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Abstract

In this paper, we explore compact convolutional
neural networks (CNNs) for end-to-end key-
word spotting from raw audio to final recogni-
tion results, without using traditional feature
extraction based on spectrogram. Such fully
CNN models reach 90.5% accuracy, an im-
provement of 12.15% over traditional meth-
ods with similar structures, which only achieve
78.35% accuracy, on the Speech Commands
dataset. This shows that learned CNN fea-
tures outperform predefined FFT-based trans-
forms. The results show that compact end-to-
end CNNs enable efficient, accurate small vo-
cabulary keyword spotting that is well-suited
for resource-constrained edge devices. All code
will be released on the GitHub of the authors
[Lin and Lyu, 2023].

Keywords: End-to-end models, raw audio pro-
cessing, keyword spotting

1 Introduction

Keyword spotting is a critical technology for edge
applications such as voice-activated devices, smart
speakers, industrial automation, security surveil-
lance, and virtual assistants [Hoy, 2018]. It allows
users to interact with devices hands-free, control
devices without remote controls, operate machinery
efficiently and safely, detect and respond to emer-
gencies quickly, and get help and information from
virtual assistants without opening dedicated apps.
This technology has seen significant advances with
the rise of deep learning.

Recently, an open-sourcing neural net called
Whisper from OpenAl, which approaches human-
level robustness and accuracy in English and mul-
tilingual speech recognition, has been released.
[Radford, 2021] The Whisper model has proven
to be very successful in large vocabulary speech
recognition tasks. However, when it comes to
keyword spotting on resource-constrained devices,
the Whisper model has some disadvantages com-
pared to a CNN-based model [Dai, 2016] due to
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its model complexity, inference speed/latency, and
large memory footprint. This can be problematic
on devices with limited computational and storage
capacity. Recent research [Petrov, 2023] further
shows that language model tokenizers favor En-
glish over other languages, exacerbating the re-
source constraints of non-English edge applica-
tions.

Convolutional neural networks (CNNs), on the
other hand, have been proven particularly effective
for speech processing tasks compared to older sta-
tistical models [LeCun, 2015]. However, CNNs
may quickly lose their advantages if the network is
too deep [He, 2016].

In this paper, we explore various CNN archi-
tectures for an end-to-end keyword-spotting appli-
cation. Specifically, we investigate replacing the
commonly used Fourier transform preprocessing
with learned convolution layers for directly process-
ing raw audio input. We also examine the tradeoffs
between smaller and larger-scale CNN models in
terms of accuracy and overfitting.

Our contributions are three-fold. First, we
demonstrate competitive accuracy with an end-to-
end CNN model operating directly on raw audio
data, removing the need for engineered feature ex-
traction. Second, we show that smaller CNN mod-
els can approach the accuracy of larger counter-
parts, reducing overfitting concerns given the lim-
ited training data size. Finally, we identify critical
design choices regarding convolution window size
and stride, model depth, and training procedures
that impact performance.

Overall, this work provides good insights into
the practical application of convolutional neural
networks for small-vocabulary keyword spotting.
Our findings on end-to-end learning from raw au-
dio and model sizing considerations could help
guide the design of accurate and compact CNN
architectures suitable for embedded speech recog-
nition applications. The tradeoffs identified also
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suggest promising directions for further improving
the accuracy of this audio classification task.

This paper is organized as follows. Section 2
presents the model architecture, which consists
of several convolutional layers, a pooling layer,
2 fully connected layers, and a softmax layer. Sec-
tion 3 describes the experimental setup, includ-
ing the SPEECHCOMMAND dataset used in this
study. Section 4 reports the primary experimental
results. Finally, Section 5 concludes the paper and
discusses future work.

2 Model Architectures

Convolutional Neural Networks

Convolutional neural network layers offer some
critical advantages over Fourier transforms for pro-
cessing raw audio data in speech recognition sys-
tems. The convolution kernels are optimized during
training to extract the most useful representations
of the input audio for the specific task. They learn
data-driven features tailored to the dataset, rather
than relying on a predefined transformation like
the Fourier transform. Therefore, we hypothesize
that CNNs can discover optimal ways to transform
the raw waveforms to best feed into later network
layers. Additionally, convolutional layers provide
more flexibility compared to Fourier transforms
in how the audio is processed. Parameters such
as kernel size, stride, padding, and the number of
filters can be tuned to appropriately transform the
audio. With a Fourier transform, you get a fixed
transformation with less ability to configure it to
the data. Taking inspiration from the paper [Dai,
2016], we constructed a set of pure convolutional
layers aiming to perform speech recognition of 35
English words.

In Figure 1, we described the actual CNN (left
side) and FFT-based Mel-Spectrogram model (right
side). First of all, the input is a 1x16000 tensor,
which represents a 1-second audio with a sample
rate of 16000. Traditionally, the input tensor is then
transformed into a 2D tensor with a window size of
320, a hop length of 160, and 64 output channels.
This is done by using the MelSpectrogram function
from torchaudio, a python package in PyTorch plat-
form and we will see a 2-dimensional tensor with
a shape of 64x99, which is precisely a mel-scaled
spectrogram shown as a 2D image on the right side
of Figure 1.

Several convolution layers with a window length
of 4, a stride of 2, and doubled output channels are
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then applied to the input tensor. The model reaches
a maximum of 256 channels and then keeps the
number of channels at 256 until the second-to-last
convolution layer. Then, a convolutional layer re-
duces the number of channels from 256 to 128. The
following tensor is then passed through a pooling
layer, which averages out all the values in each fea-
ture map, resulting in a tensor with a shape of 128 x
1. The resulting tensor is then passed through two
fully connected layers with shapes of 128x1 and
64x1 and then reaches the number of output classes,
35, the number of possible word options. The ten-
sor is also passed through a softmax layer, which
outputs the probability of each predicted word. The
word with the highest probability is then chosen as
the model’s output.

The Python code for the prototype structure of
the model is also shown in Figure 2, as a Python
class asrCNN. This model is trained with the Adam
optimizer and a learning rate of 0.001. The loss
function is the cross-entropy loss function. The
model is trained for about 30 epochs, and the model
with the highest accuracy on the validation dataset
is chosen as the final model. The model is then
tested on a completely new dataset, the testing
dataset, and the accuracy is reported as the final
accuracy of the model.

3 Experiment Setup

The Dataset

Speech Commands is an open-source dataset
consisting of 105,829 one-second English utter-
ances of 35 words from 2,618 speakers [Warden,
2018]. It includes common words like digits and
directions, as well as background noise clips. The
files are in 16kHz WAV format, and the uncom-
pressed waveforms total 3.8GB. The dataset’s au-
thor suggested using specific files for training, test-
ing, and validation, resulting in 84,843, 11,005,
and 9,981 files, respectively. During our develop-
ment, we utilized the validation set and only used
the testing dataset once, as our model had already
determined its "best performance" using the vali-
dation set. Therefore, we required an additional
dataset that had not been used during our develop-
ment process. We report the results of testing on
this new dataset as the final results. In each model
(Table 1: asrCNN1, asrCNN2, asrCNN3, and as-
rCNN4), we retained the model’s parameters if it
achieved the highest validation dataset accuracy.
Otherwise, we replaced the parameters with those
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of the new model if it achieved higher validation
g—— dataset accuracy. Finally, we tested each model on
' if— L A a completely new dataset, the testing dataset.
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Figure 1: Diagram which describes the CNN (left) and
FFT-based Mel-Spectrogram (right) models.
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return x

Figure 2: the python code for the proto-type astCNN
model.
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Table 1: Parameter sets for the structures of 4 different
CNN models (asrCNN1 , asrCNN2, asrCNN3, and asr-
CNN4).

Traditional Input Transformations.

For all the models, we initially converted the in-
put audio signal into a 1D tensor, with each value
representing the magnitude of the audio at a spe-
cific time period. Table 1 shows the block diagram
of the proto-type CNN models used in this paper.
However, for the first two models (asrCNN1 and as-
rCNN2), we added an additional Fourier transform
layer with 64 intervals evenly distributed in mel-
scale frequency and a hop length of 160. This trans-
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formation converted the input audio data into a two-
dimensional spectrogram. We chose these numbers
because we believed that, for smaller-scale models,
64 distinct frequencies would suffice to capture the
features of the 35 words.

End-to-End Speech Recognition. A Fourier
Transform-based Mel-Scale Spectrogram is theoret-
ically just another way of extracting features from
data, albeit with fixed parameters. Hence, we uti-
lized a 1D convolution layer to introduce more flex-
ibility to the network. This approach enabled the
entire recognition system to be based purely on neu-
ral networks. Another advantage of using CNNs for
data transformation is the ability to rapidly reduce
the data size. The convolution layer had a window
length of 320 and a stride of 160, significantly re-
ducing the output length from 16,000 to around
100 (with possible zero padding). This reduction
is especially useful for smaller models, as they do
not need to extract as many high-level features as
larger models. We hypothesized that a convolu-
tion with learnable parameters would yield better
results than traditional Fourier transform-based sig-
nal processing. This paper evaluates four different
models, asrCNN1, asrCNN2, asrCNN3, and asr-
CNN4, as shown in Table 1. Among these models,
asrCNN1 and astCNN?2 are processed with torchau-
dio’s MelSpectrogram transformation, which con-
verts a 1D input waveform into a 2D spectrogram
output on a mel-scale. The structures of the four dif-
ferent models (asrCNN1, astCNN2, asrCNN3, and
asrCNN4) involve transforming a 1-second audio
(sample rate = 16,000) into a 1x16,000 tensor. Mel-
Spectrogram[1,64,320,160] indicates a transforma-
tion function with a window size of 320, a hop
length of 160, and an output of 64 channels from
an input of 1 channel. The notation (128,256,4,2)
represents a 1D convolution layer that takes 128
channels as input and outputs 256 channels. For
each input channel, the window size is 4, and the
hop length is 2. The notation [256,10] denotes
an output shape with 256 channels, each with a
length of 10. Similarly, [128,1] represents the use
of an average pooling layer, resulting in a final out-
put of 128 channels with a length of 1. Finally,
MLP(128,64) and MLP(64,35) indicate that the
model passes through two layers of MLP to reduce
its size from 128 to 64 and finally to 35, which
represents the output channels corresponding to the
probabilities of the 35 words. asrCNN1 is a smaller-
sized model (2.22MB), while asrCNN2 is a larger-
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sized model (2.79MB). The same applies to asr-
CNN3 and asrCNN4, with asrCNN3 (2.26MB) be-
ing a smaller-sized model and asrCNN4 (2.87MB)
being a larger-sized model (Figure 3).

Larger Scale-Models. The larger models, asr-
CNN2 and asrCNN4, were used to compare their
accuracy with the smaller models. These larger-
scale models are similar to the smaller-scale mod-
els, with the addition of an extra convolution layer
beneath the layer that has the maximum number
of feature maps (256). This addition aims to maxi-
mize the analysis of the extracted features.

Validation and Testing. We trained our mod-
els for 30 epochs, with a validation dataset test
conducted every 2 epochs. The final models for
astCNN1, asrCNN2, asrCNN3, and asrCNN4 were
selected based on the highest accuracy achieved on
the validation datasets throughout the 30 epochs of
training.

4 Results and Analysis

Figure 3 presents a comparison of the accuracies
achieved on the Testing, Validation, and Training
Datasets. It is expected that the training dataset
would exhibit higher accuracy, typically ranging
from 5% to 10%, compared to the testing and vali-
dation datasets. However, all four models demon-
strated consistent final accuracies ranging from
75% to 90% when evaluated on a separate one-time
testing dataset. This indicates that convolutional
neural networks (CNNs) remain a viable approach
for speech recognition, possibly due to their abil-
ity to capture interdependencies among different
segments of the audio within specific window sizes.
An intriguing finding in the results was that
both asrCNN3 and asrCNN4, which employed
fully convolutional layers, outperformed the tra-
ditional Fourier-transformed models asrCNN1 and
astCNN2. The former models exhibited an approx-
imate 10% increase in accuracy compared to the
latter (see Figure 3). This outcome further sup-
ports the hypothesis that convolutional layers offer
greater flexibility than traditional transformations,
enabling them to effectively learn from the input
data. Another plausible explanation is that tradi-
tional Fourier transforms convert sound signals into
spectrograms, which are more challenging for hu-
mans to interpret and match with specific words,
unlike the raw sound wave representation.
Notably, there were no significant differences
observed between larger and smaller CNN models.
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astCNN1 achieved a similar accuracy to asrCNN2,
while asrCNN3 performed on par with asrCNN4.
This suggests an intriguing notion that excessively
deep CNN architectures may not necessarily lead
to improved accuracy. In fact, such models could
potentially introduce long-term dependencies that
are error-prone for speech recognition tasks, which
primarily require short-term attention. Therefore,
for smaller-scale speech recognition programs, a
simpler CNN structure may indeed yield better re-
sults.

W Validation(Highest) [l Testing Training

100.00%

2.22MB 2.79MB 2.26MB 2.87MB

90.50%

87.30%)
80.91%
17-878,35% IB 54%

asrCNN1 asrCNN2 asrCNN3

88.95%
90.00% 87:84%;

asrCNN4

Accuracy

80.00%

70.00%

Figure 3: Comparing the highest accuracy in validation
datasets with the accuracy in the one-time testing dataset
and the accuracy of the training dataset. The sizes of
the four experimental models are also shown above.

5 Conclusions

In this paper, we have demonstrated that convolu-
tional neural networks (CNNs) can achieve compet-
itive accuracy for small-vocabulary keyword spot-
ting (KWS) when applied directly to raw audio
data. We found that smaller CNN models with
only a few convolutional layers were able to match
the performance of larger and deeper counterparts.
This suggests that excessive model complexity is
not required for this audio classification task, re-
ducing concerns about overfitting given the limited
training data.

Our key results show that end-to-end CNNs oper-
ating on raw waveforms can outperform traditional
Fourier transform preprocessing by learning op-
timal representations tailored to the speech data.
This confirms the value of data-driven feature ex-
traction with convolutional layers versus relying on
predefined transformations. Additionally, we iden-
tified important architecture considerations, includ-
ing kernel size, stride, model depth, and training
procedures, that impact accuracy.

While further improvements to CNN-based
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KWS are possible, this research provides a strong
foundation. Our proposed smaller CNN models
offer accurate and efficient speech recognition suit-
able for embedded applications. Follow-on work
could investigate techniques like transfer learning
or data augmentation to improve accuracy given
limited training data constraints. Overall, CNNs
show promise for advancing speech processing ca-
pabilities on resource-constrained devices.
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