
 

 
 

Abstract 

Lexical complexity is crucial for reading 

comprehension. In the past, research work 

of lexical complexity prediction mainly 

focuses on differentiating the complexity 

difference between two words. Moreover, 

most of the previous lexical complexity 

prediction approaches only consider 

traditional lexically relevant features. In 

this paper, we propose a novel supervised 

approach using word embeddings features 

to tackle the lexical complexity prediction 

problem as a single-label multi-

classification problem. We discuss four 

word embeddings techniques including 

Word2Vec, fastText, GloVe, and BERT. We 

also discuss five classification models 

including k-Nearest Neighbors, Support 

Vector Machines, Multilayer Perception, 

Random Forest, and XGBoost. The 

prediction models are evaluated with three 

datasets in English, Traditional Chinese, 

and Japanese. The results show that SVM 

with fastText can achieve the highest 

accuracy of 66.23% for the English dataset. 

SVM with GloVe can achieve the highest 

accuracy of 53.84% for the Traditional 

Chinese dataset. SVM with Word2Vec can 

achieve the highest accuracy of 49.96% for 

the Japanese dataset. 

Keywords: Lexical Complexity, Word Embeddings, 

Classification Models 

1 Introduction 

In many human reading activities, lexical 

complexity plays an important role for reading 

comprehension (North et al., 2023). Lexical 

complexity prediction, therefore, becomes a 

crucial sub-task for various natural language 

understanding (NLU) tasks. For example, in the 

lexical simplification task (Specia et al., 2012) 

aiming to replace words that are difficult for 

readers to completely understand with alternative 

words that can be more easily understood, 

identifying complex words by estimating their 

lexical complexity degree enables the 

simplification systems to find complex words for 

the following replacements (Shardlow, 2013, 

2014). 

To predict lexical complexity levels of words, 

various approaches (Elhadad & Sutaria, 2007; 

Keskisärkkä, 2012; Maddela & Xu, 2018; North et 

al., 2023; Paetzold & Specia, 2010; Shardlow, 

2013; Zeng et al., 2005) have been proposed to 

identify complex words. For example, word 

frequency thresholds are used to identify complex 

words in the work of Shardlow (Shardlow, 2013) 

and the work of Keskisärkkä (Keskisärkkä, 2012). 

Elhadad et al. proposed a lexicon-based approach 

to recognize complex words (Elhadad & Sutaria, 

2007). The identification performance of 

approaches based on Support Vector Machines 

(SVM) (Vapnik, 1996) are evaluated in the work 

of Zeng et al.  (Zeng et al., 2005) and the work of 

Shardlow (Shardlow, 2013). However, these 

lexical complexity prediction approaches only 

consider traditional lexically relevant features, 

such as word frequencies and Part-of-Speech 

attributes, to construct the prediction models. Since 

past studies show that word embeddings features 

can effectively represent the semantic space to 

capture semantic relations (Incitti et al., 2023), 

lexical complexity of the context is latently 

embedded in the lexical co-occurrence space. As 

shown in (Shardlow et al., 2022), collocations are 

an important feature to assess lexical complexity. 

In this paper, we propose a novel supervised 

approach using word embeddings features to 

facilitate the construction of lexical complexity 

prediction models.                    

In this paper, four word embeddings techniques 

are investigated to study their effectiveness: 
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Word2Vec (Mikolov, Sutskever, et al., 2013), 

fastText (Bojanowski et al., 2017; Joulin et al., 

2017), GloVe (Pennington et al., 2014), and BERT 

(Devlin et al., 2018). Five machine learning 

models are studied to explore their prediction 

performance: k-Nearest Neighbors (Fix & Hodges, 

1989), Support Vector Machines (SVM) (Vapnik, 

1996),  Multilayer Perception (MLP) (Rumelhart 

et al., 1986), Random Forest (RF) (Breiman, 2001), 

and XGBoost (Chen & Guestrin, 2016). Different 

with the previous lexical simplification studies that 

consider the lexical complexity prediction problem 

as a binary classification problem, the proposed 

approach tackles this prediction problem as a 

single-label multi-classification problem. 

To investigate the effectiveness of the proposed 

approach, experiments use three datasets in 

English, Traditional Chinese, and Japanese. The 

experimental results show that SVM with fastText 

achieves the highest accuracy of 66.23% for the 

English dataset, SVM with GloVe achieves the 

highest accuracy of 53.84% for the Traditional 

Chinese dataset, and SVM with Word2Vec 

achieves the highest accuracy of 49.96% for the 

Japanese dataset. Overall, SVM has the best 

accuracy performance among all studied 

classification models and fastText performs well 

on average among all studied word embeddings 

techniques. 

The remainder of this paper is organized as follows. 

Section 2 briefly reviews related work. Section 3 

describes the proposed lexical complexity 

prediction approach and the studied machine 

learning models. Section 4 presents the datasets. 

Section 5 describes the experiments and discusses 

the results. Finally, Section 6 concludes the paper. 

2 Related Work 

In 2005, Zeng et al. (2005) proposed a text 

corpora-based approach using Support Vector 

Machines to predict term feasibility. In 2007, 

Elhadad and Sutaria (2007) proposed an 

unsupervised corpus-driven method to construct a 

lexicon in which medical terms are paired with 

semantically equivalent lay terms. They identified 

words using Part-of-Speech tagging and designed 

a semantic filter method by considering alternative 

association measures and UMLS (Unified Medical 

Language System) features.  

In 2012, Keskisärkkä (2012) proposed an 

automatic lexical simplification approach to 

substitute words with other alternatives according 

to word frequencies, word lengths, and levels of 

synonyms. In the work of Shardlow (2013), a word 

frequency thresholding approach is evaluated 

against two other lexical simplification methods 

(i.e., the all-simplifying method and the SVM-

based method). The experimental results show that 

the SVM-based method can effectively identify 

complex words to achieve the highest precision 

performance. However, it achieves a slightly lower 

recall performance because more complex words 

are misclassified as simple words.  

In 2018, Maddela et al. (2018) proposed a 

Neural Readability Ranker (NRR) model with a 

Gaussian-based feature vectorization layer trained 

by a human-labeled lexical complexity lexicon for 

lexical simplification. To train the NRR model, 

they first built a word complexity lexicon with 

15,180 words. Therefore, NRR can determine the 

relative complexity between two words. However, 

NRR does not consider how to predict lexical 

complexity for each word. 

3 Prediction Methodology 

This section first describes the proposed 

prediction approach. It then describes the word 

embeddings techniques discussed in this paper. 

The studied machine learning models are then 

presented.  

3.1 Proposed Prediction Approach 

Word embeddings technology has been proven 

very effective in many natural language processing 

(NLP) tasks (Incitti et al., 2023). With word 

embeddings processing, words are represented as 

n-dimensional numerical vectors to capture the 

semantic meaning based on contextual information. 

Since the vectors are derived from their 

surrounding context information, lexical 

complexity information is implicitly embedded in 

the word embeddings representation. Therefore, 

this paper proposes a supervised approach to 

predict the lexical complexity levels of words 

based on their word embeddings. 

In this paper, the lexical complexity prediction 

problem is defined as a single-label multi-

classification problem. Given a set of 𝑀 

predefined lexical complexity levels  𝐶 =
{𝑐1, 𝑐2, … , 𝑐𝑀} and a labeled lexicon 𝐿, the lexical 

complexity level of a word 𝑤𝑖  is predicted to a 

lexical complexity level 𝑐𝑗 ∈ 𝐶 as follows:  

𝑐𝑗 = ℎ(𝑤𝑖|𝐿)    (1) 

The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023) 

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing 

 

 

 

280



 

 
 

where ℎ is a trained classification model. 

Figure 1 illustrates the proposed prediction 

model. If there is not an available pre-trained word 

embeddings corpus to train a classification model, 

word corpus data are first collected to generate the 

corresponding word embeddings. Before the word 

embeddings processing, the word corpus data are 

preprocessed. The details will be elaborated in 

Section 4 that describes the experimental datasets. 

The word embeddings and a complexity-labeled 

lexicon are the training data for the supervised 

classification models. In this paper, four well-

known word embeddings models are studied: 

Word2Vec (Mikolov, Sutskever, et al., 2013), 

fastText (Bojanowski et al., 2017; Joulin et al., 

2017), GloVe (Pennington et al., 2014), and BERT 

(Devlin et al., 2018). These word embeddings 

models are considered because they have shown 

the effectiveness in many NLP tasks (Incitti et al., 

2023). In addition to the investigation of the word 

embeddings models, five supervised classification 

models are studied because they have been widely 

used in many machine learning tasks (Sen et al., 

2020). The studied classification models include k-

Nearest Neighbors (Fix & Hodges, 1989), Support 

Vector Machines (SVM) (Vapnik, 1996), 

Multilayer Perception (MLP) (Rumelhart et al., 

1986), Random Forest (RF) (Breiman, 2001), and 

XGBoost (Chen & Guestrin, 2016). 

3.2 Word Embeddings Models 

Word embeddings can effectively capture the 

semantic meaning based on contextual information. 

Lexical complexity of the context is thus latently 

embedded in the lexical co-occurrence space. This 

paper investigates the following four word 

embedding techniques. 

 

Word2Vec: Word2Vec (Mikolov, Chen, et al., 

2013) is one of the most common word 

embeddings techniques. With Word2Vec, a word in 

a corpus is represented as an n-dimensional 

numerical vector in the semantic space. As shown 

in the work  (Mikolov, Chen, et al., 2013), these 

word embeddings can capture semantic similarity 

relationship of words. 

In the Word2Vec model, there are two 

approaches to derive word embeddings: the 

Continuous Bag-of-Words (CBOW) model and the 

Continuous Skip-gram model. The CBOW model 

derives the vector representation of the target word 

based on the context words surrounding it. In the 

Skip-gram model, the word embeddings of words 

surrounding a given word is derived from the given 

word. According to the study (Jang et al., 2019), 

the CBOW model can achieve higher accuracy 

performance and is more stable than the Skip-gram 

model. 

fastText: To tackle the shortage of Word2Vec 

that does not consider subword information, 

Bojanowski et al. proposed fastText 

(Bojanowski et al., 2017). In fastText, syntactic 

relations of words are extracted to enhance word 

embeddings representation for morphologically 

rich languages. 

GloVe: Pennington et al. (2014) proposed 

GloVe to derive word embeddings by considering 

global lexical co-occurrence statistics from the 

given corpus. Instead of using the entire sparse co-

occurrence matrix of the corpus or the surrounding 

context, GloVe word embeddings are trained using 

only the non-zero elements of the co-occurrence 

matrix. Therefore, the vector space is constructed 

with substructures that are more meaningful. 

BERT: In 2018, Devlin et al. proposed the 

BERT (Bidirectional Encoder Representations 

from Transformers) model (Devlin et al., 2018). 

BERT utilizes the bi-directional encoder 

representation of the transformer for unsupervised 

pre-training. In contrast to previous techniques, 

BERT takes into account the context of the target 

word to understand the meaning of the text. 

3.3 Supervised Classification Models 

Since words are represented as n-dimensional 

numerical vectors, the proposed approach employs 

supervised classification models to classify each 

word into a lexical complexity class.  This paper 

investigates the following five supervised 

classification models. 

 

Figure 1: Lexical complexity prediction process. 
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kNN: The k-Nearest Neighbors (kNN) (Fix & 

Hodges, 1989) model considers 𝑘 nearest samples 

of a sample 𝑥 to decide the class of 𝑥. If most of 
the 𝑘 nearest samples belong to class 𝑌, kNN 

classifies 𝑥 to the class 𝑌. Thus the intent of using 
kNN is that the lexical complexity of a word will 
be determined by the word embeddings in the 
neighborhood of the word in the semantic space. 

SVM: Vapnik et al. proposed the Support Vector 

Machines (SVM) model to learn a hyperplane from 

the training data that distinguishes the training data. 

(Vapnik, 1996). According to its characteristics, 

using SVM is based on a hypothesis that word 

embeddings of the same lexical complexity are 

tentatively aggregated together in the semantic 

space. Therefore, SVM can find hyperplanes for 

lexical complexity prediction. 

MLP: The Multilayer Perceptron (MLP) model 

is a feedforward artificial neural network using 

perceptron extension (Rumelhart et al., 1986). In 

the training process, the parameters of the MLP 

model are adjusted according to the numerical 

values of training word embeddings. The idea of 

using MLP is that different dimensions should be 

weighted differently for lexical complexity 

prediction.  

RF: Breiman proposed the Random Forest (RF) 

model by considering multiple decision trees  that 

are weak classification models (Breiman, 2001). 

RF combines the decision tree output to determine 

the final classification result. Since multiple weak 

classification models are aggregated, the 

classification performance can be improved. 

Therefore, the idea of using RF is to construct an 

ensemble learning model of many decision trees 

considering variations of word embeddings in 

different dimensions. 

XGBoost: Chen et al. proposed the eXtreme 

Gradient Boosting (XGBoost) (Chen & Guestrin, 

2016) by extending the Gradient Boosted Decision 

Tree (GBDT) model. Unlike RF, XGBoost is a 

boosting method and RF is a bagging method. In 

the training process, XGBoost optimizes the 

parameters to tackle the overfitting problem. 

Similar to the idea of using RF, the idea of using 

XGBoost is to consider word embedding variations 

                                                           
1 https://drive.google.com/file/d/ 
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit 
2 https://nlp.stanford.edu/projects/glove/ 
3 https://fasttext.cc/docs/en/english-vectors.html 
4 https://pypi.org/project/bert-embedding/ 

in different dimensions, but applying the boosting 

approach. 

4 Datasets 

Two corpora are needed to perform lexical 

complexity prediction using word embeddings: a 

pre-trained word embeddings corpus and a labeled 

complexity corpus. These corpora are detailed in 

the following subsections. 

4.1 Word Embeddings Datasets 

In this study, we prioritize the use of available 

word embeddings corpora. If there is no 

appropriate corpus, we retrain a new one. 

For English Word2Vec word embeddings, this 

study uses a pre-trained Google News corpus1 of 3 

million words. This corpus is trained using the 

CBOW model. The dimensionality is 300. For 

English GloVe word embeddings, this study uses a 

pre-trained GloVe corpus2  having 6 billion 300-

dimension word embeddings, 

glove.6B.300d.txt. For English fastText 

word embeddings, a pre-trained 300-dimention 

corpus3 , wiki-news-300d-1M.vec, is used. 

For English BERT word embeddings, this study 

uses a pre-trained 768-dimension corpus4 that was 

released by MXNet using GluonNLP. 

For Traditional Chinese word embeddings, we 

retrain the corpora using a Traditional Chinese 

Wikipedia dataset dumped on March 20, 2021 

from the Traditional Chinese Wikipedia 5 . To 

retrain Chinese Word2Vec word embeddings, 

genism 3.7.36 is used with the CBOW model, the 

window size is 5, and the dimension is 300. These 

parameter settings are also used to retrain 

Traditional Chinese fastText word embeddings. To 

retrain Traditional Chinese GloVe word 

embeddings, we used GloVe7 with a window size 

of 5 and 300 dimensions. To retrain Traditional 

Chinese BERT word embeddings, we use the 

traditional Chinese transformers model of 

CKIPLab 8  to extract the last hidden states. The 

dimensionality is 768. 

 For Japanese word embeddings, we use the 

same tools with the same parameters to retrain the 

Word2Vec, fastText and GloVe corpora using a 

5 https://dumps.wikimedia.org/zhwiki/ 
6 https://pypi.org/project/gensim 
7 https://github.com/stanfordnlp/GloVe 
8 https://huggingface.co/ckiplab/bert-base-chinese 
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Japanese Wikipedia dataset dumped on May 1, 

2021. For Japanese BERT word embeddings, we 

use a pre-trained BERT model 9  trained with 

Japanese Wikipedia dumped on September 1, 2019. 

This model has the same model architecture as the 

original BERT and is trained using the same 

parameters. The model has 32000 words. 

4.2 Lexical Complexity Datasets 

For the English lexical complexity corpus, this 

study uses the WC15180 dataset (Maddela & Xu, 

2018). The lexical complexity of each word in 

WC15180 is assessed by 11 non-native but fluent 

English speakers of different native languages. 

There are six complexity levels in WC15180: Very 

Simple (Level 1), Moderately Simple (Level 2), 

Simple (Level 3), Complex (Level 4), Moderately 

Complex (Level 5), and Very Complex (Level 6). 

Table 1 illustrates six WC15180 examples. 

For the Traditional Chinese lexical complexity 

corpus, we use a lexical corpus of 3 Grades and 7 

Levels (三等七級詞語表)10  released by National 

Academy for Educational Research (NAER). This 

corpus has 14,470 words. However, this corpus 

needs to be preprocessed. First, multiple words are 

regarded as a group in the corpus such as “一點/一

點點/一點兒” (a little). For this word group, we 

divide it into three words of the same level. In this 

study, a total of 365 word groups are divided into 

753 words. Second, a word may have different 

lexical complexity levels because of its different 

pronunciations. For example, the complexity level 

is Level 4 for “人家” (house/folk) when the word 

is pronounced as “rén jiā” (house/family status), 

but its level becomes Level 5 when the word is 

pronounced as “rén jia” (folk/people). In this study, 

the lowest level among multiple levels of the word 

                                                           
9 https://huggingface.co/cl-tohoku/bert-base-
japanese-whole-word-masking 

is used as the representative level of the word. 

Therefore, the complexity level is Level 4 for “人

家” in this study. The corpus has a total of 83 words 

of this condition. After these processing steps, 

there are 14,772 Chinese words. Table 2 illustrates 

seven examples in the NAER corpus. 

For the Japanese lexical complexity corpus, use 

the Japanese Language Education Vocabulary List 

(JEV) (日本語教育語彙表)11 (李在鎬, 2013). It 

contains 17,920 words divided into six levels: the 

first half of the elementary level (Level 1), the 

second half of the elementary level (Level 2), the 

first half of the intermediate level (Level 3), the 

second half of the intermediate level (Level 4), the 

first half of the advanced level (Level 5), and the 

second half of the advanced level (Level 6). 

However, a Japanese word may have different 

pronunciations and thus has different lexical 

complexity levels. For example, “今日” (today) 

can be pronounced as “キョウ” (kyo) or “コンニ

チ” (konnichi). The complexity level of the former 

is Level 1 but the level of the latter is Level 4. The 

situation becomes more complex when the word 

has different morphological variants. For example, 

“時” is pronounced as “ジ” (zi). When the type of 

“時” is  “Suffix-Noun-Measure Word” (接尾辞-名

詞的-助数詞) (e.g., 九時, ku zi), the level is 1. 

When its type is “Suffix” (接尾辞) (e.g., 使用時, 

shiyo zi), the complexity level becomes Level 2. 

As the process in Chinese, the lowest level among 

multiple levels of a Japanese word is used as the 

representative level. After these processing steps, 

10 https://coct.naer.edu.tw/download/tech_report/ 
11 http://jhlee.sakura.ne.jp/JEV/ 

Word Level 

east 1 

wet 2 

producer 3 

hypothetical 4 

interdisciplinary 5 

dehydrogenase 6 

Table 1: Lexical complexity examples in 

WC15180. 

 

Word Level 

一些 (some, a few) 1 

西瓜 (watermelon) 2 

雜誌 (magazine) 3 

賺錢 (earn/make money) 4 

出路 (outlet/way out) 5 

興高采烈 (rejoicing) 6 

無懈可擊 (invulnerability) 7 

Table 2: Lexical complexity examples in the 

NAER corpus. 

 

The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023) 

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing 

 

 

 

283



 

 
 

there are 17,207 Japanese words. Table 3 illustrates 

six JEV examples. 

5 Experiments 

5.1 Experiment Settings 

In the experiment of this research, we 

implemented each classification model with 

Python 3.8.5, Scikit-learn 0.23.112 , and xgboost 

1.3.1 13 . We used Jieba 0.42.1 14  as the Chinese 

segmentation tool, and MeCab 0.996.2 15  as the 

Japanese segmentation tool.  The word 

embeddings retraining models are described in 

Section 4.1. The parameters used for the MLP 

model are shown in Table 4. The number of trees 

(n_estimators) in the RF model is 100. The 

default parameter settings are used for other 

classification model. 

To measure the prediction performance, we only 

used words that appear in both the word 

embeddings dataset and the lexical complexity 

corpus for training and testing. Table 5 shows the 

numbers of words used in the experiments. Table 6 

                                                           
12 https://scikit-learn.org 
13 https://pypi.org/project/xgboost/ 

shows the complexity distributions of the datasets 

of three languages. 

In the experiments, we used the stratified 10-

fold cross validation approach to measure the 

prediction accuracy of the test data. The measures 

of 10 folds are averaged for performance 

comparison.  

5.2 Results and Discussions 

Table 7 shows the experimental results for the 

English corpus. From the table we can find that the 

SVM model with fastText word embeddings can 

achieve the best accuracy performance of 66.23%. 

From the point of view of word embeddings, 

GloVe performs the best. However, if the kNN 

model is excluded in the performance comparison, 

fastText has the best performance.  

From the table we can also find that the kNN 

model has the worst performance. This reveals that 

considering semantically similar words to predict 

the lexical complexity is ineffective. From the 

following experimental results of Traditional 

Chinese and Japanese, we can also find that the 

kNN model has the poorest performance.   

14 https://github.com/fxsjy/jieba 
15 https://taku910.github.io/mecab/ 

Word Level 

午前 (morning) 1 

言葉 (words) 2 

最高 (the best) 3 

予感 (premonition) 4 

公共放送 (public broadcasting) 5 

疾走 (dash) 6 

Table 3: Lexical complexity examples in the JEV 

corpus. 

 

Parameter Settings 

Solver lbfgs 

Alpha le-5 

Hidden layer sizes (5,5) 

Random state 1 

Table 4: Settings for the MLP model. 

 

Language Voc. Size 

English 9,110 

Traditional Chinese 14,538 

Japanese 15,516 

Table 5: Vocabulary sizes in the experiments. 

 

 
English 

Trad. 

Chinese 
Japanese 

Level 1 606 435 370 

Level 2 3646 435 687 

Level 3 3730 472 1969 

Level 4 1027 1463 5573 

Level 5 88 2678 5606 

Level 6 13 4159 1311 

Level 7  4896  

Total 9110 14538 15516 

Table 6: Complexity distributions of the datasets of 

three languages. 

 

 kNN SVM MLP RF XGB Avg. 

W2V 40.76% 64.60% 59.69% 57.37% 60.18% 56.52% 

GloVe 55.59% 64.72% 61.04% 59.13% 61.60% 60.42% 

fastText 48.91% 66.23% 63.70% 59.01% 62.38% 60.05% 

BERT 55.79% 61.72% 63.13% 57.57% 61.19% 59.88% 

Avg. 50.26% 64.32% 61.89% 58.27% 61.34%  

Table 7: Complexity prediction accuracy 

performance for the English corpus. 
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Table 8 shows the experimental results for the 

Traditional Chinese corpus. The results show that 

the SVM model with GloVe word embeddings can 

achieve the best accuracy performance of 53.84%. 

fastText has the best performance among all word 

embeddings techniques. The performance of 

BERT is very poor. A possible reason is that the 

Wikipedia document size for BERT word 

embeddings retraining is still small. Among all 

classification models, SVM has the best accuracy 

performance. Among all word embeddings 

approaches, fastText has the best prediction 

performance. 

Table 9 shows the experimental results for the 

Japanese corpus. The results show that SVM with 

Word2Vec can achieve the best accuracy 

performance of 49.96% and SVM has the best 

average accuracy performance among all 

classification models. From the point of view of 

word embeddings, Word2Vec has the best 

performance for the Japanese corpus, followed by 

fastText. Similarly, the performance of BERT is 

still poor as the Traditional Chinese experiments. 

This may be due to the same reason of small 

Wikipedia data size. 

From the above experimental results, we can 

find that fastText performs well on average in 

lexical complexity prediction. From the point of 

view of the classification model, SVM can be a 

good choice in lexical complexity prediction. 

6 Conclusions 

Lexical complexity is crucial for reading 

comprehension. In lexical simplification tasks, 

complex words are replaced with simpler words to 

ease human understanding. Effectively identifying 

complex words by predicting their lexical 

complexity levels becomes a research issue known 

as the lexical complexity prediction problem. 

In the past, research work of lexical complexity 

prediction mainly focuses on differentiating the 

complexity difference between two words. The 

lexical complexity prediction problem is tackled as 

a binary classification problem. Moreover, most of 

the previous lexical complexity prediction 

approaches only consider traditional lexically 

relevant features. In this paper, we propose a novel 

supervised approach using word embeddings 

features to tackle the lexical complexity prediction 

problem as a single-label multi-classification 

problem. Since word embeddings features can 

effectively represent the semantic space to capture 

semantic relations, the proposed approach employs 

these features to predict lexical complexity. 

We have conducted experiments to study the 

effectiveness of four word embeddings techniques 

and five classification models. The prediction 

models are evaluated with three datasets in English, 

Traditional Chinese, and Japanese. The 

experimental results show that SVM with fastText 

achieves the highest accuracy of 66.23% for the 

English dataset, SVM with GloVe achieves the 

highest accuracy of 53.84% for the Traditional 

Chinese dataset, and SVM with Word2Vec 

achieves the highest accuracy of 49.96% for the 

Japanese dataset. Overall, SVM has the best 

accuracy performance among all studied 

classification models and fastText performs well 

on average among all studied word embeddings 

techniques. 

There are research issues that will be investigated 

in the future. First, a comprehensive study on other 

word embeddings techniques and classification 

models are planned to explore their effectiveness. 

For transformer-based word embeddings 

techniques like BERT, the training data size will be 

studied to observe its influences. For words that are 

not included in the labeled corpora, human 

evaluation will be the next step to verify the 

effectiveness of the proposed approach. It is 

expected that the proposed prediction approach can 

 kNN SVM MLP RF XGB Avg. 

W2V 41.90% 53.35% 51.22% 46.11% 48.93% 48.30% 

GloVe 40.89% 53.84% 52.44% 44.54% 48.10% 47.96% 

fastText 42.26% 53.10% 50.34% 46.72% 49.37% 48.36% 

BERT 30.02% 37.14% 37.58% 36.26% 37.14% 35.63% 

Avg. 38.77% 49.36% 47.90% 43.41% 45.89%  

Table 8: Complexity prediction accuracy 

performance for the Traditional Chinese corpus. 

 

 kNN SVM MLP RF XGB Avg. 

W2V 42.10% 49.96% 46.51% 45.17% 46.95% 46.14% 

GloVe 39.93% 49.22% 47.42% 42.67% 45.30% 44.91% 

fastText 41.99% 48.86% 46.22% 44.68% 47.08% 45.77% 

BERT 36.07% 42.05% 40.96% 40.26% 40.58% 39.98% 

Avg. 40.02% 47.52% 45.28% 43.20% 44.98%  

Table 9: Complexity prediction accuracy 

performance for the Japanese corpus. 
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be utilized to save valuable labor and time costs for 

lexical complexity assessment. 
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