive compute resources or extensive
and proprietary training data required to train the
NLLB-200 models. Meanwhile, the NMT bench-
mark created by Winata et al. (2023) is limited only
to the review domain. These leave a research gap
that needs to be filled by benchmark NMT models
that are replicable and cover more general domains.

2.2 High-resource vs Low-resource NMT

Unlike low-resource NMT systems (where either
the source or target language is a low-resource lan-
guage), NMT systems for high-resource languages
have achieved impressive results (Costa-jussà et al.,

2022). Even with the progress achieved by the
grassroots movement mentioned in the previous
section, the performance gaps are wide. This phe-
nomenon is due to research in the field of NMT
and NLP being dominated by English and other
major languages, which means that more efforts
have significantly been put into developing lan-
guage technologies for these significant languages,
and more data have been collected and made avail-
able for these languages (Akhbardeh et al., 2021;
Kocmi et al., 2022). This means that while low-
resource NMTs face problems no longer found in
high-resource NMTs, insufficient resources and at-
tention are being allocated.

One significant issue NMT systems face is the
pivotal role parallel data plays in model perfor-
mance (Koehn and Knowles, 2017). By definition,
low-resource languages have little to no parallel
data. One problem that negatively impacts the
model performance is out-of-vocabulary (OOV)
occurrences (Aji et al., 2022; Wibowo et al., 2021),
where the model needs to see a token more to learn
what it means. While this issue exists even in high-
resource languages, the rate of occurrence for low-
resource languages is substantially higher. How-
ever, usage of byte pair encoding (BPE) (Sennrich
et al., 2016b) is capable of alleviating this issue
to some degree (Lample et al., 2018b; Yang et al.,
2020).

While previous research has made noteworthy
strides in addressing out-of-vocabulary (OOV) oc-
currences, the most effective solution continues
to be expanding available training data. However,
building textual resources for translation tasks ne-
cessitates a significant investment of money, time,
and expertise. Because of this, current research
increasingly centers on finding innovative ways to
augment the training of NMT models.

2.3 Augmenting Training for NMT

To combat the issue of data starvation, many re-
searchers aim to utilize monolingual data to train
NMT systems (Lample et al., 2018a; Artetxe et al.,
2018; Conneau and Lample, 2019) and find ways to
generate more training data, either comparable or
synthetic data. Comparable data are extracted using
various bitext retrieval methods (Zhao and Vogel,
2002; Fan et al., 2021; Jones and Wijaya, 2021;
Kocyigit et al., 2022), multimodal signals (Hewitt
et al., 2018; Rasooli et al., 2021), dictionary- or
knowledge-based approaches (Wijaya and Mitchell,
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2016; Wijaya et al., 2017; Tang and Wijaya, 2022);
while synthetic data are created and utilized ei-
ther through innovative training data augmentation
(Kuwanto et al., 2021), utilizing automatic back-
translation (Sennrich et al., 2016a; Wang et al.,
2019), or even outright generating synthetic data
using generative models (Lu et al., 2023), which
has gained increasing attention by the community
lately due to the advancement of large language
models (LLMs).

Both Artetxe et al. (2018) and Lample et al.
(2018a) show that NMT systems can be trained
using only monolingual data while achieving im-
pressive results. Conneau and Lample (2019) then
create the XLM architecture, which allows NMT
systems to be traine using monolingual and parallel
data. Afterward, (Kuwanto et al., 2021) exploits
the cross-lingual nature of the XLM models by cor-
rupting the monolingual data using code-switching,
which makes a single training instance contain mul-
tiple languages. The result is an improvement in the
model’s performance for low-resource translation.

In addition, prior works also focus on obtain-
ing synthetic training data by turning monolingual
data into parallel data through automatic back-
translation (Sennrich et al., 2016a) or by using
LLMs such as the gpt-family models (Brown et al.,
2020) that have been gaining popularity in recent
years in many fields (Lu et al., 2023). While back-
translation has evolved, becoming a prominent
method in the field of NMT (Artetxe et al., 2018;
Conneau and Lample, 2019), using LLMs to gener-
ate synthetic data has yet to be thoroughly explored.
This trend of using generative AI to generate syn-
thetic training data displays initial potential, con-
sidering their remarkable performances compared
to the state-of-the-art in machine translation (Zhu
et al., 2023). However, further research with ab-
lation studies and the inclusion of more language
coverage is still needed.

3 Methodology

In this section, we outline our methodology for
creating a replicable NMT benchmark for four
Indonesian languages: Javanese (jv), Sundanese
(su), Minangkabau (min), and Balinese (ban). We
aim to systematically explore different training ap-
proaches and paradigms for NMT while maintain-
ing a consistent base architecture (XLM), fixed
hyperparameters, and controlled computing envi-
ronment. Our compute environment is given a strict

upper bound, in which a total of 48 GPU Hours
from a single GPU for each model training, totaling
up to 96 GPU Hours for NMT systems utilizing
pre-trained language models. We also limit the
memory of the GPU used to a maximum of 48 GB.

3.1 Training Approaches
We employ three primary training approaches to
build our NMT models:

From Scratch (Scratch): In this approach, mod-
els are trained from the ground up without any re-
liance on pre-existing pre-trained language models.
This approach acts as a baseline and allows us to
gauge the performance of the models when trained
from scratch.

Pre-trained Cross-Lingual (PreXL): Here, an
NMT model utilizes a pre-trained cross-lingual
model (XLM) (Conneau and Lample, 2019) on
two sets of monolingual data. One of the sets is
the Indonesian monolingual data, and the other is
the low-resource local language monolingual data.
This provides a strong starting point for the NMT
by initializing the model with knowledge from the
target and source languages. Therefore, each lan-
guage pair in this work is given its own respec-
tive model. The number of pre-trained models for
PreXL equals the number of language pairs in our
work, which is four.

Code-switched Pre-trained Cross-Lingual
(CodeXL): This approach involves pre-training the
language model using additional augmented data
from the two sets of monolingual data and a bilin-
gual dictionary through code-switching, explained
later in section 3.6. Code-switching allows for a
bilingual context within each training instance. The
pre-trained model is then fine-tuned for translation.
The tasks used to fine-tune CodeXL and PreXL
depend on the training paradigm used (section 3.2.
The number of pre-trained models for CodeXL is
the same as PreXL, which is four.

We chose the XLM architecture due to its modest
compute resource requirements and its capability
of cross-lingual language modeling. Moreover, the
architecture is widely used for many low-resource
language pairs and shows impressive results despite
its modest size (Wang et al., 2019). We use Masked
Language Modeling (MLM) (Devlin et al., 2019)
to pre-train all the XLM models.

3.2 Training Paradigms
Additionally, we also explore two training
paradigms, each influencing how the NMT models
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learn and what data are used for training:
Unsupervised NMT (Unsup): This paradigm

trains the NMT system using only monolingual
data of the source and target language. Utilizing
both denoising-autoencoding (Vincent et al., 2010)
and automatic back-translation (Sennrich et al.,
2016a) to train the NMT system. Note that even
though CodeXL utilizes a bilingual dictionary, it
does not use any parallel data during pre-training.

Semi-supervised NMT (Semisup): This
paradigm trains the NMT system using both mono-
lingual data and parallel data of the source and
target language. Monolingual data are utilized for
training NMT by automatic back-translation.

We employ these shortened terms throughout
our experiments to refer to the respective training
approaches and paradigms. Our results indicate
that the performance of each combination of ap-
proaches and paradigms on the evaluation dataset
depends heavily on the amount of available data
for the language: Unsup paradigm works better for
very low-resource languages. In contrast, Semisup
paradigm performs better when at least 10K paral-
lel data is available (Artetxe et al., 2018). We do not
conduct training using a strictly Supervised NMT
paradigm because prior work has shown automatic
back-translation’s undeniable impact in improving
low-resource NMT systems performance (Sennrich
et al., 2016a).

3.3 Training with Synthetic Data

Following recent trends of using generative AI to
generate synthetic training data (Lu et al., 2023;
Zhu et al., 2023), we explore the impact of syn-
thetically generated data on low-resource language
NMT systems. We define two main approaches
to generating synthetic data: (1) generating par-
allel data using generative AI and (2) translating
monolingual data using an existing model.

To gauge the impact of the synthetically gen-
erated training data, we train NMT systems
with these additional data using the Scratch and
CodeXL training approaches. Scratch is also used
in our preliminary experiments to identify the syn-
thetic data generation approach that would yield
the best empirical results. Once we identify the
best approach, we apply the same synthetic data
generation approach to all our language pairs and
use the generated data to augment the training of
our NMT approach with the Semisup paradigm.

Through the preliminary experiments (reported

in Appendix C), we find that synthetic data gen-
erated using generative AI (gpt-3.5-turbo) has the
most positive impact on training NMT systems.
We generate 5000 parallel sentences for each lan-
guage pair via a zero-shot prompt2: "Generate a
long parallel sentence in SRC and TGT", where
SRC and TGT is the pair of language we want to
generate the sentences in. Appendix C provides
justifications for these choices.

3.4 Fine-tuning Objectives

Denoising autoencoding (DAE) (Vincent et al.,
2010) is a popular training objective for fine-tuning
pre-trained LM for unsupervised MT tasks (Lam-
ple et al., 2018b; Wang et al., 2019) for its ability
to increase the robustness of NMT models.

By utilizing the XLM architecture, our NMT sys-
tem can perform multi-way translation. Thus, we
also utilize automatic back translation (BT) (Sen-
nrich et al., 2016a) during fine-tuning of our NMT
models with Unsup and Semisup paradigms. By
performing back translation using the same model
that is being trained, synthetic parallel data is ob-
tained and used automatically during training.

3.5 Training Data

Lang Mono Para

jv 1.6M 14.3K
su 550K 13.2K
min 282K 17.2K
ban 60K 0.9K

Table 1: Total number of monolingual sentences (Mono)
and parallel sentences paired with Indonesian (Para)
per language

We obtain our monolingual data from multiple
publicly available sources. For Indonesian (id),
we use the 201M monolingual sentences avail-
able from the Indo4B curated dataset (Wilie et al.,
2020). We obtain monolingual data for the local
languages through publicly available data such as
Wikidumps3, cc100 (Conneau et al., 2020), imdb-
jv (Wongso et al., 2021), jadi-ide (Hidayatullah
et al., 2020), and su-emot (Putra et al., 2020). The
amount of monolingual sentences used to train each
language is available in Table 1, with further break-
down available in Appendix A.

2Repository of the data we generate using zero-shot
prompting

3Wikidumps Page

https://github.com/Exqrch/IndonesianNMT/tree/master
https://dumps.wikimedia.org/
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All parallel data we use to train the model are
also publicly available from the NusaCrowd reposi-
tory (Cahyawijaya et al., 2022). We scan the repos-
itory for datasets that contain parallel data of the
local language paired with Indonesian. The amount
of parallel sentences used to train each language
pair is available in Table 1. Our largest language
in terms of monolingual and parallel sentences, Ja-
vanese, is a tiny fraction (almost a 20th and a 500th,
respectively) of NLLB-200 reported sentences for
Javanese. From publicly available resources in
Table 1, we can see that these four languages repre-
sent low-resource languages. A further breakdown
is available in Appendix B.

The sentence counts in Table 1 are after we per-
form filtering on both monolingual and parallel
data. For monolingual data, we remove sentences
that contain less than three words or more than 250
words. We also perform simple filtering for sen-
tences obtained from Wikipedia, including dedupli-
cation, removing HTML tags, removing sentences
with only numbers, removing sentences that do not
start with an alphabet, and removing metadata, bul-
letin points, or number ordering from sentences.
For parallel data, we remove sentences that contain
less than three words or more than 250 words and
remove sentence pairs whose source sentences have
a word count ratio above 1.5 of their translations
following the setup of Ghazvininejad et al. (2023).

3.6 Code Switch

Bilingual 
Dictionary

id

x

A1

A2

B1

B2

C1

C2

Monoid 

Monox 

Monocs 1

Monocs 2

A1 C1 Y Z

B2 L M N

A2 C1 Y Z

B1 L M N

Figure 1: Illustration of generating synthetic data using
code-switch. Using a bilingual dictionary, some words
in each monolingual sentence are translated (i.e., blue
and orange words). The candidate word for translation
is chosen randomly, and not all words will be translated
(green box).

In this paper, code-switching is done by utiliz-
ing the system made by Kuwanto et al. (2021)4.

4Code Switch-based Curriculum Training

Code-switching is used to create synthetic training
data by utilizing a bilingual dictionary. The gen-
erated data is used only during pre-training and is
treated as a third language (labeled cs), where each
training instance contains tokens from the other
two languages. Results obtained by Kuwanto et al.
(2021) imply that this method helps the model by
giving stronger cross-lingual signals, which helps
translation tasks during fine-tuning.

Lang Monoid Monox Monocs

{id, jv, cs} 201M 1.6M 209M
{id, su, cs} 201M 550K 208M
{id, min, cs} 201M 282K 208M
{id, ban, cs} 201M 60K 207M

Table 2: Total number of monolingual training instances
for each language in each NMT system. Monoid,
Monox, Monocs denotes the size of training instance
for Indonesian, regional, and the third language, respec-
tively.

Creating synthetic training data through code-
switching utilizes training data from monolingual
datasets from both languages in the system. By uti-
lizing a bilingual dictionary, obtained and parsed
from Winata et al. (2023)5, each instance of train-
ing data from both monolingual datasets is aug-
mented. Figure 1 illustrates this process, while
Table 2 shows how much augmented training data
is available for each NMT system.

4 Experiment Results

We concentrate our efforts on four language pairs:
id-jv, id-su, id-min, and id-ban. Indonesia (id) is
spoken by approximately 198 million people world-
wide, whereas Javanese (jv), Sundanese (su), Mi-
nangkabau (min), and Balinese (ban) are spoken
by roughly 68.2 million, 32.4 million, 4.8 million,
and 3.3 million people, respectively, according to
(Eberhard et al., 2023). Unsurprisingly, monolin-
gual and parallel data availability for these four
local languages in Indonesia generally follows a
similar pattern. Javanese boasts the most extensive
corpus of monolingual text data, while Balinese has
the smallest. Regarding parallel data, Sundanese
leads the way, closely followed by Javanese, while
Balinese trails behind. Due to the substantial vari-
ation in training data availability, we present our
findings for each local language separately. This
approach allows us to assess the impact of different

5NusaX’s bilingual dictionary

https://gkuwanto.github.io/frontend/
https://github.com/IndoNLP/nusax/tree/main/datasets/lexicon
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Translation Paradigm Turbo Scratch ScratchAUG PreXL CodeXL CodeXLAUG

id-->jv Zero shot 18.91 –.– –.– –.– –.– –.–
Unsup –.– 12.06 –.– 16.94 17.90 –.–
Semisup –.– 13.50 18.29 19.31 21.32 21.18

jv-->id Zero shot 29.97 –.– –.– –.– –.– –.–
Unsup –.– 08.11 –.– 13.73 20.93 –.–
Semisup –.– 12.18 21.36 18.88 26.17 26.23

id-->su Zero shot 16.39 –.– –.– –.– –.– –.–
Unsup –.– 10.42 –.– 14.69 10.68 –.–
Semisup –.– 13.19 15.33 16.22 18.91 18.90

su-->id Zero shot 30.71 –.– –.– –.– –.– –.–
Unsup –.– 08.07 –.– 13.62 10.68 –.–
Semisup –.– 13.55 20.72 21.68 28.06 28.40

id-->min Zero shot 13.71 –.– –.– –.– –.– –.–
Unsup –.– 10.18 –.– 16.03 18.37 –.–
Semisup –.– 22.33 22.59 23.83 26.04 25.18

min-->id Zero shot 28.27 –.– –.– –.– –.– –.–
Unsup –.– 07.88 –.– 12.00 19.43 –.–
Semisup –.– 17.48 25.27 20.93 29.83 30.06

id-->ban Zero shot 14.94 –.– –.– –.– –.– –.–
Unsup –.– 08.28 –.– 11.03 12.70 –.–
Semisup –.– 00.22 00.30 02.63 06.36 09.51

ban-->id Zero shot 26.93 –.– –.– –.– –.– –.–
Unsup –.– 07.13 –.– 10.34 18.05 –.–
Semisup –.– 00.30 00.36 05.35 11.16 17.34

Table 3: Performance of NMT systems for Indonesian (id), Javanese (jv), Sundanese (su), Minangkabau (min), and
Balinese (ban) translations. Turbo refers to gpt-3.5-turbo’s zero-shot translation performance. Zero shot paradigm
indicates translation without training. AUG denotes models trained with synthetic data generated by gpt-3.5-turbo.
Bold values represent the best overall performance, while italicized values indicate the best performance within
each paradigm.

training methods and paradigms while assessing
the influence of training data size.

We conduct experiments using three training
approaches (Scratch, PreXL, CodeXL) and two
training paradigms (Unsup, Semisup). For each
combination of these approaches and paradigms,
four NMT systems are trained (one of each lan-
guage pair mentioned above). In total, there are 24
different NMT systems trained this way.

In addition, we conduct experiments using syn-
thetic parallel datasets. We only generate parallel
training data, so these data do not affect the Unsup
training paradigm. To evaluate the impact of these
synthetic datasets, we employ two distinct training
approaches: Scratch and CodeXL. We denote the
process of training NMT systems with additional
synthetic parallel training data as ScratchAUG and
CodeXLAUG, respectively. These comprise the
remaining 8 NMT systems created in this work,
totaling 32. Since we use gpt-3.5-turbo to generate
our synthetic parallel data in a zero-shot manner,
we also benchmark the zero-shot translation perfor-

mance of gpt-3.5-turbo (Turbo) on our evaluation
dataset.

The results of these experiments (all metrics are
in spm200BLEU, shown in Table 3), reveal a con-
sistent trend: CodeXL approach results in a signif-
icantly better performing NMT systems compared
to Scratch and PreXL. An exception to this pattern
is noted in the id-su language pair when employing
the Unsup training paradigm.

4.1 Javanese
The id-jv language pair is particularly significant
due to its relevance in Indonesia, where approxi-
mately 198 million people speak Indonesian (id),
and Javanese (jv) is spoken by roughly 68.2 million
(Eberhard et al., 2023).

Looking at Table 3, we observe a substantial
gap in translation performance between id→jv and
jv→id, emphasizing the performance asymmetry.
Notably, when training NMT systems using the Un-
sup paradigm, CodeXL consistently outperforms
other approaches for both translation directions,
reinforcing the findings of Kuwanto et al. (2021),
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which highlight the generalization capability of this
approach.

Surprisingly, when we train NMT models using
additional parallel data generated by gpt-3.5-turbo
(CodeXLAUG), we notice a slight decline in per-
formance for id→jv translation compared to our
best-performing model (CodeXL). A more detailed
comparison is discussed in the next section.

4.2 Sundanese

Table 3 shows where id-su differs from the id-
jv language pair. For id-su language pair, the
Unsup paradigm shows a different trend where
CodeXL has a slightly worse performance com-
pared to PreXL in the id→su translation. However,
this trend shifts when using the Semisup paradigm,
with CodeXL regaining its superiority.

Similar to id-jv language pair, an intriguing phe-
nomenon arises when we train NMT models us-
ing additional parallel data generated by gpt-3.5-
turbo (CodeXLAUG) for the id-su language pair.
While this approach does not create a better per-
forming model in id→su translation, it does re-
sult in a slightly better model for su→id. This
trend indicates that the generated synthetic paral-
lel data’s impact heavily depends on the genera-
tive AI’s translation performance. For both id-jv
and id-su language pairs, gpt-3.5-turbo’s zero-shot
translation performance on id→x is worse than
CodeXL for each respective language pair, there-
fore CodeXLAUG does not result in improved per-
formance. Meanwhile, the reverse is true, gpt-3.5-
turbo’s x→id translation performance is better than
CodeXL in x→id direction, hence CodeXLAUG

has a better performance in this direction.

4.3 Minangkabau

The results we obtained for id-min follow a similar
pattern as id-jv. The trend where CodeXL models
performed better than Scratch and PreXL contin-
ues for id-min for both translation directions.

However, unlike id-jv and id-su, using syntheti-
cally generated parallel data to train NMT systems
for id-min (CodeXLAUG) performed better than
CodeXL on the min→id translation. This is sur-
prising because CodeXL performed better than
Turbo on min→id, yet the parallel data generated
by Turbo was able to create CodeXLAUG, which
is a better performing NMT system. This breaks
the previous trends set by id-jv, id-su, and even
id-ban in the later section.

4.4 Balinese

id-ban continues the trend set by the majority of
previous language pairs. Following id-jv and id-
min language pairs, CodeXL consistently has supe-
rior performance compared to Scratch and PreXL.

Additionally, id-ban follows the trend set by
id-jv and id-su, where the use of synthetically
generated parallel data from Turbo creates a
better NMT system compared to others that do
not use them. For id-ban language pair specif-
ically, Turbo’s translation performance is much
higher than CodeXL, and the data Turbo gener-
ated has a significant impact during training, as
seen in CodeXLAUG. The difference in score for
CodeXL and CodeXLAUG differs by 3+ and 6+
spm200BLEU for id→ban and ban→id respec-
tively. This performance difference is much more
significant compared to id-jv, id-su, and id-min,
where the performance difference is less than 1
spm200BLEU. This finding supports the idea that
the generated synthetic parallel data’s impact heav-
ily depends on the generative AI’s translation per-
formance. Moreover, if the initial parallel data
is limited, like in the case of id-ban (only 0.9K),
the addition of synthetic data can greatly improve
performance.

However, Table 3 shows that Unsup training
paradigm created the best performing NMT sys-
tem for id-ban language pair. While it would
not be surprising for Scratch due to the limited
amount of parallel training data, it is surprising
that ScratchAUG does not result in a considerably
better NMT system, as the parallel training data
size becomes 6x its original size (i.e., from 0.9K to
5.9K). This indicates that denoising-autoencoding
plays a more significant role in model performance
than parallel data when the training parallel data is
limited.

5 Conclusion

In this work, we create a replicable NMT bench-
mark under low-resource settings. We comprehen-
sively train and analyze NMT systems for four
low-resource Indonesian local languages: Javanese,
Sundanese, Minangkabau, and Balinese. Our exper-
iments shed light on the impact of different training
approaches, paradigms, data sizes, and generated
synthetic parallel data in low-resource local lan-
guages in Indonesia. In conclusion:

We observe that the CodeXL training ap-
proaches generally create NMT systems with bet-



107

ter performances compared to Scratch and PreXL
approaches. This further strengthens the robust-
ness of the approach suggested by Kuwanto et al.
(2021), where code-switching is used to give a
stronger cross-lingual signal during model pre-
training. Code-switching more positively impacts
translation performance for x→id more than id→x.
For reference, NMT systems created using the
CodeXL training approach and Semisup paradigm
have an average performance of 23.80 and 18.15
spm200BLEU for x→id and id→x respectively.

Furthermore, even after pre-training a language
model using the MLM objective, fine-tuning the
model using the denoising autoencoding objective
might play a more prominent role in extremely
low-resource NMT than just training the model to
be more robust for the translation task. This is
shown in the id-ban language pair NMT systems,
where Unsup created better NMT systems than the
Semisup training paradigm. It is noteworthy that
the addition of 5000 synthetic parallel training data
might not be enough to significantly improve NMT
system performance, as visible in the CodeXL-
Unsup entry compared to CodeXLAUG-Semisup
entry in Table 3, since the resulting parallel data is
still very limited (i.e., less than 6K sentences).

Lastly, we also observe a trend in which genera-
tive AIs can help augment the training process by
generating synthetic parallel data. In most cases,
excluding the id-min language pair, the parallel
data generated by generative AI can impact the
performance of NMT systems to approach or even
outperform the performance of the generative AI’s
translation performance with much less compute
and data resource.

6 Future Work

Along with the above conclusions, our work also
opens several venues for future research. Further
ablation studies are needed to fully understand
the impact of denoising-autoencoding on transla-
tion tasks. Our results indicate that the denoising-
autoencoding objective not only increases model
robustness but may also play a role in cross-lingual
language understanding in extremely low-resource
NMT.

In addition, further investigations into syntheti-
cally generated parallel data quality and diversity
are crucial. We observe a trend where syntheti-
cally generated parallel data from gpt-3.5-turbo
impact the training of NMT systems such that its

performance approaches or even outperforms gpt-
3.5-turbo’s zero-shot translation performance.

7 Limitation

While our work has given insight into NMT sys-
tems for low-resource local languages in Indonesia,
it is essential to note that we have utilized different
GPUs (TitanV, RTX8000, RTX6000, A6000, A40)
with a maximum memory capacity of 48GB for dif-
ferent experiments. These GPU architectures and
memory capacity variations may have influenced
the observed performance. However, it is crucial to
recognize that hardware differences alone cannot
fully account for all the performance gaps observed.
Future research should conduct experiments using
a more standardized GPU setup to understand the
impact of hardware variations better.

Additionally, all of our experiments that include
the utilization of gpt-3.5-turbo are problematic as
it is a closed-sourced model. This causes prob-
lems such as transparency and reproducibility in
the future. Future work should continue perform-
ing ablation studies on open-sourced LLMs.
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A Monolingual Training Data Breakdown

Lang wikidumps cc100 imdb-jv jadi-ide su-emot Total Filter
jv 382K 1.41M 100K 16K 0 1.91M 1.6M
su 220K 387K 0 0 2K 610K 550K
min 282K 0 0 0 0 282K 282K
ban 60K 0 0 0 0 60K 60K

Table 4: Monolingual training data breakdown. Lang denotes the language identifier, Total denotes the total
monolingual sentences for each language, and Filter denotes how many monolingual sentences remain after
filtering, as listed in our Methodology section.

The monolingual data of local languages in Indonesia are obtained from multiple sources, including
parsed wikidumps, cc100 (Conneau et al., 2020), imdb-jv (Wongso et al., 2021), jadi-ide (Hidayatullah
et al., 2020), and su-emot (Putra et al., 2020). Excluding wikidumps monolingual data, which was taken
in December of 2022, all of these sources are obtained from the compilation done by Cahyawijaya et al.
(2022) and was taken in January of 2023. The breakdown for these monolingual data of local languages
in Indonesia is found in Table 4

For the monolingual data of the Indonesian language, we use the Indo4B curated dataset (Wilie et al.,
2020). Excluding the data obtained from Twitter, the number of monolingual Indonesian sentences is 201
million. No sentences were filtered out due to the high quality of the dataset.

B Parallel Training Data Breakdown

Lang su-id min-nlp code-mixed bible nusantara nusax Total Filter
jv 0 0 977 7958 6000 1000 15935 14395
su 3616 0 0 7957 1699 1000 14272 13269
min 0 16371 0 0 0 1000 17371 17260
ban 0 0 0 0 0 1000 1000 997

Table 5: Parallel training data breakdown of the language pair Indonesia and the local language denoted by Lang
(i.e., the entry jv list how much parallel data of the pair ind, jv are obtained from each source). Total denotes total
parallel sentences for each pair of Indonesian and local languages, and Filter denotes how much remains after
filtering, as listed in our Methodology section.

As with our monolingual data breakdown, all of our parallel data were obtained from the NusaCrowd
repository in January 2023. The datasets we use include su-id (Suryani et al., 2015), min-nlp (Koto and
Koto, 2020), code-mixed (Tho et al., 2021), bible (Cahyawijaya et al., 2021), nusantara (Sujaini, 2020),
and nusax (Winata et al., 2023).

C Ablation of Different Methods in Generating Parallel Data

Model id→jv jv→id
text-davinci-003 17.95 26.26
gpt-3.5-turbo 19.10 30.19

Table 6: Zero-shot translation spm200BLEU score of generative AIs on the FLORES200 test set. Results indicate
that gpt-3.5-turbo performs significantly more than text-davinci-003 on zero-shot translation.

We performed exploratory experiments regarding different methods of generating parallel data. As
mentioned in our methodology, we define two main approaches to generating synthetic data: (1) Generating
parallel data using generative AI and (2) Translating monolingual data using an already trained model.

The models we use to generate the parallel data in approach (1) are gpt-3.5-turbo and davinci-text-003.
We limit our exploratory experiment to the id↔jv translation direction. First, we compare the zero-shot
translation performance of these models on the FLORES200 test set, where gpt-3.5-turbo achieved a
considerably higher spm200BLEU score. The full breakdown is available in Table 6. We give each model
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Model Approach id→jv jv→id
Baseline - 12.99 12.29
text-davinci-003 zero-shot 14.86 16.88

ten-shot 14.40 16.82
gpt-3.5-turbo zero-shot 14.95 17.10

ten-shot 15.04 16.87

Table 7: Performance of NMT systems trained from scratch using a Semisup paradigm when the original parallel
data is mixed with synthetically generated data from gpt-3.5-turbo or text-davinci-003. The first row is the baseline
model performance. All BLEU scores are from XLM’s automated BLEU scoring. Bolded entries indicate the model
with the best performance.

the prompt to generate these parallel data: "Generate a long parallel sentence in SRC and TGT". Our
internal experiments show that without the keyword "long", the model will generate short and simple
parallel sentences consisting of regularly occurring words.

Figure 2: Illustration of using LLMs to generate synthetic parallel data. First tested on id-jv language pair, we use
the same pipeline to generate synthetic parallel data for the other language pair.

We conduct these experiments using two approaches: zero-shot generation and ten-shot generation. We
give the model the prompt above without additional context in zero-shot generation. We then parse the
text that has been generated and split it into Indonesian sentences and Javanese sentences. In the ten-shot
generation, we sample 10 parallel sentences in our original training data to feed it as examples to the
model. Figure 2 illustrates this process. The impact these generated synthetic data have on training is
found in Table 7. These performances align with the benchmark results in Table 6, where gpt-3.5-turbo
is better at both translation directions than text-davinci-003. The results in Table 7 show that zero-shot
generation of gpt-3.5-turbo creates parallel data with the most positive impact on NMT system training.
The results shown in Table 7 indicate that few-shot may not have a considerable difference in performance
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compared to zero-shot for LLMs on translation tasks.

Figure 3: Illustration of translating monolingual data using an already trained model. In this work, we choose
gpt-3.5-turbo and our NMT model trained on id-jv language pair using Scratch approach and Semisup paradigm.

Method id→jv jv→id
BT (baseline XLM) 10.35 12.29
BT (gpt-3.5) 13.22 13.80

Table 8: Comparison of additional data generation techniques. BT is for Back translation, in which we sample
sentences from external monolingual corpora and translate them using the model indicated in the parentheses.

Besides prompting gpt-3.5 to generate parallel sentences directly, we also compared it with generating
additional data from translating existing monolingual datasets. We use gpt-3.5 and the baseline XLM
model to translate Wikipedia monolingual sentences. gpt-3.5-turbo is used instead of text-davinci-003
based on the results of the experiments shown in table 6. Our findings show that additional data from
translating monolingual corpus using the baseline XLM model does not yield any significant performance
increase or even hurts it, as shown in Table 8, whereas monolingual corpus translated using gpt-3.5 yields
over 1 BLEU score on the Javanese to Indonesian translation direction.

However, this increase is modest compared to the results shown by directly generating parallel sentences
from gpt-3.5-turbo as additional parallel data. Therefore, we move forward with approach (1). We apply
the same procedure to the remaining language pairs: Sundanese, Minangkabau, and Balinese. Synthetic
data generation is a promising research avenue in which both approaches (1) and (2) should still be
included.

D Hyperparameters

In this work, there are a total of ten combinations of training approaches and paradigms which are:
• Scratch - Unsup
• Scratch - Semisup
• ScratchAUG - Semisup
• PreXL - Pre-training Language Model
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• PreXL - Unsup
• PreXL - Semisup
• CodeXL - Pre-trained Language Model
• CodeXL - Unsup
• CodeXL - Semisup
• CodeXLAUG - Semisup
Across all of these models, nine hyperparameters are shared among them:
• emb_dim: 1024
• n_layers: 6
• n_heads: 8
• dropout: 0.1
• attention_dropout: 0.1
• gelu_activation: true
• batch_size: 32
• bptt: 256
• epoch_size: 200000
Models that are training using the Unsup training paradigm sets the hyperparameter lambda_ae to

0:1,100000:0.1,300000:0.
The hyperparameter max_vocab is set to 200000 for all models trained except models in CodeXL -

Pre-trained Language Model, which uses the default values.
The hyperparameter optimizer is set to adam_inverse_sqrt, beta1=0.9, beta2=0.98, lr=0.0001 for all

models trained except models in CodeXL - Pre-trained Language Model and "CodeXL - Unsup" which
set the value to adam, lr=0.0001.

The hyperparameter tokens_per_batch is set to 2000 for all models excluding all models in CodeXL
and ScratchAUG which set the value to 4000.


