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Abstract

Children acquire their language’s canonical
word order from data that contains a messy
mixture of canonical and non-canonical clause
types. We model this as noise-tolerant learn-
ing of grammars that deterministically pro-
duce a single word order. In simulations on
English and French, our model successfully
separates signal from the noise introduced by
non-canonical clause types, in order to identify
that both languages are SVO. No such prefer-
ence for the target word order emerges from a
comparison model which operates with a fully-
gradient hypothesis space and an explicit nu-
merical regularization bias. This provides an
alternative general mechanism for regulariza-
tion in various learning domains, whereby ten-
dencies to regularize emerge from a learner’s
expectation that the data are a noisy realization
of a deterministic underlying system.

1 Introduction

Children at early stages of language acquisition
draw accurate grammatical generalizations from
incomplete, immature, and variable representa-
tions of their input. For example, infants learn
their language’s basic word order despite immature
abilities to identify clause arguments, and despite
non-canonical constructions that disrupt this basic
word order (e.g., wh-questions, passives) (Hirsh-
Pasek and Golinkoff, 1996; Perkins and Lidz, 2020,
2021). This is one of many ways in which learn-
ers draw generalizations that are more regular or
deterministic than the variable data that they are
learning from. What kind of mechanisms allow for
learning to abstract away from messiness in (the
learner’s representation of) the data?

One potential answer emerges from studies of
learning in the context of unpredictable variability,
for example in the context of acquiring language
from non-native speakers. This approach posits
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a general learning bias to regularize inconsistent
variability (Hudson Kam and Newport, 2005, 2009;
Reali and Griffiths, 2009; Culbertson et al., 2013;
Ferdinand et al., 2019). Learners consider hypothe-
ses that closely match the statistical distributions
in their input, but in some circumstances they are
biased to “sharpen” those distributions, pushing
them towards more systematic extremes.

Implicit in this account is a hypothesis space
that can accommodate the full variability of the
data. For instance, when exposed to an artificial
language in which determiners occur inconsistently
with nouns, children are equipped to consider that
the language allows determiners with any probabil-
ity, but nonetheless prefer to use particular deter-
miners all of the time or not at all (Hudson Kam
and Newport, 2005, 2009). The literature takes
this as evidence for a regularization bias operating
within a learner’s fully-flexible hypothesis space,
pushing learners to prefer probabilities closer to O
or 1 and producing near-categorical learning out-
comes. This idea could be applied to the learning
of basic word order in infancy— for example, learn-
ing that English is canonically SVO. Children who
encounter a messy mixture of canonical and non-
canonical sentences would be equipped to consider
that clause arguments can flexibly occur in multiple
orders in the language, but prefer hypotheses that
are skewed heavily towards one consistent order.

Here, we explore a different approach. We pro-
pose that in certain circumstances, learners face a
choice among discrete hypotheses, each of which
is deterministic in a way that is incompatible with
the full variability of the observed data. Learners
expect that their data result from an opaque interac-
tion between (i) one of the deterministic hypothe-
ses currently under consideration, and (ii) various
other processes that might introduce “noise” into
the data. For a child learning an artificial deter-
miner system, the data might reflect a combination
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of signal for deterministic rules, and noise coming
from unknown grammatical or extra-grammatical
processes. For a child learning the syntax of basic
clauses, the data reflects a combination of signal
for the target language’s basic word order and noise
introduced by non-canonical sentence types. Reg-
ularization emerges when learners are able to suc-
cessfully identify signal for a deterministic hypoth-
esis within their noisy data (Perkins et al., 2022;
Schneider et al., 2020).

We introduce a general computational frame-
work for performing this inference. A learner of
the sort we describe below expects that its data are
generated by a complex system: a core determin-
istic component that the learner is attempting to
acquire, operating alongside a “noise” component
whose properties are currently unknown. Using the
case study of basic word order acquisition, we show
that our model can learn to separate evidence for
a deterministic grammar of canonical word order
from the distorting effects of non-canonical noise
processes. It does so without knowing ahead of
time how much noise there is, or what its proper-
ties are. Moreover, we show that our approach fares
better in this learning problem than the more com-
mon approach to regularization described above.
This suggests that in certain domains, successful
learning from noisy data is enabled by a hypothesis
space comprising restrictive grammatical options.

2 The intuition behind our approach

Suppose that a bag contains coins of two types:
Type A coins, which always come up heads, and
Type B coins, which all have some single unknown
probability 6 of coming up heads. We know noth-
ing about how many of each type are in the bag.
We observe ten coin flips, producing eight heads
and two tails. How many of these flips might we
guess came from Type A coins, and how many from
Type B coins? There is a wide range of options,
including the possibility that all ten flips came from
Type B coins; but given the observed skew towards
heads, there is a clear intuition that Type A coins
were probably responsible for a significant portion
of the observations. Why is this?

Under the hypothesis that all ten flips came from
Type B coins, eight of those flips would need to
come up heads and two to come up tails in order to
generate the observed data. Contrast this with the
(more intuitively plausible) hypothesis that there
were six Type A and four Type B flips. Under this
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hypothesis, the six Type A flips need to come up
heads, which is guaranteed to happen; so, generat-
ing the observed data just amounts to having the
four Type B flips produce two heads and two tails.
This is clearly less “costly” than the first hypoth-
esis’s requirement that ten Type B flips produce
eight heads and two tails. By positing six Type A
flips, six of the heads that we need to generate
“come for free”’; with only Type B flips, however,
we get no such head start.

More precisely, the likelihood of the observed
data, under the hypothesis that relies on only four
Type B flips, is (5)6?(1 — 6)2. Under the hypothe-
sis that leaves all the work to ten Type B flips, this
likelihood is ({)6%(1 — )2. It is the exponents
that matter: the ten-flip likelihood is smaller than
the four-flip likelihood whenever 6 < 0.71, so for
most values of 6. This is one way to understand
our intuitive preference for hypotheses that invoke
Type A flips. We can make this even more precise
by marginalizing over 0; see Appendix A for de-
tails. These details make clear that all that matters
about a particular hypothesis is how many Type B
flips it must appeal to. We’ve seen that four Type B
flips is better than ten, but two is even better: the
very best hypothesis is that there were eight Type A
flips and two Type B flips (likelihood (1 — 6)?).

Suppose now that, as well as the bag with two-
headed coins and head-tail coins (call this Bag H),
there is a bag with two-tailed coins and head-tail
coins (Bag T). We again see 10 coin flips, 8 heads
and 2 tails. We know that they all came from one
of the two bags, and we have to guess which one.

We have seen that Bag H makes available “good”
explanations of the data, which exploit the pres-
ence of two-headed coins to minimize the crucial
number of uncertain head-tail flips. With Bag T,
however, the available “known outcome” coins pro-
duce tails; so the best we can do is to suppose that
both of the two observed tails came from the two-
tailed coins, and rely on eight uncertain flips to do
the rest of the work (likelihood #%). Since there is
no way for the two-tailed coins to contribute to a
good explanation of the observed high proportion
of heads, Bag H is a better guess than Bag T.

This choice between Bag H and Bag T will cor-
respond to the choice between competing restricted
hypotheses in the learners we describe below. It
will be useful to think of this as essentially a choice
between the two-headed coin and the two-tailed
coin, where either choice (since it’s accompanied



by head-tail coins) is embedded in a system that
also produces some “noise”, i.e. divergences from
what would be generated by these core mechanisms
alone. When comparing such composite systems,
our learner will prefer the one whose core mecha-
nisms predict the skew in the data; this will provide
the least costly solution, even though the shared
noise possibilities ensure that all the competing
systems can account for the data as a whole. And
the proposed learner will do this without knowing
a priori how much of the data is noise (i.e. how
much of the data came from the head-tail coins) or
what the contribution of noise looks like (i.e. the
probability 6 of noise contributing a head).
Perkins et al. (2022) applied this approach to
model how learners might identify the core transi-
tivity properties of verbs in their language, despite
“noise” from non-canonical clause types. This type
of noise might arise when a young child encounters
an obligatorily-transitive verb in a sentence with a
displaced object (e.g., What did you bring?) but is
unable to parse it as such. By hypothesizing that
unknown noise processes cause the data to be a
distorted reflection of verbs’ core argument-taking
properties, their model was able to successfully
identify that certain verbs were deterministically
transitive and intransitive— for roughly the same
reason that Bag H above provides a good explana-
tion for data that does not consist entirely of heads.
Here, the basic syntax we consider generates
subjects and objects according to some canonical
order (SVO, SOV, etc.), yielding surface strings of
verbs and noun phrases. And just like in Perkins
et al., unknown grammatical processes— for in-
stance, argument movement or ellipsis— operate
alongside this basic syntax, with the result that the
observed strings of verbs and noun phrases are a
distorted reflection of canonical word order.

3 Applying this to PCFGs

We now turn to situations where a learner’s core hy-
potheses take the form of grammars — specifically,
probabilistic context-free grammars (PCFGs). The
learner will observe some collection of strings, and
in general none of the core grammars under consid-
eration will be consistent with all of the observed
strings. One way to apply the idea from above
would be to suppose that some of the observed
strings were generated by a separate “noise gram-
mar” — just as some of the coin flips above were
generated by the head-tail coin. But this would
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mean that every string is analyzed as either all sig-
nal (i.e. informative about the core grammar) or all
noise, and so the learner would not be able to ex-
tract useful information from subparts of sentences.

Instead, we allow the signal-or-noise choice to
be made at a finer-grained level: each derivational
step might be contributed either by the core hypoth-
esized grammar or by noise processes. Either way,
each step is licensed by a CFG-style rewrite rule;
in other words, the noise is itself characterized by
particular rules for expanding nonterminals that sit
alongside the rules of the core grammar. The over-
all system therefore consists of rules of two sorts,
which we’ll call core rules and noise rules.

Framed slightly more generally: we formulate a
generative process for strings that we call a Mixture
PCFG. A Mixture PCFG uses rules built out of
terminal and nonterminal symbols in the manner of
a standard PCFG. But whereas defining a standard
PCFG involves identifying just a single set of rules,
defining a Mixture PCFG involves identifying two
sets of rules. For the moment we will simply call
them ¢-rules and v-rules, but in the case study
below these will correspond to core rules and noise
rules respectively. A particular candidate rewriting
step, e.g., ‘'S — NP VP’, might be included in
the set of ¢-rules, in which case it will have some
non-zero probability ¢s_,np vp associated with it;
and independently might be included in the set
of t-rules, in which case it will have some non-
zero probability 1s-_,np vp associated with it. In
addition to these ¢ parameters and v parameters,
a Mixture PCFG has one additional parameter ¢
associated with each nonterminal symbol A, which
controls the choice between using a ¢-rule or a
1-rule to expand an occurrence of A.

To illustrate, an example Mixture PCFG is
shown in Fig. 1. In this grammar and all those
in the case studies below, NP is deterministically
realized as Np and V as v; we abstract away from
these steps in all the discussion that follows.! We
write ¢-rules with standard arrows and -rules with
dashed arrows. Notice that the ¢-probabilities as-
sociated with the expansions of a particular nonter-
minal symbol sum to one, as do the 1/-probabilities.
Roughly foreshadowing the grammars we use in
the case study below, the ¢-rules in Fig. 1 encode
the basic clause structure of an SVO language, and
the ¢-rules generate “noise” that diverges from this
canonical word order in various ways.

'This is just € = ¢"* = 0 and dnp—np = Pvoy = 1.



¢-rules 1-rules € probabilities
1.0S—NPVP 03S--»VPNP ¢ =02
0.5S--»NPS
0.2S --» VP
04VP =V 0.7VP-->NPV =03
0.6 VP — VNP 0.3 VP --» NP

Figure 1: An example Mixture PCFG.
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Figure 2: The three possible analyses of np v np (su-
pressing NP—np and V—V rewrites).

To calculate the probability of a string under
this Mixture PCFG, we sum over all possible ways
it can be generated. For the string np v np, for
example, there are three possibilities, shown in
Fig. 2; solid lines represent expansions using ¢-
rules, and dashed lines expansions using -rules.

The first tree represents one way of generating
np v np that uses only ¢-rules: € is the probability
of using a t-rule rather than a ¢-rule to expand
an occurrence of S, and so the probability of ex-
panding the root S node as shown in this first tree
is the product of (1 — ¢) and the corresponding
@-probability. The probability of the entire tree is
the product of two such rewrites, as in (1); simi-
larly, the probability of the second tree is given in
(2). The third tree’s probability, in (3), uses a more
interesting combination of ¢-rules and v-rules.

(D) (1 ¢S)(gssnpve) x (1—€"P)(Bvpov np)
@) (&) (¥s-svene) X (€7F)(Wvp-snpv)
B3)  (®)(Ws-nps) X (€°)(¥s-—svp)

x (1= €"P)(dvpov np)

Using values from Fig. 1, these three trees there-
fore have probabilities of 0.336, 0.013 and 0.001,
respectively; and so the total probability of the
string np v np is 0.350.2

Although we are restricting attention to PCFGs
here, exactly the same approach could be used to
formulate “mixture” versions of any kind of prob-
abilistic grammar where the probability of a com-

’The overall mechanics of a Mixture PCFG can be recast
as a single classical PCFG. Specifically: add nonterminals
S and Sy alongside S, and include the rules S — Sy and
and S — S, with probabilities (1 — €°) and €, respectively;
the subsequent expansions of Sy and Sy, are determined by
the ¢-rules for S and the t-rules for S, respectively. Our
implementation in fact works with exactly this classical PCFG.
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plex structure is the product of the probabilities of
certain local choices (e.g. HMMs or PFSAs). The
sampling methods we employ below for inference
are compatible with any model where these local
choices are expressed as multinomial distributions.

In the learning scenarios modeled below, the
learner will have some set of hypotheses to choose
from, each of which is represented by a Mixture
PCFG such as that in Fig. 1. One of the competitor
hypotheses might be represented by a similar Mix-
ture PCFG that has the basic clause structure of an
SOV language (rather than SVO) reflected in its
¢-rules, and has some of the same 1-rules as Fig. 1.
Each of these two hypotheses will therefore gener-
ate strings that diverge from the strict SVO or SOV
pattern licensed by its particular ¢-rules. Decid-
ing which of these two Mixture PCFGs provides a
better explanation of some observed strings is there-
fore analogous to the decision between Bag H and
Bag T in Section 2, with the ¢-rules corresponding
to the two-headed and two-tailed coins, and the
t-rules corresponding to the head-tail coins.® Just
as the decision between Bag H and Bag T could
be made by considering (i.e. marginalizing over)
all possible values of the unknown weight 6, we
can make the decision between competing Mix-
ture PCFGs in a way that considers all possible ¢,
1) and € values. The logic outlined in Section 2,
whereby explanations in terms of core mechanisms
that align with skews in the data are preferred, car-
ries over to the case where the core mechanisms
are either SVO or SOV word order.

4 Case study: Learning basic word order

We show that the approach of deciding among
competing Mixture PCFGs provides a novel so-
lution to the problem of word order acquisition
in early development. Children acquire the basic
word order of their language from data that con-
tains a large amount of noise. For example, En-
glish learners identify that their language is canoni-
cally SVO in infancy, before they can identify the
processes that produce non-canonical word orders
in sentences like wh-questions (Hirsh-Pasek and
Golinkoff, 1996; Lidz et al., 2017; Perkins and
Lidz, 2020, 2021). Many accounts assume that
learners have the ability to “filter” non-basic sen-
tences of this sort, ignoring them when drawing

*Bag H is analogous to a Mixture PCFG with ¢g_n = 1,
ths-sn = 0 and s .t = 1 — 6, and €° representing the
proportion of head-tail coins in the bag.



S — NP VP (A) B)
SVO VP — VNP P ) Noi )
VP 5V ore rules oise rules
(¢-rules) (vp-rules) S — NP VP S NPS
S — NP VP S — VP NP S s S NP
SOV VP NPV S--»NPVP S--»NPS S — VP
Mindd STuenE S --»SNP VP — VNP
9 S--» VP VP — NP VP
S— VPNP ' VP sV NP VE=NPV . yp L vPNP
VOS VP — VNP VP“* NPV VP s NP VP VP =V
VP =V - VP --> VP NP
VP --»V Rules for all Rules for
S — VP NP possible argument  additional NPs
OVS VP NPV Rules for permuted Rules for configurations
VP 5V and deleted arguments  additional NPs

Figure 3: (A) Hypothesis space for our noise-tolerant learner; (B) Fully-flexible learner for comparison.

early syntactic inferences (e.g. Pinker, 1984). But
if learners do not yet know what counts as basic,
how do they identify which sentence types count
as non-basic, in order to filter them out (Gleitman,
1990; Perkins et al., 2022)? Our model provides a
way to implement the essence of this filtering idea,
while avoiding potential issues of circularity.

Our learner’s hypothesis space consists of four
sets of ¢-rules and one shared set of i-rules, giv-
ing rise to the four Mixture PCFGs in Fig. 3A.
The ¢-rules generate the core predicate-argument
structure of basic transitive and intransitive clauses,
deterministically putting subjects before or after
verb phrases and objects before or after verbs. This
yields a 4-way choice of canonical word order:
SVO, SOV, VOS, OVS.* Subjects are are obligatory
and objects are optional, reflecting the learner’s be-
lief that canonical clauses need subjects. All four
grammars share the same set of noise rules, which
allow for all permutations and deletions of NP argu-
ments, and for additions of NPs into non-argument
positions. The flexibility in the noise rules produces
many more possibilities for expanding a given non-
terminal than are provided by the core rules, mirror-
ing the asymmetry between restrictive two-headed
(and two-tailed) coins and flexible head-tail coins.

Crucially, while the learner’s noise rules contain
hypotheses about which non-canonical processes
might operate in its language, the learner does not
know ahead of time the ¢) and ¢ probabilities as-
sociated with these rules: it does not know which
kinds of non-canonical clauses it will encounter, or
how frequently. We show that our learner is able

“We limit our focus to these four word orders because they
are the options generated by a 2x2 choice of subject and object
position. Natural languages allow more complex argument
structure profiles, including canonical orders in which the
verb and object are separated (VSO and OSV), or variability
from argument-drop or scrambling. How these properties are
learned is an important question that we leave for future work.
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to identify the correct Mixture PCFG— the correct
combination of core and noise rules— using only
the distributions of noun phrases and verbs that
a 15-month-old infant might be able to represent.
This inference does not require information about
underlying clause structure. However, a similar
mechanism could be generalized to make use of
structural cues from meaning or prosody (Pinker,
1984; Christophe et al., 2008).

Using strings of imperfectly-identified noun
phrases and verbs, the learner evaluates the fol-
lowing three questions, corresponding to the ¢, 1,
and € parameters of its input filter, respectively:
(1) What do the data from the core rules look like?
(2) What do the data from the noise rules look
like? (3) What is the right division into signal
vs. noise? For each grammar in its hypothesis
space, the learner considers the possible answers to
these questions in order to determine how well that
grammar explains the data it observes. Comparing
across the four grammars, the learner selects the
grammar that provides the best explanation.

4.1 Generative model

The model’s data consists of a collection w of
strings, each comprising a single v with any num-
ber of satellite np’s (i.e., of the form np* v np*).
The model assumes that these are generated by
one of the Mixture PCFGs in its hypothesis space
(Fig. 3A), each of which has equal prior probabil-
ity; the learner is not biased a priori in favor of any
particular word orders.

Given any particular Mixture PCFG, we can con-
struct an equivalent standard PCFG that defines the
same distribution over strings (via some additional
nonterminals and unary rules; see Footnote 2 for
details). Let ¢ be the vector of weights of the
allowable expansions of a given nonterminal A in
this resulting standard PCFG G; the prior over gAc



English French
Corpus Brown: Eve  Lyon
# Children 1 5
Ages 1;6-2;31 1;0-3;0
# Words 81,687 885,334
# Utterances 14,232 182,511

Table 1: Corpora of child-directed English and French

is a Dirichlet distribution with parameters @¢.

We begin with the assumption that all components
af‘c are equal to 1, resulting in a uniform prior
distribution, i.e. the model considers all possible
expansions for A with equal probability.

4.2 Inference

From the observed strings, the model infers the pos-
terior distribution over all grammars in its hypoth-
esis space, P(G | w). Calculating this posterior
analytically would require marginalizing over both
0% and F— i.e., integrating over the rule weights
and summing over all possible trees for a string, for
all strings in the data. This calculation is intractable.
So, instead of marginalizing over all of the infor-
mation in ¢, we marginalize over only some of it,
and sample the remaining partial analyses. We call
these partial analyses “coarse structures” (3), de-
scribed below. We begin by randomly initializing
a set of possible coarse structures for the observed
strings. Then, we use Gibbs sampling to jointly in-
fer the posterior P(G, § | W), alternating between
sampling a new grammar according to P(G | §, W),
and sampling new coarse structures according to
P(5 | G,w). This process will converge to the
joint posterior distribution over G and §.

The coarse structures § take the same shape as
the trees generated by the learner’s grammars, but
abstract away from the distinction between core
and noise rewrites in those trees. This corresponds
to abstracting away from the distinction between
solid and dashed lines in Fig. 2. Unlike a full
tree, which commits to particular core vs. noise
distinctions and therefore is compatible with only
some grammars, any coarse structure is consistent
with all of the grammars in the learner’s hypothesis
space: it might be generated by core rules in certain
grammars, or by some combination of noise and
core rules, or by only noise rules, which are shared
across all grammars. Therefore, for every grammar
G, P(G | §,w) is always non-zero, allowing us
to draw samples from this posterior in a feasible
way. We sample § from the posterior P(5 | G, W)
with a Hastings proposal, using a variant of an al-
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English French

0.36 np v 0.48npv
0.20v 0.21 npvnp
0.20np v np 0.13v

0.17v np 0.05npnpv
0.04npvnpnp 0.03npvnpnp
0.03 v np np 0.03 v np

Table 2: Proportions of most frequent string types

gorithm introduced by Johnson et al. (2007) and
marginalizing over #C. See Appendix B for details.

5 Simulations

We tested our model on English and French. These
languages are both canonically SVO, but differ in
how strictly they adhere to this canonical pattern:
English has rigid word order, whereas French al-
lows a greater degree of argument dislocation. We
show that our model sucessfully identifies SVO as
the target grammar for its noisy data, and does so
even in an expanded hypothesis space that allows
a choice among more flexible discrete hypotheses.
Moreover, our model out-performs a learner whose
grammar allows all word-order rules with some
probability (Fig. 3B), with a numerical bias to pre-
fer rule weights that are close to 0 or 1. This shows
that for this case study, our model fares better than
the more common type of explicit regularization
bias in prior literature.

5.1 Data

We used the Eve and Lyon CHILDES corpora
(Brown, 1973; Demuth and Tremblay, 2008),
which contain speech directed to English- and
French-learning 1- and 2-year-olds (see Table 1).
We searched these corpora for strings of one v and
any number of satellite np’s. We used a noisy
heuristic to approximate the knowledge of infants
at 15 months and younger, who can use functional
cues— determiners, pronouns, and auxiliaries—
to differentiate nouns and verbs (Babineau et al.,
2020; Shi and Melangon, 2010; Hicks et al., 2007).
We categorized any full pronoun as an np; any
word following a determiner as the head of an np;
and any word following an auxiliary as a v. Wh-
words and object clitics were not categorized as
np’s, because they may not be recognized as such
by infants learning basic word order (Perkins and
Lidz, 2021; Brusini et al., 2017). Object clitics that
are homophonous with determiners were treated
erroneously as determiners, to simulate the uncer-
tainty that infants might have about their category.



To create the datasets for our learner, we sam-
pled 50 strings in their relevant proportions in each
language (see Table 2). Over 30% of the strings in
each language are incompatible with the core rules
of the target SVO grammar. As a whole, these data
cannot be generated by the core rules of any single
grammar in the learner’s hypothesis space, without
considering the option of noise.

5.2 Results: Our model

Fig. 4 displays our model’s inferred posterior prob-
ability distribution over the four Mixture PCFGs
in its hypothesis space, averaged over 10 runs of
the model in each language. In both English and
French, the SVO grammar was assigned a higher
posterior probability than any other grammar in
the learner’s hypothesis space (all ps < 0.001,
Binomial tests). This shows that the learner’s fil-
tering mechanism allowed it to overcome the large
amount of noise in its data. The learner success-
fully discovered that the best explanation for its
data involved identifying some portions that were
signal for core SVO word order, and some portions
that came from noise processes.

5.3 Comparison: Fully-flexible model

In order to assess how much our model’s suc-
cess depended on a choice of discrete canonical
word-order grammars, we constructed a compari-
son learner whose hypothesis space collapses the
distinction between canonical and non-canonical
structures. This “fully-flexible” hypothesis space
consists of a single standard PCFG comprising
all of the word-order rules across our learner’s
four grammars (Fig. 3B). For this model, learn-
ing canonical word order would mean identifying
that some of its rules have probabilities near zero.

We tested two variants of this model. The first
assumes that all rules in its hypothesis space are
equally probable a priori, as in our original model.
The second is numerically biased to regularize its
rule weights, following the regularization approach
in prior literature (Reali and Griffiths, 2009; Cul-
bertson et al., 2013; Ferdinand et al., 2019). This
regularization bias takes the form of a skewed prior
over the rule weights g in the learner’s grammar.
For each nonterminal A, we set all component pa-
rameters 04;4 of the model’s Dirichlet prior to a
small value, 0.001. This biases the learner to put
probability mass on only one expansion of a given
nonterminal, and push the probabilities of other
expansions towards zero.
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Figure 5: Posterior distribution over subject and object
position in sampled treesets (), fully-flexible learner

The learner’s inference process consists of one of
the steps in our original Gibbs sampler. We sample
trees for the learner’s data from the posterior given
its sole grammar, P(f | G, ), just as we sampled
P(5| G, ) in our original model.

We assessed whether the fully-flexible learner
had identified a canonical word order by calculat-
ing the proportion of the learner’s sampled trees
that contained subject NPs before verb phrases and
object NPs before verbs. These proportions are
plotted in Fig. 5, where each point corresponds
to a sampled set of trees, aggregated across ten
runs of the model in each language. These plotted
distributions provide an estimate of the learner’s in-
ferred posterior probabilities of subject-initial and
object-initial structures. The four possibilities for
canonical word order correspond approximately to
the four corners in each panel: clockwise from top
left, these are OVS, SOV, SVO, and VOS.

If the learner had successfully identified that En-
glish and French are canonically SVO, the major-
ity of tree samples would lie close to the lower
right corners of these graphs. Instead, the unbi-



ased learner (bottom) inferred a distribution over
tree structures that mirrored its noisy data. These
ranged from the OVS to the SVO regions in En-
glish, and across the OVS, SOV, and SVO re-
gions in French. The biased learner (top) inferred
distributions closer to the corners corresponding
to canonical word orders. However, the English
learner gave equal posterior probability to both
OVS and SVO structures; its mean proportions of
subject-initial and object-final trees were not sig-
nificantly different from 0.5 (mean subject-initial:
0.51, mean object-final: 0.54, ps > 0.67). The
French learner converged to SOV structures in-
stead of SVO (mean subject-initial: 0.99, mean
subject-final: 0.01, ps < 0.001). The learner’s
regularization bias helped it identify one or two
canonical word orders for its noisy data. But unlike
our model, it did not correctly converge on SVO as
the most probable word order in either language.

Why would our approach fare better than the
more common approach to regularization in past
work? Our model’s success comes in large part
from its expectation that canonical clauses re-
quire subjects; subject-drop can occur only in non-
canonical clause types. This allows our learner to
use the large number of Np V strings as evidence
for a subject-initial grammar. Given the choice
between using its restricted core rules to analyze
the sole np as a canonical subject, versus using
its noise rules to analyze the np in a different posi-
tion, a preference emerges for the canonical-subject
analysis— just as we prefer to analyze a sequence
of heads as coming from a two-headed rather than
a head-tail coin. The fully-flexible learner does not
distinguish between canonical structures in which
subjects are required, and non-canonical structures
in which they are not, so no preference emerges to
to analyze a sole np in a specific clausal position.

For this learning problem, it appears helpful to
have a hypothesis space with a distinction between
core rules that provide deterministic options for
canonical word order, and noise rules that produce
non-canonical structures. This mixture of determin-
istic and non-deterministic options is what allows
the target basic clause structure to emerge as the
best explanation of the learner’s noisy data.

5.4 Comparison: A data-coverage heuristic

Our learner successfully shows a preference for
some hypotheses over others in a scenario where
none are compatible with all of the data. But
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Figure 6: Eight-way hypothesis space: proportion data
coverage vs. model’s posterior distribution

one might ask whether the same result could be
achieved via a much simpler approach: the core
rules of the SVO grammar can generate 56% of
the English data, which is a greater proportion than
can be generated by the core rules of any of the
alternatives (each less than 40%), and so this alone
might lead a learner to identify SVO as the pre-
ferred option. Our model’s inference mechanism
does more than simply recapitulate this “data cov-
erage” heuristic. To see this, it is useful to consider
a scenario where the learner has a wider range of
discrete hypotheses to choose among, including
some that are more restrictive than others.

We constructed a comparison learner that con-
siders an eight-way choice among Mixture PCFGs.
These include all four deterministic options from
our original model: grammars whose core rules fix
subject and object position. In addition, the hypoth-
esis space includes four more flexible grammars
whose core rules fix only one of those argument
positions, and allow the other to vary. For instance,
the grammar we call “SV” fixes the subject pre-
verbally, but allows the object to appear either be-
fore or after the verb: its rules are the union of the
rules in the SVO and SOV grammars. Similarly,
the “VS” grammar fixes the subject post-verbally
but allows object position to vary, and the “OV”
and “VO” grammars fix object position, but allow
subject position to vary. All eight grammars share
the same set of noise rules as in our original learner.

Given a choice among these eight grammars, the
data-coverage heuristic will always favor one of the
four more flexible ones, since they generate unions
of the stringsets generated by the original four. In
each of the top panels in Fig. 6, where a compari-
son only among the leftmost four grammars would
have SVO as the winner (roughly mirroring Fig. 4),



we see that the more flexible grammars in general
fare better by the data-coverage metric. But our
learner, on both languages, assigned SVO higher
posterior probability than any other grammar in the
hypothesis space (Fig. 6, bottom; all ps < 0.001,
averaged across 10 runs of the learner).

Why does our learner still succeed at identify-
ing that English and French are SVO, even when
there are other hypotheses that cover more of the
data? Intuitively, our learner considers a tradeoff
between fit to the data and restrictiveness of its
hypotheses. Given the choice between the restric-
tive SVO hypothesis that provides a decent fit to
the data, and the more flexible hypotheses that pro-
vide slightly better fits, a preference emerges for
the more restrictive option— again paralleling our
intuitive preference to attribute as many coin flips
as possible to a two-headed rather than a head-tail
coin. In our original model, this preference for re-
strictive hypotheses applied within each grammar,
governing the learner’s choice of attributing data to
the restrictive core rules vs. the flexible noise rules.
Here, we show that this same mechanism informs
the learner’s choice across grammars.

These findings demonstrate the flexibility and
robustness of this learning mechanism. Our learner
identifies strict SVO word order as its preferred hy-
pothesis not only in comparison with other equally-
strict alternatives, but also when other less restric-
tive options are available; the fact that it settled on
deterministic SVO order in Fig. 4 was not simply
a by-product of the fact that we provided only de-
terministic options. An implicit tradeoff between a
grammar’s restrictiveness and its fit to the data, and
the expectation that this fit will be noisy, together
enable the learner to identify the target determinis-
tic word order among more flexible hypotheses.

6 Discussion

We introduce a general mechanism for noise-
tolerant learning of deterministic grammars. Our
learner assumes that its data are generated by a
complex system: the particular grammatical pro-
cesses that the learner is currently trying to acquire,
and other unknown processes that conspire to in-
troduce variability into the data. We model the
inference process as a special case of probabilistic
grammar learning, in which the learner evaluates a
choice among different Mixture PCFGs: composite
grammars in which each node might be introduced
either by a restricted set of “core” rules, or by a
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less restricted set of “noise” rules.

We apply this approach to the problem of ac-
quiring basic word order from immature sentence
representations. Using distributions of imperfectly-
identified noun phrases and verbs, our model suc-
cessfully infers that English and French are SVO,
without further cues to underlying sentence struc-
ture. It does so by separating signal for canonical
word order from noise due to non-canonical struc-
tures, thereby implementing a proposal that young
learners “filter” non-canonical clauses from their
data (Pinker, 1984; Perkins et al., 2022). Because
the learner’s grammatical hypotheses allow only
certain restricted core rules, a preference emerges
to use these core rules to explain the skews in its
data when possible, rather than analyzing most of
the data as noise. This provides the impetus for
successful filtering, even though our learner does
not know ahead of time the rate or properties of
non-canonical clauses in the language.

While we focus here on Mixture PCFGs, this
same approach can be applied to “mixture” ver-
sions of other sorts of grammars that generate com-
plex structures as a function of local choices about
smaller subparts. This approach may therefore gen-
eralize to many other problems in grammar learn-
ing: e.g., learning phonological constraints that
can be expressed in mixture finite-state systems,
or learning syntactic dependencies that can be ex-
pressed in mixture multiple context-free grammars.

More broadly, this approach provides a novel
mechanism for regularization in grammar learning.
Here, a learner’s tendency to regularize variable
data is not driven by an explicit bias to prefer ex-
treme points in a fully-gradient space, but instead
emerges from the learner’s expectation that its data
are a noisy realization of a restrictive underlying
system. This invites the possibility that other ob-
served cases of regularization may be accounted for
without adopting a fully-flexible hypothesis space.
Instead, successful learning in certain domains may
be underwritten by deterministic options in the
learner’s hypothesis space, combined with a gen-
eral mechanism for filtering signal from noise.
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A Details of the coins example from
Section 2

Recall the scenario with just Bag H: this bag con-
tains an unknown number of Type A coins, which
always come up heads, and an unknown number of
Type B coins, which all have some single unknown
probability 6 of coming up heads. Ten times, a coin
is chosen from the bag and flipped; this produces
eight heads and two tails. How many of these ten
flips might we guess came from Type A coins, and
how many from Type B coins?
We consider three hypotheses:

e H1: 0 Type A flips, 10 Type B flips



* H2: 6 Type A flips, 4 Type B flips
* H3: 8 Type A flips, 2 Type B flips

The three hypotheses’ likelihoods, conditioned
upon the unknown probability 6, are as follows.

(4) Pr(data | H1,0) = () 6% (1 - 0)?

(5) Pr(data| H2,0) = (J) 1° ()92 (1-6)2
= () ¢°

(6) Pr(data|H3,0) = (§) 1% ()90 (1-0)?
=(1-0)

As noted in the main text, these expressions high-
light the fact that H1 is the most costly hypothe-
sis, since it relies most heavily on the contingent
outcomes from Type B coins, and H3 is the least
costly.

‘We can make this more precise by marginalizing
over the unknown value of 0 in (4) and (5). The
useful general result here is that

Yn k nekgy 1
) /O<k>e(1—e) = ——

for any n and k; notice that the right-hand side only
depends on n. Marginalizing over 6 in (4), (5) and
(6), under the assumption of a uniform prior on 6,
yields integrals of this form.> For H1, n = 10 so
Pr(data | H1) = -&. What this highlights is that
the likelihood under such a hypothesis depends
only on the number of times that hypothesis needs
to invoke the uncertain Type B coin flip: any out-
come of the ten-flip experiment invoked by H1 has
probability %, and any outcome of the two-flip
experiment invoked by H3 has probability %

Pr(data | HI) =
Pr(data | H2) =
Pr(data | H3) =

Wl U= =
,_."—‘

Now consider the choice between Bag H and
Bag T, as candidate explanations for a sequence of
ten flips that yielded eight heads and two tails. We
have seen that, using Bag H, the possible hypothe-
ses range from those that provide “good” explana-
tions of the data (such as H3 at one extreme) by
exploiting the presence of the two-headed coins, to

3Specifically, the uniform prior can be represented as
a Beta(l,1) distribution over 6, so Pr(data | Hl) =
[ Pr(data | 6,H1)Beta(d | 1,1)d0 = [, Pr(data |
0,H1)d0, since Beta(f | 1,1) = 1 for all 6.
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those that constitute “costly” explanations (such as
HI1 at the other extreme) because they rely heavily
on flips of the head-tail coins; see Fig. 7. With
Bag T, the explanations at the costly extreme are
still available (e.g. the hypothesis that all ten flips
came from head-tail coins; n = 10), but there is
no way for the two-tailed coins to contribute to par-
ticularly good explanations of the observed high
proportion of heads. To minimize the reliance on
the contingent outcomes of head-tail coins, the best
one can do is to suppose (call this H4) that the two
observed tails both came from two-tailed coins,
which still leaves eight uncertain flips. The likeli-
hood under this hypothesis (compare with (5) for
H2) is

(8) Pr(data | H4,0) = (3) 12
=68

B8 (1-0)0°

and Pr(data | H4) = ¢

Returning now to the overarching choice be-
tween the two bags: the likelihood assigned to the
data by a particular bag is the sum of the heights of
the associated bars in Fig. 7. This is clearly larger
for Bag H, and so assuming a flat prior over the
two bags, the posterior probability of Bag H will
be higher than that of Bag T.

B Details of Gibbs sampling

In the first step of sampling, we use Bayes’ Rule to

calculate the posterior probability of each grammar

given the observed strings w and a collection of

hypothesized coarse structures 5 for those strings:
P(8, @|G)P(G)

O PUOIS ) = = p 5 e Py

Bayes’ Rule tells us that the posterior probability
of any grammar is proportional to the product of



the likelihood (the probability of 5'and « under that
grammar) and the prior probability of that grammar.
We assume that all four grammars have equal prior
probability.

Because we are only considering coarse struc-
tures that could have yielded the strings in the data,
the joint likelihood of the coarse structures and
strings, P (3, W|G), is equivalent to the likelihood
of the coarse structures alone, P(35]G). Calculating
this likelihood requires summing over the unknown
ways that each portion of these coarse structures
might be analyzed as either a core (¢, solid line)
or noise (¢, dashed line) rewrite. The specific core
vs. noise choices are interchangeable for each par-
ticular nonterminal given a grammar, so we make
this calculation tractable by considering how many
core vs. noise rewrites might have occurred for
each nonterminal.

We divide the n* total observations of a par-
ticular nonterminal A into n{!...n4 observations
of the 1°¢ through the m* possible rewrites (col-
lapsing across ¢-rewrites and i-rewrites of A).
The full likelihood of the set of coarse structures,
P(3]G), is the product over all nonterminals A of
P(n{'...n2 | G). We divide each of the observed
rewrites of a nonterminal into some number of core
(solid line) rewrites (¢) and some number of noisy
(dashed line) rewrites (V). The n{‘ occurrences
of the first type of rewrite for A are divided into
n‘fm core occurrences and n‘lw noisy occurrences.
More generally, the n/A occurrences of the m!*
rewrite type are divided into nﬁf core occurrences

o
and n/}" noisy occurrences. We can calculate the

likelihood by marginalizing over n‘l‘w . n,‘?f:
(10) P(51G) = HP 110)=

i z S et

A =0 nA’=0

xP(n‘fw . ..nﬁwm‘w, G)

xp(nA%A,G)H

The first term in the sum is the probability of

. ® ®
observing nf nﬁl core occurrences of each

rewrite type, out of n“’ total core occurrences of
A. This follows a multinomial distribution with
parameter ¢¢. Because ¢”¢ is unknown, we
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integrate over all possible values of q?AG to obtain

B(ap + (... n%))
B(ae)

an

for this first term, where a¢AG represents the pa-
rameters of the Dirichlet prior over ¢¢, and B(-)
is the multivariate Beta function.

The second term in the sum in (10) is analogous:
this is the probability, given n” total noisy oc-
currences of A, of observing n‘fw e n;‘}f noisy
occurrences of each rewrite type, which follows a
multinomial distribution with parameter JAG. The
third term is the probability of observing n4? to-
tal core occurrences out of n** overall occurrences
of A. This follows a binomial distribution with
parameter (1 — e ) We again integrate over all
possible values of 1/}AG and ¢4¢ obtaining results
analogous to Eq. (11).

This allows us to calculate the likelihood P(3 |
G) for each G in our hypothesis space, and (since
we assume a flat prior of grammars) sample a new
G with probability proportional to this likelihood.

After re-sampling a new grammar G, we then
use a component-wise Hastings proposal to sample
a new set of coarse structures § for the observed
strings, given G. Following Johnson et al. (2007),
we consider the probability of a particular coarse
structure s; for corresponding string w;, given G
and the current hypotheses about coarse structures
§_; for all the other strings. We can define a func-
tion f that is proportional to the posterior distribu-
tion over s;, f(s;) < P(s;|w;, §—;, G), as

f(si) =

The probability of a string being the yield of a
given coarse structure, P(w;|s;), is always 1 or 0.
The probability of a coarse structure given all other
coarse structures and G, P(s;|5—;, G), is

P(51G)
P(5-iG)

(12) P(wilsi)P(sil5-i, G)

(13) P(s;i]s_i,G) =
Both P(5]G) and P(5_;|G) are calculated accord-
ing to to Eq. (10).

We can use this function f to sample § given
G and 0 as follows. Within each iteration of the
Gibbs sampler, we re-sample 5 using a procedure
modified from Johnson et al. (2007). First, we
choose a string w; and its current corresponding
s; at random. Second, we take the other coarse
structures 5_;, to be the output of a simple PCFG



which generates coarse structures directly, rather
than the full trees generated by a Mixture PCFG.
We estimate of the weights of this PCFG, 9_5, from
the relative frequencies of each observed rewrite,
using add-one smoothing to account for accidental
gaps. Third, we generate a new proposed coarse
structure s;/ for w; by sampling from this gram-
mar’s distribution using 65. Finally, we decide to
accept this proposal with probability

(14)  A(s]) = min (1’ f(Si’)P(Siwzw@j)>
f(si)P(si'|wi, 0°)

We ran multiple chains from different starting
places to test convergence. For the simulations
reported in Sec. 5.2, we ran chains of 20,000 iter-
ations of Gibbs sampling each, and analyzed ev-
ery 10th iteration from the last half of each chain.
We report averages across 10 chains as estimates
of the posterior over G and §. To simulate the
“fully-flexible” learner described in Sec. 5.3, we
estimate the posterior distribution over £ by using
a component-wise Hastings sampler analogous to
that for estimating P(5|G, W) in our original model.
We ran 10 chains of 20,000 Hastings iterations each,
and analyzed every 10th iteration from the last half
of each chain.
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