Subregular Tree Transductions, Movement, Copies, Traces,
and the Ban on Improper Movement

Thomas Graf
Stony Brook University
Department of Linguistics
100 Nicolls Road, Stony Brook, NY 11794, USA
mail@thomasgraf.net

Abstract

Extending prior work in Graf (2018, 2020,
2022c¢), 1 show that movement is tier-based
strictly local (TSL) even if one analyzes it as
a transformation, i.e. a tree transduction from
derivation trees to output trees. I define input
strictly local (ISL) tree-to-tree transductions
with (lexical) TSL tests as a tier-based exten-
sion of ISL tree-to-tree transductions. TSL
tests allow us to attach each mover to all its
landing sites. In general, this class of transduc-
tions fails to attach each mover to its final land-
ing site to the exclusion of all its intermediate
landing sites, which is crucial for producing
output trees with the correct string yield. The
problem is avoided, though, if syntax enforces
a variant of the Ban on Improper Movement.
Subregular complexity thus provides a novel
motivation for core restrictions on movement
while also shedding new light on the choice
between copies and traces in syntax.

1 Introduction

Subregular syntax (Graf, 2018; Graf and De Santo,
2019) is a recent research program that explores
whether syntactic dependencies, when modeled
over suitable representations, fall within very re-
stricted classes in the subregular hierarchy of for-
mal (string or tree) languages. The program has
many parallels to subregular phonology (see Heinz
2018 and references therein), which has shown
that phonology is very restricted in its expressivity:
1) well-formedness conditions in phonology are
strictly local (SL), tier-based strictly local (TSL)
(Heinz et al., 2011; McMullin, 2016), or some natu-
ral extension of TSL (Graf and Mayer, 2018; Mayer
and Major, 2018; De Santo and Graf, 2019), and
I1) a large number of phonological mappings from
underlying representations to surface forms are in-
put strictly local (ISL) (Chandlee, 2014; Chandlee
and Heinz, 2018), with only some falling into more
complex classes (Jardine, 2016; Heinz, 2018). The
limited nature of phonology furnishes new learning

289

algorithms and novel explanations of typological
gaps, and subregular syntax seeks to replicate this
success for syntax.

A lot of attention in subregular syntax has been
devoted to the operations Merge and Move in Min-
imalist syntax and Minimalist grammars (Stabler,
1997, 2011). Merge establishes head-argument re-
lations, whereas Move relates a subtree to multi-
ple positions in the structure. Graf (2018) showed
that the constraints that regulate the application of
Merge and Move in the syntactic derivation are SL
for Merge and TSL for Move, which mirrors the
central role of these two classes in phonology. But
Merge and Move are structure-building operations
and thus inherently transductive: a syntactic deriva-
tion is translated into a specific output structure.
Recently, the ISL string transductions from sub-
regular phonology have been generalized to trees
(Graf, 2020; Ji and Heinz, 2020; Ikawa et al., 2020),
and it is fairly easy to see that Merge can be con-
strued as an ISL tree transduction.! However, ISL
tree transductions cannot handle the long-distance
dependencies induced by Move (the long-distance
nature of Move is also why the constraints on Move
are TSL but not SL). An upper complexity bound
on Move exists in the form of deterministic multi
bottom-up tree transductions (Kobele et al., 2007),
but a tighter, subregular bound remains to be estab-
lished.

This paper provides a subregular class of trans-
ductions for Move by enriching (deterministic) ISL
tree-to-tree transductions with a specific TSL mech-

IThe three generalizations in Graf (2020), Ji and Heinz
(2020) and Ikawa et al. (2020) are all distinct and probably
incomparable. Graf (2020) generalizes the context-based def-
inition of ISL in Chandlee and Heinz (2018), Ji and Heinz
(2020) takes as their vantage point the finite-state machine
definition of ISL in Chandlee (2014), and Ikawa et al. (2020)
starts with the logic-based perspective of ISL string trans-
ductions. Despite these differences, all three can handle the
mapping from dependency trees to phrase structure trees mod-
ulo movement. For the rest of the paper, I will use the term

ISL tree transductions to refer to the specific version defined
in Graf (2020).

Proceedings of the Society for Computation in Linguistics (SCiL) 2023, pages 289-299.
Ambherst, Massachusetts, June 15-17, 2023

anism that makes it possible to attach movers to
their landing sites. This is sufficient to implement
a copy-based version of movement, which is com-
monly assumed in Minimalist syntax. Producing
a structure with the correct string yield, however,
requires the ability to distinguish final landing sites
from intermediate ones so that movers can be at-
tached only to the former while the latter are filled
with traces. The extended version of ISL tree trans-
ductions in this paper cannot draw this distinction
in the general case, but it is possible in the special
case where the distinction is lexically inferrable
(in subregular terms, it is SL-1): given a mover m
with a set S := {f1,..., fn} of features that tell
us which movement steps m undergoes, inspection
of S is sufficient to determine which f; is the final
movement step. This is a relaxed variant of the Ban
on Improper Movement (BoIM), and I conjecture
that this output-oriented BoIM is satisfied in all
natural languages.

The paper proceeds as follows. The background
section in §2 starts with a general overview of the
assumed syntactic formalism, in particular feature-
annotated lexical items, dependency trees, and tree
tiers (§2.1). This is followed in §2.2 by a discussion
of the ISL tree-to-tree mappings in Graf (2020),
which are then extended with lexical TSL tests in
§3 to capture basic cases of movement. As we
will see in §4, this is sufficient to attach movers
to all their landing sites. But correct linearization
requires placing each mover only in its final land-
ing site, which is a harder problem and prompts
my conjecture that all languages satisfy the output-
oriented BoIM. A few remaining issues with this
overall system are discussed in §5. While care
has been taken to make the paper as approachable
as possible, it necessarily presupposes a certain
amount of familiarity with subregular linguistics,
in particular subregular syntax. The reader may
want to consult Graf (2022a,b) for a less technical
introduction.

2 Background

2.1 Features, dependency trees, and tiers

Subregular syntax measures the complexity of syn-
tax not over strings but over specific types of tree
representations. Following Graf and Kostyszyn
(2021) and Graf (2022c), I take syntactic deriva-
tions to be encoded in the form of dependency trees
where each node is a feature-annotated lexical item
(LI) in the spirit of Minimalist grammars (Stabler,

1997, 2011).

Definition 1 (Lexical item). Every lexical item is
a member of ¥ x Sel* x Ler* x Cat x p(Lce),
where X is the set of phonetic exponents, Sel is the
set of selector features F+, Ler is the set of licensor
features £1, Cat is the set of category features F~,
and Lce is the set of licensee features £~ . J

Category and selector features (by convention in
upper case) regulate the application of Merge to
establish head-argument relations. Licensor and
licensee features (in lower case) trigger Move, with
licensor features appearing on the target of move-
ment while licensee features mark the phrase that
is moving. The order of features on an LI indicates
the order of the operations in which it participates.
In contrast to standard MGs, licensee features are
unordered so that a mover with licensee features
f1,..., £, targets, for each £, the closest prop-
erly dominating node with £, (1 < i < n). The re-
moval of order for licensee features does not affect
weak generative capacity — this is an easy corol-
lary of the single movement normal form theorem
for MGs (Graf et al., 2016).2 To reduce clutter,
we omit {} for LIs with no licensee features. In
line with MG convention, I use a double colon to
separate the LI’s phonetic exponent from its feature
annotation.

Example. The noun movie corresponds to the LI
movie :: N~ with phonetic exponent movie and cat-
egory feature N~. The empty T-head — commonly
assumed in Minimalist syntax as furnishing the sur-
face position for subjects — is € :: VT nom™T.
This means that after selecting a VP, the empty T-
head provides a landing site for subject movement
via nom™, at which point it becomes a full TP that
can be taken as an argument by another LI. The LI
’s:: NTD'D™ {nom™, wh™ } is a possessive marker
that takes an NP as its complement, a DP as its
specifier, is then selected by another LI with DT,
and finally undergoes two movement steps: subject
movement via nom ™, and wh-movement via wh™.
The order of the two movement steps is not fixed
and depends on whether the closest properly domi-
nating LI with a matching licensor feature carries
nom™ or wh.

Definition 2 (Dependency tree). Let Lex be a fi-

’The definition of LIs above also differs from that of stan-
dard MGs in that it does not allow any licensor features to
appear before any selector features. This is just a matter of
convenience and nothing in this paper hinges on this additional
restriction.

290

nite set of LIs, and Lex(® C Lex the set of all LIs
in Lex with ¢ selector features. The set D of (freely
combined) dependency trees over Lex is defined
recursively: [€ D for all [€ Lex(®, and for all
di,...,d, € Dandl € Lex™, I(d,,...,d;) € D.
If m is the mother of node n and n has exactly ¢
right siblings, we say that n is the (7 4+ 1)-th argu-
ment of m. 3

Example. A dependency tree for a simple VP is
shown below with its corresponding bare phrase
structure tree. Each mother-daughter relation in the
dependency tree encodes a head-argument relation
established via application of Merge.

laughed :: PTDTV™ VP
/\ /\
the :: NTD™ at: DTP™ DP \4
| | — T — T
clown :: N™ me :: D~ the clown laughed PP
PSS
at me

In general, dependency trees have to satisfy ad-
ditional linguistic conditions. The root must carry
category feature C™, and if m’s ¢-th selector feature
is FT, then its i-th argument must carry category
feature F~. These constraints regulate the appli-
cation of Merge and are of little interest for the
purposes of this paper. The constrains on Move,
on the other hand, merit detailed discussion as they
illustrate the use of tree tiers.

Definition 3 (Tiers). Let d € D be a dependency
tree over Lex, and let T' C Lex be a tier alpha-
bet. Given a node z, the predicate T'(z) is true
iff x is an LI in T'. The T-tier of d is defined in
terms of T-dominance (4?), T-mother-of (<), and
T'-left-sibling (<7), which in turn are expressed
in terms of proper dominance in d (<7), reflexive
dominance in d (<*), and the left sibling relation in
d ().
x <t T T +
ryeT(@)ANT(y) ey
Tary ST <ty A-3zlr <z Az <ty
x <pySIz[z<px A z<ap y|A
Iz, 2 [z N <y Az < 2]
In order to ensure that every tier is a tree, we stip-
ulate that there is a unique node x such that ev-
ery node on tier 7' is either identical to x or is

T-dominated by x. We also stipulate that each leaf
is the mother of a distinguished element x. g

Example. The tier alphabet nom of the nom-tier
contains all LIs with nom™ or nom™, and nothing

291

else. Similarly, the tier alphabet wh of the wh-tier
contains all and only those LIs that carry wh™ or
wh™. The corresponding tier mother-of relations
<nom and < are shown in Fig. 1 with dashed and
dotted lines, respectively, for the dependency tree
for Who said that the clown laughed at me. As
shown in the same figure, these tiers can also be
depicted as separate projections of the dependency
tree.

Intuitively, tiers capture a specific kind of rela-
tivized locality (related to but distinct from Rizzi’s
(1990) notion of Relativized Minimality). If z is
the T-mother of y, then x is the closest node that
properly dominates y and belongs to a fixed subset
T of Lex. For movement, each tier factors out all
LIs that are not pertinent to that type of movement.
In order for a dependency tree to be well-formed,
the following two conditions must hold for every
f-tier, where f is some movement type (nom, wh,
and so on): 1) if x carries £, then its tier mother
carries £+, and 11) if carries £, exactly one of
its tier daughters carries £ .

Mathematically, these conditions are expressed
for each tier T" via a licensing function fr that maps
every [€ T to a string language over 1. Tier T’ is
well-formed iff it holds for every node n of T" with
label [and tier daughters dy, ..., d, thatd; - - - d,,
is a string in f().3 For example, if [is an LI with
£, then fr(l) is the set of all strings over 7" that
contain exactly one LI with £~. That every LI with
£~ has a tier mother with £* follows indirectly
from the fact that only LIs with T may have LIs
with £~ in their daughter string.

The complexity of the conditions on Move is
measured in terms of the complexity of the string
languages used in the licensing functions. A con-
straint C' on a set D of dependency trees over Lex
is in the class TSL[TSL] (where TSL is short for
tier-based strictly local) iff there is some 1" C Lex
such that 1) fr maps every [€ T to a TSL-string
language in the sense of Heinz et al. 2011 (“the
daughter strings are TSL”), and 11) for every d € D,
C is satisfied in d iff the T-tier of d is well-formed
(“C is local over tree tiers”). The two constraints
above on movement are TSL[TSL] in this sense
(see Graf and Kostyszyn, 2021).

3The use of a string-based licensing function is necessary
because tree tiers are unranked. There is no upper bound
on how many daughters may have, and hence the licensing
relations between a mother and its daughters has to be modeled
as a licensing relation between a mother and its string of
daughters.

em € TTuhtc™
|
e Vinom™T™
, [

L said: CTDYVC
“"\A AN

I
| I

e VinomtT™
/ |
(\ laughed :: PTDTV™
\\/\
the :: N*D~ {nom~} at: D'P~
| |

clown :: N™ me :: D™

nom-tier wh-tier
X X
| |
e Vinom™T™ e TtwhtC™

y \ - |
who :: D™ {nom™,wh™} that: TTC™ |who: D™ {nom~,wh™} &: Vinom™T~ who: D~ {nom™,wh™}

|
X

\ \
the :: N*D™ {nom™} X

\

X

Figure 1: Left: dependency tree for who said that the clown laughed at me, with dashed lines representing <oy
and dotted lines representing <;,; Middle and Right: corresponding depictions as tree tiers

2.2 ISL tree-to-tree mappings

With our syntactic representations and the notion
of tree tiers firmly in place, it only remains for
us to define deterministic input strictly local (ISL)
tree-to-tree transductions before we start our inves-
tigation of movement as a subregular transduction
in §3.

Deterministic ISL transductions, also called ISL
mappings, were first defined in subregular phonol-
ogy for the string-to-string case (Chandlee, 2014,
2017; Chandlee and Heinz, 2018). The ISL string-
to-string mappings were subsequently generalized
to (non-deterministic) tree-to-tree transductions in
Graf (2020). An ISL tree transduction 7 is specified
by a finite number of rewrite rules. The left-hand
side consists of a tree with one distinguished node
h that is to be rewritten — the rest of the tree just
provides the strictly local context in which this spe-
cific rule must be applied to . The right-hand side
consists of a tree with indexed ports Oy, Oo, ...,
O, (n > 0) such that each 0O; is filled with the
output of 7 for the i-th daughter of h. Figure 2
gives a simple example for mapping a dependency
tree without movement (and with at most two ar-
guments per LI) to its corresponding bare phrase
structure tree — the reader is advised to study this
example carefully before moving on to the formal
definition.

We first put in place some common concepts
from the tree transducer literature. A 3-tree is a
finite tree over alphabet . We assume that all
Y.-trees have a finitely bounded branching factor.
Given a X-tree ¢, each node n in ¢ is given a unique
Gorn address a(n) (Gorn, 1967): a(n) = eif nis
the root of ¢, and otherwise a(n) = ui, where u

292

is the Gorn address of the mother of n and ¢ is the
number of left siblings of n. A X-tree context c is
the result of replacing n > 1 leaves in a >-tree with
distinguished symbols drawn from a set of ports,
which are denoted with O;, 7+ > 1. Given such a
context ¢ and Y-trees or X-tree contexts 1, . . .
C{l 11y, ..
in ¢ with ¢;.

In order to determine the configurations in which
ISL rewrite rules may apply, we introduce the no-
tion of a tree disassembly.

t
R (2]
.,n : ty} is the result of replacing O;

Definition 4 (Tree dissassembly). A disassembly
of tree ¢ at addresses b, bas, ..., bay, is an (n + 2)-
tuple that consists of 1) ¢ with the subtree s at b re-
placed with 01, I1) s with the subtrees at addresses
bay, ..., ba, replaced with Oy, ..., O,, and III)
the subtrees at addresses bay, ..., ba,. J

Example. Consider the tree ¢ below, with each
node followed by its Gorn address in parentheses.

Ae)
—
B(0) D(1) K(@2)
| I
C(00) E(10) G(11) H12)
‘ /\
F(100) 1(120) J(121)

The disassembly of ¢ at addresses 1, 10, and 120
consists of the following trees/contexts:

A D E 1
— T — T |
B 0 K Oy G H F
| S
C Oy J

Next we define what ISL rewrite rules may look
like and how a given rule may apply within a tree.

R I e R e
P P
_ [Oy L 0, F
P
I Oy
Input Individual Outputs Output
laughed :: PTDTV™ VP VP
the:: N*D~ at: DYP~ O 4 DP A\
clown :: N™ me :: DT laughed 0Oy the clown laughed PP
DpP ~
T~ at me
the 0O PP
P
at Dl
clown
me

Figure 2: ISL rewrite rules for converting movement-free dependency trees to bare phrase structure trees (top)
with example (bottom); boxes around nodes indicate which nodes should be rewritten, v is a non-empty string of
selector features, ¢ is a (possibly empty) set of licensee features, and _ matches any node

Definition 5 (ISL rewrite rule). An ISL rewrite
rule is a triple r := (i, a,0) where the input en-
vironment 1 is a Y-tree, a is the Gorn address of
some node in ¢, and the output context o is a Y-tree
context. Suppose w.l.og. that ¢ has exactly n leaf
nodes at addresses aq, ..., a, (n > 1) and let 7’
be the result of replacing each node at address a;
with O; (1 < 5 < n). Then r matches tree t at ad-
dress b iff ¢ has a disassembly (u, ', u1, ... u,) at
addresses b, ba, . . ., ba,, such that both of the fol-
lowing hold: 1) ¢t = w{1 : '{1: uy,...,n:up}},
and 11) for 1 < j < n, the node at address a; in %
has the same label as the node at address ba; in ¢.
A node at address ba in ¢ can be rewritten by r iff

r matches t at address b. _|

Example. Consider a rewrite rule r := (i, a,0),
with ¢ = 0 and 7 as shown below (together with its
counterpart 7'):

i) laughed :: PTDTV™
/\
the :: N*D~ {nom~} at: DTP~
clown‘ N~ 4/) laughed:: PTDTV™
/\
the : NTD™ {nom~} O
o

Note that the ports of 7’ have addresses a; := 00
and ay := 1. We show that ¢ matches the depen-
dency tree ¢ in Fig. 1 at address b = 00100. We
first disassemble ¢ at addresses b, ba; = 0010000,

293

and bags = 001001. This yields four trees/contexts
u, v, U1, uz. For space reason, we only show the
subtree of u rooted in that :: TTC™.

u) that: TTC™ v) laughed :: PTDVTV™
| —
Vinom* T~ the :: N*D™ {nom~} Oy
| |
0, 0,

[

ug) at:: DTP~
\
me ::

u1) clown :: N—
-

As v is identical to ¢/, it holds that t = u{1 : v{1 :
Uty ooy uptt =u{l {1 :ug,...,n:uyt}.
It is also the case that the nodes of ¢ at addresses a;
and as have the same labels as the nodes in ¢ at ad-
dresses ba; = 0010000 and bas = 001001. Taken
together, this means that matches ¢ at address b.
Consequently, r can rewrite as o the node at address
ba = 001000 in ¢, which is the :: N*D~. Note
that if the root of ¢ had a third daughter labeled,
say, maliciously, 1 would no longer match ¢ at any
address.

Definition 6 (Deterministic ISL transduction).
Given a set R of ISL rewrite rules, we say that R
is deterministic iff there are no two rewrite rules
(i1, a1,01) and (ig, az, 02) in R such that 01 # 0y
and there exists a Y-tree ¢t and node n of ¢ such
that n can be rewritten by both rewrite rules.

For each deterministic set R of ISL rewrite rules,

R(t,n) denotes the unique output context o for
node n in tree ¢ (if no such o exists, R(t,n) is un-
defined). We extend this to ¢ in a recursive fashion:
if ¢ contains only node n, then R(t) := R(t,n),
and if ¢ :== n(sy,...,s,) (each s; a X-tree), then
R(t) :== R(t,m){1 : R(t,d1),...,2 : R(t,d.)}.
A tree-to-tree transduction 7 with domain D is de-
terministic input strictly local iff there is a finite
deterministic set R of ISL rewrite rules such that
7(t) = R(t) for all t € D. In this case, we also
call 7 an ISL (tree-to-tree) mapping. g

3 Movement as a subregular
transduction

Move cannot be captured with ISL tree-to-tree map-
pings. The problem is not with the determinism of
those mappings. In the formalism used in this pa-
per, Move is a deterministic operation in the sense
that the landing sites of a mover can be inferred de-
terministically from LIs’ feature annotations (and
as a result the definition of ISL. mappings in this pa-
per can safely avoid many complexities in the def-
initions of non-deterministic ISL transductions in
Graf 2020). But while movement is deterministic,
it is also unbounded — a mover and its target site
can be arbitrarily far apart. Since ISL transductions
must be definable in terms of a finite set of rewrite
rules, and since each rewrite rule (i, a, o) is lim-
ited to the finite structural context given by ¢, ISL
transductions cannot handle such unbounded de-
pendencies. For example, we may want to rewrite
anode n that carries wh™ as a phrase whose spec-
ifier is filled by a wh-mover, but our rewrite rules
provide no means to refer to this mover unless it
happens to be very close to n. In order to capture
movement, ISL rewrite rules must be able to refer
to nodes that can be arbitrarily far away.

Tiers provide a natural solution to this problem.
We already saw in §2.1 that tiers play a key role in
movement — even though movement is unbounded
over dependency trees, it is local over tiers. All we
have to do is to incorporate this tier-based locality
into ISL transductions.

Suppose, then, that we enrich our rewrite rules
with another type of ports, called tier ports. If we
are to rewrite a node n that is part of some f-tier,
then its output context can include f-tier ports. The
left-hand side of rewrite rules now also specify
a specific test, and a tier port can only pick out
the node that passes this test (the node must be
unique!). The use of tier tests in the rewrite rules

294

is why I call this new class of transductions ISL
tree-to-tree mappings with TSL tests.

In this paper, the TSL tests are particularly sim-
ple as each one corresponds to a fixed set of LIs
that pass the test. Just like the licensing function of
TSL in §2.1 could define string languages of vari-
ous complexity levels all the way up to recursively
enumerable, the tests for tier ports can be of arbi-
trary complexity. But at least for movement, the
maximally restricted class of lexical tests (in sub-
regular parlance, SL-1 tests) is sufficient. Hence
this paper restricts itself to the even weaker sub-
class ISL tree-to-tree mappings with lexical TSL
tests.

Let us consider how this system captures simple
cases of movement. To this end, we add a new
rewrite rule to the set in Fig. 2.

D [rrwe] - o

- T
wh:wh™ _ ow
T~
c o

This rule targets C-heads that select a TP and pro-
vide a landing site for wh-movement. Every such
C-head is rewritten as a CP where the complement
is filled by the output of the first daughter in the de-
pendency tree, whereas the specifier is filled by the
output of the unique node x such that the C-head is
the wh-tier mother of = and x carries wh™. This is
sufficient to connect movers to their landing sites.

Rule D uses two new notational devices: dashed
lines for the tier mother-of relation, and tier ports.
The dashed line in D leads to a special node that
starts with the name of a tier (wh in this case), fol-
lowed by a colon, and the set of LIs on this tier
that can be picked out by the tier port 0. Here
wh™ is used as a shorthand for the set of all LIs that
carry wh™. The tier port 0% is to be filled with the
output of the unique node that is a wh-tier daughter
of the node to be rewritten and carries wh™.

In a more elaborate case where the C-head also
attracts some other kind of f-mover, the rule would
look as follows.

A fully worked out example is shown in Fig. 3 for
the sentence who said that, where the subject who

first undergoes subject movement to Spec, TP and
then wh-moves to Spec,CP.

Quite generally, adding lexical TSL tests to ISL
tree-to-tree mappings only requires three minor
tweaks. First, each rewrite rule is extended to also
include a finite (and possibly empty) collection of
TSL tests. Second, the notion of a rewrite rule
matching a tree at a given address b is expanded to
also require partial tier matches: if the rule speci-
fies that the node at address a is an f-tier mother
of an element that passes some test ¢, then the
node at address ba in the dependency tree must be
part of the f-tier and must have exactly one node z
among its f-tier daughters such that = passes test
¢. Finally, the definition of R(t) is amended to in-
clude substitution into tier ports. The full definition
that incorporates all these changes is given in the
appendix.

Inspection of the example in Fig. 3 quickly re-
veals that the solution laid out above does not quite
work as expected for movement. It attaches every
mover to all its landing sites, and as a result the bare
phrase structure tree contains multiple instances of
who. In other words, the rewrite rules above im-
plement a copy-theory of movement, but they do
not capture the fact that moved phrases are only
pronounced in their final landing site. A solution
is readily available, though, provided one can tell
the final movement step of a mover just from its
feature make-up.

4 Linearization and the output-oriented
BoIM

Our previous solution for movement runs into prob-
lems because movement actually consists of two
steps: attaching the mover to all its landing sites,
and delinking it from all positions that are not its
final landing site.

Delinking itself is fairly simple from the perspec-
tive of ISL transductions. Consider the example
below for delinking the moving who in Fig. 3 from
its base position under said.

O [maorr] +
N

nom~ _ t Vv
/\
said 0Oy

Here nom™ is a shorthand for any LI carrying nom™.
The rewrite rule thus replaces the left daughter with
a trace provided it undergoes subject movement.
Note that since we only care about well-formed

295

dependency trees where every licensee feature has
a matching licensor feature on some other node,
the fact that the left daughter carries nom™ guar-
antees that it will undergo subject movement and
hence should not be linearized as an argument of
the verb. The feature make-up of the LI thus deter-
mines whether its base position should be replaced
with a trace.

Things are trickier, though, when we consider
intermediate landing sites such as Spec,TP for who.
Since licensee features are not ordered, we can-
not tell whether who :: D~ {nom™,wh™ } first un-
dergoes nom-movement or wh-movement. The as-
sumption that licensee features are unordered is
crucial for the tier-based perspective of movement,
it cannot be easily done away with. It seems, then,
that our delinking trick for base positions does
not carry over to intermediate landing sites like
Spec,TP. We cannot tell from the local context of
the T-head whether the subject mover with nom™
will move on to a higher position via wh-movement,
or if it has already done so and will thus stop in
Spec,TP. One may be tempted to try ideas like
merging the nom-tier and the wh-tier into a single
tier, but these do not work either because then a
mover and its landing site may no longer stand in
a mother-daughter configuration. While a math-
ematical proof is still outstanding, it seems that
there is no way in the current system to correctly
distinguish final from intermediate landing sites.

Linguists will point out, though, that Spec,TP
cannot be the final landing site for who due to
the Ban on Improper Movement (BoIM): once a
mover undergoes an instance of A’-movement like
wh-movement, it can no longer undergo any A-
movement steps such as subject movement. The
BolIM rules out sentences like the illicit who won-
ders [t John saw t], where who first wh-moves to
Spec,CP of the embedded clause before undergoing
subject movement into the matrix clause.

In light of the BoIM, it is readily apparent from
the feature make-up of who :: D™ {nom™,wh™ }
that it first undergoes nom-movement and then wh-
movement. Consequently, the purely feature condi-
tioned delinking strategy still works and one could
something like rule G below for rewriting the T-
head. Rule H for rewriting the C-head looks al-
most exactly the same except that we insert the
mover and not a trace. In both rules, {nom™, wh™ }
matches every LI that carries at least those two
licensee features.

Input Individual Outputs Output
g TtwhTC™ CP CP
| T T
€ Vinom™ T~ oy who ('
| S P
said :: DTDTV™ C O C TP
- T
who :: D™ {nom~,wh™} that: D~ who T
TP o~
T~ T VP
D?Om T, /\
T who V'’
T Oy T
said that
VP
/\
mp} \A
T
said Oy
who
that

Figure 3: The dependency tree for who said that is rewritten into the corresponding bare phrase structure tree.

O [vr] o

- P

nom:{nom™,wh~} _ t T
P
T O
" - a
P T
wh:{nom™,wh~} _ ov
PR
c o

At least in the case of subject movement and wh-
movement, then, ISL tree-to-tree transductions
with TSL tests allow us not only to associate a
mover with all its landing sites, but also to produce
linearized output structures with the correct string
yield.

In order for this solution to extend to all of syn-
tax, however, a stronger property has to be in place.

Definition 7 (Output-oriented BoIM). For no LI
[with set {f P } of licensee features may
there be well-formed dependency trees ¢; and ¢,
such that 1) both ¢ and ¢5 contain [, and 11) I’s final
movement step is £; in ¢y and £; into (1 # 7).

In other words, for every LI [one can always pre-
dict its final movement step based purely on inspec-
tion of the LI itself.

I conjecture that the output-oriented BoIM is a
universal property of movement across languages.
This is prompted by two observations. First, a
preliminary analysis of the MG corpus (Torr, 2017)

296

suggests that the output-oriented BoIM holds for
the trees in that treebank. In fact, the licensee
features used in that corpus seem to obey an even
stronger restriction: for every LI [that carries, say,
£~ and g, it is always the case that [undergoes
f-movement before g-movement. While corpora
represent just a finite slice of a possibly infinite
range of licit configurations, it is encouraging that
the conjecture clears this first hurdle with ease.

The second argument is more indirect: While the
syntactic literature has noted potential exceptions
to the BoIM, those do not directly carry over to
the system used here. Consider the case of hyper-
raising in Zulu (see Zyman 2023 and references
therein). Here a DP undergoes A-movement from
a position in the embedded clause to some posi-
tion in the matrix clause, yielding a configuration
similar to the illicit English sentence Mary seems
[that will go home]. Minimalists assume for in-
dependent reasons that Mary, rather than moving
directly from the embedded subject position to the
matrix subject position, has to stop in Spec,CP
of the embedded clause. As the latter is an in-
stance of A’-movement, hyperraising seems to in-
volve an A’-movement step to Spec,CP followed
by A-movement to the subject position of the ma-
trix clause. But this A’-movement step is driven
by theoretical considerations related to successive
cyclic movement, which is treated very differently

in MGs and subregular syntax. The phenomena that
are used to motivate successive cyclic movement,
e.g. wh-agreement in Irish, can be captured with-
out such movement in TSL syntax (Graf, 2022c).
Without successive cyclic movement, though, hy-
perraising is no longer a counterexample to the
standard BoIM, let alone the output-oriented BoIM
that is needed in this system of ISL transductions
with lexical TSL tests.

If the output-oriented BoIM turns out to be
empirically robust, then the limits of ISL tree-to-
tree transductions with TLS tests provide a novel
motivation for the otherwise mysterious BoIM
(which would then be a stronger implementation of
the output-oriented BoIM). Subregular complexity
might offer a computational third-factor explana-
tion (Chomsky, 2005) for one of the most robust
universals of syntax.

5 Remarks and open issues

The discussion so far has assumed that all move-
ment steps are overt. Minimalist syntax and MGs
both allow for covert movement steps, which do
not affect linearization. In such systems, the final
landing site of LI [with respect to linearization
may be distinct from the landing site of its final
movement step. This does not introduce any new
challenges, though, as long as the following con-
dition is met: for every set S := {£7,..., £, } of
licensee features and every type of output structure
(e.g. phrase structure tree, LF), one can tell directly
from S whether f;-movement (1 < ¢ < n) creates
a copy or a trace at the landing site.

Another issue arises with successive cyclic
movement. A common approach in MGs posits that
successive cyclic movement is not feature-triggered
but rather a result of the output mapping inserting
traces and/or copies at specific positions along a
movement path. ISL mappings with lexical TSL
tests struggle with this because a node that is not
on tier 1" cannot use T’ to test whether it is along a
movement path. At the same time, putting, say, all
C-heads on a tier T" together with all wh-movers
does not help either as the T-daughter of some C-
head may then just be another C-head rather than
the desired wh-mover. Instead of a transduction-
based model of successive cyclic movement, one
based on tier constraints may be more promising
(cf. Graf, 2022c¢).

Finally, the complexity of copies vs. traces mer-
its further exploration. Kracht (2001) observes that

297

one can freely translate between copies and traces,
but we saw that copy-based movement is simpler
than trace-based movement because the latter re-
quires additional restrictions on movement. Simi-
larly, transductions with copying are more complex
than linear transductions, yet the latter are suffi-
cient for trace-based movement. This suggests that
the subregular notions of complexity crosscut tradi-
tional ones in unexpected ways that may sometimes
favor more complex machinery in one area in order
to reduce complexity in another. These connections
could only be hinted at in this paper but are ripe
for future exploration from a mathematical perspec-
tive, e.g. in terms of DAG transductions (Drewes,
2017) as dependency trees with tier relations are
essentially DAGs with labeled edges.

Conclusion

I have introduced (deterministic) ISL tree-to-tree
transductions with TSL tests as a new class of sub-
regular transductions that expands the ISL tree-
to-tree transductions of Graf (2020) with the tier-
based view of movement in Graf (2018, 2022c¢)
in order to provide a subregular model of move-
ment as a mapping from syntactic derivations (rep-
resented via dependency trees) to output structures.
This class of transductions is still conceptually sim-
ple while offering enough expressivity to easily
relate each mover to all its landing sites. The trans-
ductions in this class are too weak to distinguish fi-
nal from intermediate landing sites, which is essen-
tial for obtaining the correct string yield from a syn-
tactic derivation. However, it seems that a variant
of the Ban on Improper Movement restricts syntax
in just the right way to draw the necessary distinc-
tion between final and intermediate landing sites
based purely on the feature make-up of the mover.
It remains to be seen whether the output-oriented
BoIM proposed here is indeed empirically viable,
but the possibility is tantalizing as it promises a
computational grounding for one of the best-known
and most robust syntactic constraints.

Acknowledgments

This paper is dedicated to Christopher Graf, who
entered this world a bit ahead of schedule, on the
day of the submission deadline. I thank the review-
ers for pushing this paper in a linguistically more
comprehensive direction. The work reported in
this paper was supported by the National Science
Foundation under Grant No. BCS-1845344.

References

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, University of Delaware.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, 27:599-641.

Jane Chandlee and Jeffrey Heinz. 2018. Strict locality
and phonological maps. Linguistic Inquiry, 49:23—
60.

Noam Chomsky. 2005. Three factors in language de-
sign. Linguistic Inquiry, 36(1):1-22.

Aniello De Santo and Thomas Graf. 2019. Struc-
ture sensitive tier projection: Applications and for-
mal properties. In Formal Grammar, pages 35-50,
Berlin, Heidelberg. Springer.

Frank Drewes. 2017. On DAG languages and DAG
transducers. Bulletin of the European Association
for Theoretical Computer Science, 121.

Saul Gorn. 1967. Explicit definitions and linguis-
tic dominoes. In Systems and Computer Science,
Proceedings of the Conference held at University
of Western Ontario, 1965, Toronto. University of
Toronto Press.

Thomas Graf. 2018. Why movement comes for free
once you have adjunction. In Proceedings of CLS
53, pages 117-136.

Thomas Graf. 2020. Curbing feature coding: Strictly
local feature assignment. In Proceedings of the So-
ciety for Computation in Linguistics (SCiL) 2020,
pages 362-371.

Thomas Graf. 2022a. Diving deeper into subregular
syntax. Theoretical Linguistics, 48:245-278.

Thomas Graf. 2022b. Subregular linguistics: Bridging
theoretical linguistics and formal grammar. Theoret-
ical Linguistics, 48:145-184.

Thomas Graf. 2022c. Typological implications of tier-
based strictly local movement. In Proceedings of the
Society for Computation in Linguistics (SCiL) 2022,
pages 184-193.

Thomas Graf, Aléna Aksénova, and Aniello De Santo.
2016. A single movement normal form for Minimal-
ist grammars. In Formal Grammar: 20th and 21st
International Conferences, FG 2015, Barcelona,
Spain, August 2015, Revised Selected Papers. FG
2016, Bozen, Italy, August 2016, pages 200-215,
Berlin, Heidelberg. Springer.

Thomas Graf and Aniello De Santo. 2019. Sensing tree
automata as a model of syntactic dependencies. In
Proceedings of the 16th Meeting on the Mathematics
of Language, pages 12-26, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Thomas Graf and Kalina Kostyszyn. 2021. Multiple
wh-movement is not special: The subregular com-
plexity of persistent features in Minimalist gram-
mars. In Proceedings of the Society for Computation
in Linguistics (SCiL) 2021, pages 275-285.

Thomas Graf and Connor Mayer. 2018. Sanskrit n-
retroflexion is input-output tier-based strictly local.
In Proceedings of SSIGMORPHON 2018, pages 151—
160.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frank Plank, editors, Phonological Typology, Pho-
netics and Phonology, chapter 5, pages 126-195.
Mouton De Gruyter.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints in phonol-
ogy. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics,
pages 58-64.

Shiori Ikawa, Akane Ohtaka, and Adam Jardine. 2020.
Quantifier-free tree transductions. In Proceedings of
the Society for Computation in Linguistics (SCiL),
volume 3, pages 455-458.

Adam Jardine. 2016. Computationally, tone is differ-
ent. Phonology, 33:247-283.

Jing Ji and Jeffrey Heinz. 2020. Input strictly local tree
transducers. In Language and Automata Theory and
Applications: 14th International Conference, LATA
2020, Milan, Italy, volume 12038 of LNCS, pages
369-381.

Gregory M. Kobele, Christian Retoré, and Sylvain Sal-
vati. 2007. An automata-theoretic approach to Min-
imalism. In Model Theoretic Syntax at 10, pages
71-80.

Marcus Kracht. 2001. Syntax in chains. Linguistics
and Philosophy, 24:467-529.

Connor Mayer and Travis Major. 2018. A challenge
for tier-based strict locality from Uyghur backness
harmony. In Proceedings of Formal Grammar 2018,
pages 62-83, Berlin. Springer.

Kevin McMullin. 2016. Tier-Based Locality in Long-
Distance Phonotactics: Learnability and Typology.
Ph.D. thesis, University of British Columbia.

Luigi Rizzi. 1990. Relativized Minimality. MIT Press,
Cambridge, MA.

Edward P. Stabler. 1997. Derivational Minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, volume 1328 of Lecture Notes
in Computer Science, pages 68-95. Springer, Berlin.

Edward P. Stabler. 2011. Computational perspectives
on Minimalism. In Cedric Boeckx, editor, Oxford
Handbook of Linguistic Minimalism, pages 617-643.
Oxford University Press, Oxford.

298

John Torr. 2017. Autobank: a semi-automatic anno-
tation tool for developing deep Minimalist gram-
mar treebanks. In Proceedings of the Demonstra-
tions at the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 81-86.

Erik Zyman. 2023. Raising out of finite clauses (hyper-
raising). Annual Review of Linguistics, 9:29-48.

Definition of ISL mappings with lexical
TSL tests

We now allow tree contexts to also contain tier
ports, which are ports that are indexed with the
name of a tier, e.g. DiT. We also amend our tree
substitution notation to allow for the use of tier
ports: ¢{T'% : t} is the result of replacing tier port
07 in context ¢ with t. The indices of tree ports
will be interpreted slightly differently from stan-
dard ports. Whereas O; refers to the (output of the)
i-th daughter of the node being rewritten, 07 will
refer to the (output of the) node picked out by the
i-th TSL test over tier 7.

A lexical TSL test over tier T is a formula of
the form ¢r(n,x) := n<r x A x € U, where
U is some subset of 7. To avoid various com-
plications related to non-determinism, we only
consider the special case where ¢r(n,x) is de-
terministic over some set L of trees. That is to
say, for every t € L and node n of ¢, there is at
most one x such that ¢p(n,z) is true. We also
call ¢r(n,z) L-deterministic. Slightly abusing
notation, we let ¢ (¢, n) denote the unique node
x (if it exists) such that ¢p(n,z) holds in ¢. Fi-
nally, we define ® as a finite family of lexical
TSL tests ¢T1,1, cen ,¢T1721, e ’¢Tk;17 RN ¢Tk72k
indexed by pairs of tier names and positive natural
numbers.

An ISL rewrite rule with lexical TSL tests over
tiers Ty, ..., T} is a pair (r, ®) such that r :=
(i, a, 0) is an ISL rewrite rule (where o may contain
tier ports). We say that (r, @) is L-deterministic iff
every ¢r,; € ® is L-deterministic. Given such an
L-deterministic rule p := (r, ®) and tree t € L, p
matches t at node n with address b iff 1) » matches
t at address b, and 11) for every ¢7; € ®, o7 4(t, n)
exists. As with ISL rewrite rules, a node at address
ba in t can be rewritten by p := ((i,a,0) , @) iff p
matches ¢ at address b.

A set R of ISL rewrite rules with TSL tests
over tiers Ty, ..., 1y is L-deterministic iff
{r | (r,®) € R} is a deterministic set of ISL
rewrite rules and every » € R is L-deterministic.

299

Note that this excludes any set R containing at least
two rules that only differ in their TSL tests.

Given such an L-deterministic set R, R(t,n)
denotes the unique output context o for node n
in tree ¢ € L. We extend this to ¢ in a recursive
fashion: If ¢ contains only node n, then R(t) :=
R(t,n). If t := m(dy,...,d,), then R(t) is

R(t,m){1: R(t,d1),...,2: R(t,d,),
Til: R(t, ¢7,,1(t,m)), ...
Tiz1 : R(t, 7, 2, (8, m)), .. .,
Til: R(t, o1, 1(t,m)), ...
Tizk : R(t, ¢y, 2, (8, m))}

)

)

A tree-to-tree transduction 7 with domain D is
deterministic input strictly local with lexical TSL
tests iff there is a finite set R of ISL rewrite rules
with TSL tests such that R is deterministic over
D and 7(t) = R(t) for all t € D. In this case,
we also call 7 an ISL (tree-to-tree) mapping with
lexical TSL tests.

