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Abstract
Conventional approaches to the construc-
tion of word vectors typically require very
large amounts of unstructured text and
powerful computing hardware, and the
vectors themselves are also difficult if not
impossible to inspect or interpret on their
own. In this paper, we introduce a method
for building word vectors using the frame-
work of vector symbolic architectures in or-
der to encode the semantic information in
wordnets, such as the Open English Word-
Net or the Open Multilingual Wordnet.
Such vectors perform surprisingly well on
common word similarity benchmarks, and
yet they are transparent, interpretable, and
the information contained within them has
a clear provenance.

1 Introduction
Semantic representations based on word vectors
are the foundation of many, if not most, algo-
rithms in computational linguistics that require
some means of handling lexical semantics. How-
ever, the most widespread of these, word embed-
dings based on the prediction of masked words,
have a number of significant limitations.

These begin with how such embeddings are con-
structed. The training process for these vectors re-
quires large amounts of textual data, often on the
order of billions of tokens. The scale of data re-
quired then brings further problems along with it:
It is difficult (often prohibitively) to audit and im-
prove the training data, the large size of the datasets
requires accordingly high performance computers
capable of processing the data, and models can
only be trained for languages and domains where
such large quantities of naturally occurring data
exist.

Then, once a model has been trained, the result-
ing vectors are difficult if not impossible to fully

understand and interpret. Individual vectors can-
not be inspected by themselves, they can only be
compared with one another in terms of their dis-
tance from one another, and it is unclear exactly
what relation this distance represents: Is it more
like similarity or relatedness or something else?

In this paper, we propose a way of building word
vectors that aims to address these issues.1 Our
word vectors use a single manually constructed
linguistic resource (though there is no reason why
one should be limited to a single resource, in
theory) and thus represent relationships between
words whose provenance is clearly traceable. As
the resource is updated and improved, or adapted
to a particular domain, the vectors can be adjusted
accordingly, even individually and incrementally,
incorporating the new information.

By constructing the vectors in this way, rather
than from unstructured text, we can avoid some
of the problems described above. The vectors de-
scribed in this paper can be constructed on ordi-
nary laptop computers and require no more than
a few hundred megabytes of memory. Since they
are based on linguistic resources, it is much eas-
ier to know what information goes into the vectors
and how it got there. For some languages, espe-
cially ancient and historical languages, it’s much
more feasible to extend a linguistic resource than
to discover more text from which to build a corpus.

The vectors we describe in this paper are built
using techniques known as vector symbolic archi-
tectures or hyper-dimensional computing, which
we apply to an established high-quality linguis-
tic resource, the Open English WordNet (OEWN)
(McCrae et al., 2019). We’ll describe how the
vectors are constructed (Section 2.2) and some of
their interesting properties relating to interpretabil-
ity (4.1). Then we’ll compare their performance
on benchmarks for word embeddings to get an idea

1The code for the experiments described here can be found
at https://git.noc.rub.de/ajroussel/vsa-wn.

53

https://git.noc.rub.de/ajroussel/vsa-wn


Symbol Vector Sim. to 𝑥

𝑥 00110000. . . 1.0
𝑦 01001101. . . −0.022
𝑧 00010011. . . 0.001
𝑥 + 𝑦 + 𝑧 00010001. . . 0.496
𝑧 ⊗ 𝑥 00100011. . . 0.001
𝑧 � (𝑧 ⊗ 𝑥) 00110000. . . 1.0

Table 1: Examples of some of the basic VSA op-
erations.

of their ability to be used in similar applications
to word embeddings (4.2) and assess how well this
approach generalizes to other wordnets (4.3). Fi-
nally, we conclude with some discussion of the
experimental results.

2 Methods

2.1 Vector Symbolic Architectures
Vector symbolic architectures (VSA), also re-
ferred to as hyper-dimensional computing (Kan-
erva, 2009; Neubert et al., 2019; Schlegel et al.,
2022; Kleyko et al., 2022), constitute an approach
to computing that is characterized by the use of
very high-dimensional random vectors (usually
several thousands of dimensions), which are taken
to represent symbols, since such large random vec-
tors are almost certain to be nearly orthogonal and
thus easily distinguishable.

These symbolic vectors are then combined using
particular operations enabling computation more
generally. The most important of these operations
are bind, bundle, and protect (also termed bind-
ing, superposition, and permutation, e.g. Kleyko
et al. (2022)). Binding results in a new vector that
is dissimilar to both input vectors, and bundling
combines two or more vectors to result in a new
vector that is similar to all of the input vectors.
Protecting is a unary roll operation that shifts all
values one or more places further in the vector and
results in a vector that is nearly orthogonal to the
input vector. Binding can be used for the encoding
of vectors into key-value pairs, from which values
are recoverable by means of an inverse operation,
unbind (represented here by �), and bundling can
be used to combine vectors into set-like data struc-
tures.

Though there are many possible instantiations of
these parameters, some using integers, real num-
bers, or complex numbers, for our model, we use

binary vectors of 8192 (or 213) dimensions. Such
vectors can be efficiently packed, with eight dimen-
sions per byte, so that they use relatively little mem-
ory. In this particular VSA variant, termed binary
spatter code (Schlegel et al. (2022) and originally
described in Kanerva (1996)), the bind operation
(⊗) is bitwise XOR, bundle is the majority rule
applied elementwise (with ties broken randomly),
and the similarity metric is the inverse Hamming
distance (normalized to [−1, 1]). In this variant,
the inverse of the bind operation (“unbind”, �) is
the same, also XOR. Table 1 summarizes these
basic properties.

Vector symbolic architectures have many inter-
esting properties, and they could be helpful in
bringing some of the advantages of statistical ap-
proaches to symbolic computing. Since the infor-
mation stored in the high dimensional vectors em-
ployed by VSAs is highly redundant, the vectors
are very robust to noise and ambiguity: Many bits
could be lost before the system’s behavior starts
to degrade (cf. Section 4.4). Particularly impor-
tant for linguistic applications, VSAs also promise
to enable graded similarity judgments in other-
wise symbolic algorithms, lending approaches that
might otherwise be too brittle some flexibility.

2.2 Building a lexical semantic model

The source of the information stored in the model
is a single WordNet-like lexical resource, such as
the Open English WordNet 2021 (McCrae et al.,
2019), which we will use here for the first set of
experiments. The model works on the assumption
that the most important synsets for determining the
meaning of some synset 𝑥 are those closest to it,
from 1 to some small number 𝑛 steps away. The
closer these other synsets are, the more relevant
they are to the meaning of 𝑥. Very close synsets
will share similar neighborhoods in the network –
i.e., they participate in many of the same relations
with the same target synsets – and will thus have a
high similarity to one another.

Each relation and each synset is first assigned a
new random vector, an “elemental” vector. Then
the corresponding “semantic” vectors are con-
structed by traversing the network (a digraph),
breadth-first, out from each synset in turn, up to
some maximum depth 𝑛. We will use 𝐸 to de-
note the function from a given synset or relation
to its elemental vector and 𝑆 for the function from
a synset to its semantic vector. In traversing the
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Figure 1: Example of a synset with its immediate
neighbors.

network, we include all of the relation types that
are present, but only in one direction. Many of the
relations have a canonical inverse, so for the re-
lation pairs hyponym–hypernym and mero_part–
holo_part, for example, we only include hypernym
and holo_part.

As the distance from 𝑥 increases, the strength of
a relation can be carefully modulated via the intro-
duction of controlled amounts of random noise.
This is the purpose of the attenuation function
𝑤(𝛽, 𝑣𝑖 , 𝑑) given in (1) below. This function will,
for each element 𝑣𝑖 of some vector 𝑣, invert the
value of that element at random with a probability
derived from 𝛽. As the distance 𝑑 from a given
node increases, the more distant target nodes are
more weakly associated with that relation, since
there is a higher probability that a bit in the rela-
tion vector will be flipped.

𝑤(𝛽, 𝑣𝑖 , 𝑑) =
{

1 − 𝑣𝑖 if U(0, 1) > 𝛽𝑑

𝑣𝑖 otherwise
(1)

Applying this attenuation function, the semantic
vectors are constructed as in (2):

𝑆(𝑥) =
𝑛∑︁
𝑖=1

∑︁
𝑟 ∈𝑅

𝑤(𝛽, 𝐸 (𝑟), 𝑖 − 1) ⊗ 𝐸 (𝑦) (2)

Where 𝑅 is the set of edges (i.e. relations) at a
specific distance 𝑖 from 𝑥. At each step away from
𝑥, we collect the edges that are present and the
target nodes 𝑦 that they point to and bind these to-
gether, attenuating the corresponding relation vec-
tor 𝐸 (𝑟) according to the distance from 𝑥 to 𝑦
and stopping when the maximum depth 𝑛 has been
reached. The semantic vector 𝑆(𝑥) contains all of
these components bundled together in superposi-
tion. The full model then consists of three clean-up
memory instances, containing the original relation,
elemental, and semantic vectors, which are used

to translate vector representations back to relation
names or synsets as needed.

For the example in Figure 1, the semantic vec-
tor for 𝑎, the synset for ink cartridge, would be
constructed as follows:

𝑆(𝑎) = 𝐸 (holo_part) ⊗ 𝐸 (𝑏) (3)
+ 𝐸 (holo_part) ⊗ 𝐸 (𝑐)
+ 𝑤(0.95, 𝐸 (hypernym), 1) ⊗ 𝐸 (𝑑)

3 Related work
3.1 Non-distributional word vectors
Other approaches to creating word vectors based
on non-distributional lexical information include
Faruqui and Dyer (2015), Saedi et al. (2018), and
Kutuzov et al. (2019).

In Faruqui and Dyer (2015) the authors use
a relatively large collection of linguistic re-
sources to compile semantic representations for
English words. This includes WordNet, but also
FrameNet, sentiment polarity and word connota-
tion databases, word-color association lexicons,
treebanks, and Roget’s thesaurus. Each vector has
a dimension corresponding to a particular feature
value for all of features derived from these re-
sources. The resulting 172,418-dimensional vec-
tors can then be reduced using singular value de-
composition, however the large and very sparse
vectors are nevertheless computationally easy to
work with and have the advantage of greater inter-
pretability.

The use of such a variety of rich linguistic re-
sources is at once a strength and shortcoming of
this approach: The vectors contain lots of useful
information for various tasks, however it is de-
pendent on all of these different resources, which
makes it considerably more difficult to transfer the
approach to new languages, since it is unclear how
many of the resources would need to be present in
order to have usable vectors.

In contrast, Saedi et al. (2018) construct their
embeddings solely based on the relational structure
of WordNet, similarly to the approach described in
this paper. They begin with an 𝑁 × 𝑁 adjacency
matrix, containing the value 1 for links between
immediately connected nodes. Then to these val-
ues they add links of length 2, which are reduced
using a decay factor 𝛼𝑛 with 𝑛 = 2 (this is similar
to our use of the attenuation function described in
(1) above). As the length of the paths increases and
the decay factor approaches zero, the values in the
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adjacency matrix would eventually converge. The
result of this convergence is calculated analytically,
involving an inverse matrix operation. Finally, the
word vectors in this matrix are reduced to 850 di-
mensions by using principal components analysis
to transform the matrix.

As the calculation of the word embeddings in-
volves computationally costly matrix inversion op-
erations, it was infeasible to build a model for all
roughly 120,000 synsets contained in WordNet,
such that the authors were limited to including only
60k of the synsets. Even then, inverting the 60k-
dimensional matrix used all of the 32 CPUs and
430 GB of RAM they had available (it is unknown
for how long). The authors experiment with a
range of subgraphs, including random subgraphs
of 25k–60k synsets as well as a subgraph of the
13k most frequent synsets. These much smaller
subgraphs nevertheless result in word embeddings
that perform only slightly worse or just as well on
SimLex-999.

Kutuzov et al. (2019) employ a machine learn-
ing approach called path2vec to deriving a set of
node embeddings from a graph, such as WordNet.
The basic idea is that their model will learn vec-
tors such that the similarity between the vectors
approximates the similarities given by some user-
selected graph similarity metric, such as path sim-
ilarity or Leacock–Chodorow (LCH) similarities.
The learning approach is similar to the skipgram
model of word2vec, but instead of optimizing pos-
itive pairs towards 1 and negative (random) pairs
towards 0, all pairs are drawn from the graph to be
embedded and optimized towards the values of the
given similarity metric. They only train and eval-
uate the model for noun synsets, since these are
covered better in WordNet than the other parts of
speech, but on the 666 noun pairs in SimLex-999,
their path2vec embeddings outperform the plain
path similarity measure, reaching a correlation of
0.555 with the human ratings.

Their motivation for deriving vectors for the
nodes of a graph is that actually computing most
node similarity measures involves the computa-
tionally costly and inefficient traversal of the graph,
but it is much faster to compare two vectors. The
authors report that, to calculate the 82,115 similar-
ity values between one noun and all of the other
nouns, it took 30 s using the LCH measure but just
0.007 s to perform the same number of compar-
isons using float vectors like those produced by

path2vec.
Though the machine learning methods em-

ployed in Kutuzov et al. (2019) are very different
from the VSA approach we describe here, com-
paring the VSA representations of synsets is simi-
larly much faster than computing path similarities
directly. However, as the authors also report, com-
puting Hamming distance between binary vectors
(as in the VSA variant we employ) is less efficient
than computing the dot product between float vec-
tors.

3.2 Semantic representations using VSAs
The model described here is constructed using
a technique that is similar in many respects to
predication-based semantic indexing, as described
by Widdows and Cohen (2015). The main differ-
ence is in how the semantic vectors are constructed:
There, only relations that directly involve 𝑥 are in-
cluded in 𝑆(𝑥), whereas our model includes more
distant relations, with greater attenuation of the
more distant relations – which seems necessary
to capture the relationships between synsets as op-
posed to the semantically richer relations contained
in the biomedical database described there.

Cohen et al. (2013); Widdows and Cohen (2015)
also describe the purpose and use of “demarca-
tor” vectors, which are designed to be new random
vectors that have a selectable degree of similar-
ity (“measured distance”) to certain other vectors.
These were the inspiration of the attenuation func-
tion used here. Whereas the purpose of demarcator
vectors was to position character vectors at regular
intervals between two endpoints, we use a similar
technique to gradually decay relation vectors for
more distantly related word senses.

4 Evaluation

4.1 Querying the model
Lexical semantic models constructed according to
this method can be inspected and queried by the
application of particular operations.

If the vector for the hypernym relation
𝐸 (hypernym) is unbound from a semantic vec-
tor (note that for binary VSAs, this is the same
operation as binding), the resulting vector will be
nearest to the vector that was originally bound to
that semantic vector:

𝑆(hammer) � 𝐸 (hypernym) ≈ 𝐸 (𝑦) (4)
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Where 𝑦 stands for the synset to which hammer
has the hypernym relation. These are the nearest
neighbors to the query vector in (4):

0.634 hand tool
0.314 tool
0.305 implement

This accurately reflects that the best fit for “hy-
pernym of hammer” is hand tool (this is a direct
relation between the two synsets in the OEWN),
and it also shows how there are other alternative
answers to the query: hypernyms higher up beyond
hand tool.

In a similar fashion, queries can be constructed
to determine the relation between two vectors. To
construct the necessary query vector, we just re-
verse the operation that was used to construct some
semantic representation.

𝑆(hammer) = 𝐸 (hypernym) ⊗ 𝐸 (hand tool) + . . .
(5)

𝑆(hammer) � 𝐸 (hand tool) ≈ 𝐸 (hypernym) (6)

By this principle, analogies can also be modelled
mathematically with only a handful of vectors, as
shown in Kanerva (2010). Similar to the query vec-
tors above, the idea is to construct a vector which is
similar to the one you seek by binding or unbinding
the necessary components. For our model, as with
the PSI model in Widdows and Cohen (2015), we
have to account for the additional distinction be-
tween semantic and elemental vectors, namely that
the relational information is contained in seman-
tic vectors and “points” to elemental vectors, so
the analogy queries must be constructed slightly
differently, but the principle is the same.

By unbinding 𝐸 (𝑦) from some vector 𝑆(𝑥), we
can expect a vector that is similar to the relations
that hold from 𝑥 to 𝑦. If this relation-like vector
is applied to a new target 𝐸 (𝑦′), then the result is
similar to some 𝑆(𝑥 ′) that bears this relation to the
new target. Thus, to complete the analogy, “apple
tree is to apple as pear tree is to 𝑋”, we can use the
following query vector:

𝑆(apple) � 𝐸 (apple tree) ⊗ 𝐸 (pear tree) (7)

The nearest vector to this query vector is the one
for pear, 𝑆(pear), and, in fact, this method retrieves
a number of different kinds of pear:

0.145 pear
0.113 bosc
0.113 anjou
0.113 bartlett pear
0.113 seckel pear
0.113 Clapp’s Favourite

Upon closer inspection, we see that the rela-
tion that this query seems to be picking up on,
holo_part, is only present in the synsets for apple
and pear, and the relation vector is not in the query
vector explicitly, rather it is calculated by (7). In-
terestingly, the relation is also not present in the
other nearest neighbor synsets, which are found
due to their similarity to pear (and this similarity
is due to their being hyponyms of pear).

4.2 Comparison with benchmarks
In order to get an idea of the quality and poten-
tial utility of the vectors constructed according to
the method described here, we tested our model
against a set of established benchmarks that are
commonly used to evaluate word meaning repre-
sentations. These include the SimLex-999 dataset
(Hill et al., 2015), which focuses on similarity
(and not relatedness) and the MEN dataset (Bruni
et al., 2012), focusing more on semantic related-
ness. Then we use both the similarity and relat-
edness sections of the WordSim353 datasets from
Agirre et al. (2009). The datasets consist of word
pairs that have been assigned either similarity or
relatedness ratings by human judges (inter-rater
correlation on the SimLex-999 dataset was in the
0.67–0.78 range, depending on how measured), us-
ing differing scales. All of the comparisons given
in this paper use Spearman’s 𝜌.

Heuristics One practical difficulty in evaluation
is that relations in wordnets hold between synsets,
and the VSA model we wish to test is therefore also
synset-oriented, yet all of these datasets concern
words or lemmas. It is impossible to know after
the fact which meaning or meanings the raters had
in mind when they were recording their ratings,
so it is actually impossible in principle to choose
the correct word sense and thus the appropriate
synset vector. Therefore, for the purposes of this
evaluation, we tested and compared a few heuristics
for choosing or making a vector for a given lemma
from a list of synset vectors.

The “first” heuristic is to compare the first synset
listed for each lemma, which operates on the as-
sumption that the synsets are listed in a particu-
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Similarity Relatedness
Model SimLex-999 WS353-S MEN WS353-R

word2vec 0.44 0.74 0.70 0.61
Saedi et al. (2018) 0.50 0.65 0.46 0.32

Path similarity 0.314 (0.468) 0.549 (0.610) 0.283 (0.311) −0.003 (−0.039)
VSA, 𝑑 = 3, 𝑛 = 8192 0.421 0.455 (0.495) 0.271 (0.287) 0.137
VSA, 𝑑 = 5, 𝑛 = 8192 0.442 0.590 0.381 0.156
VSA, 𝑑 = 7, 𝑛 = 8192 0.384 (0.417) 0.538 (0.565) 0.385 (0.386) 0.152
VSA, 𝑑 = 9, 𝑛 = 8192 0.344 (0.400) 0.514 (0.550) 0.371 (0.378) 0.131

Table 2: Performance of various model iterations and baselines on benchmark datasets, in terms of
Spearman’s 𝜌. Values above the line are from Saedi et al. (2018). Values under the line use the “average”
sense selection heuristic, and when the value using the “max” heuristic is greater, it is given in parenthesis.

lar order, perhaps according to corpus frequency,
though it is unclear to what extent this is the case
or what corpus might have been involved. The
second, “average”, is simply to compare all of the
synsets of the first lemma with all of the synsets of
the second lemma and then to take the average of
the resulting similarity scores. Finally, there’s the
“max” heuristic, in which all pairs are compared as
in the “average” heuristic, except that we then take
the maximum similarity score instead of the aver-
age. Here the intuition is that the raters would have
subconsciously chosen the most relevant sense of,
say, bank when the comparison was with money.

Discussion We compare our results with three
other types of scores: There are the scores of the
system system described in Saedi et al. (2018) as
well as the word2vec (Mikolov et al., 2013) scores
with which the authors of that paper compared their
system. Then we compare our results with a sim-
ple baseline: The path similarity score, which ap-
proaches 0 as the shortest path between two synsets
increases in length. The path similarity has its lim-
itations: The two nodes in question must be con-
nected (this can be compensated by the addition of
a fake root node connecting the other root nodes),
and they must be of the same part of speech. This
last requirement is mostly an issue for the related-
ness benchmarks, which contain numerous pairs of
differing POS.

For each system variant and baseline, we cal-
culated a similarity score using each of the three
heuristics. The “first” heuristic was consistently
significantly worse than the other two heuristics,
so we omit it from the comparisons here. The
scores using the “average” and “max” heuristics
were often fairly close, with each being sometimes

greater than the other. In Table 2, we list scores
using the “average” heuristic, which seemed to be
more stable overall and which worked best with
the system configuration that seemed to strike the
best balance between the different datasets (𝑑 = 5).
But, where the “max” heuristic performed better,
it is included in parentheses.

Considering the overall results in Table 2, the
VSA-based representation reflects a fair amount
of correlation with the ratings in the benchmark
datasets and similar levels of correlation with the
comparison systems and baselines, which suggests
that the vectors do capture a degree of useful se-
mantic information in a general sense. It seems
plausible that these vectors could be treated simi-
larly to word embeddings in certain applications.
Most of the time, the correlations for the system
introduced here are within 0.10 of the baseline
or the other systems. Particularly, on the MEN
dataset, which contains relatedness scores for 3000
lemma pairs, we see significant improvement over
the path similarity baseline. This is probably partly
attributable to the limitations of the path similarity
metric, which requires a path between the nodes to
exist and the words to have the same POS, how-
ever it can also be seen as an advantage of using a
vector representation for this task, despite the vec-
tors ultimately being based on the same underlying
information.

For these comparisons, we varied the maximum
depth 𝑑 that is used to traverse the graph when
collecting relations that are to be factored in to a
given semantic vector. It appears that the variants
with a lower maximum depth and thus fewer distant
relations performed better on the similarity bench-
marks. A higher maximum depth seems beneficial
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on the MEN dataset, which includes ratings of re-
latedness, so the inclusion of more distant relations
makes intuitive sense. A maximum depth towards
the middle of the range, 𝑑 = 5 seems to provide
good overall performance.

4.3 Effects of wordnet size
Of course, the OEWN is not typical in terms of
its scale. In order determine how well this method
might work for other wordnets and other languages,
we used the wordnets included in the Open Multi-
lingual Wordnet (OMW) (Bond and Foster, 2013)
project to construct several new models for vari-
ous languages and evaluated these by comparing
them against the Multi-SimLex benchmark dataset
(Vulić et al., 2020). The Multi-SimLex dataset
builds upon SimLex-999, increasing the number
of word pairs to 1888 and establishing a trans-
lation and rating methodology that is specifically
designed to be consistently transferable to addi-
tional languages. There are currently six languages
that are covered by both Multi-SimLex and OMW;
these are the ones included in the results in Table 3.

The wordnets for these six languages vary in
size from large wordnets, such as FinnWordNet,
which is roughly as large as the OEWN, to mid-
sized wordnets, such as WOLF (Wordnet Libre du
Français), to small wordnets, such as the Hebrew
Wordnet. As one would expect, the larger and
more complete wordnets tend to result in vectors
that correlate better with the human judgments.

The results suggest that a useful degree of cor-
relation can be expected once a wordnet contains
about 50,000 synsets. However, since most of the
wordnets in OMW (expand-style wordnets) benefit
from a common underlying set of lexical relations
between the synsets, it is probably more likely that
the most important factor for the numbers in Ta-
ble 3 is simply whether or not the given words are
present in the wordnet at all. Since most of the
word pairs are not found in the smaller wordnets,
it is unsurprising that so little correlation can be
observed. But what this would also mean is that
adapting an existing wordnet or creating a new one
need not necessarily have 50,000 or more synsets,
so long as the important lexical items are covered
for a given application.

4.4 Vector size
The storage capacity of 𝑛-dimensional binary vec-
tors is theoretically quite large, with 2𝑛 distinct
possible patterns (Neubert et al., 2019). Experi-

ments have shown that vectors with approximately
500 dimensions can bundle around 50 distinguish-
able vectors (Schlegel et al., 2022).

Looking at the results in Table 4, it would appear
that the vectors could have been quite a lot smaller
than 8192 dimensions, since the correlations with
the benchmark datasets remain more or less the
same, even when the vectors are much smaller.
Only once the vector size has been reduced to 512
do we consistently see a noticeable reduction in the
correlations. Though it is surprising that just 512
bits seem to be able to store enough information to
perform this well on the benchmarks, if we were to
inspect the vectors, some issues come to light.

The analogy example shown above in Sec-
tion 4.1, which works well with 𝑛 = 8192, still
works similarly well with just 4096 dimensions.
With 2048, there are fewer kinds of pear retrieved,
but the closest answer is the same as before. But
starting at 1024 dimensions, the cracks start to
appear: Right after a few types of pear, things
like mock (oewn-01227189-n) or sidereal (oewn-
02808231-a) start to appear, with no discernible
drop-off in similarity scores to indicate the bound-
ary between what can be construed as an answer
and noise. Finally, at 512 dimensions, this analogy
no longer seems to work. The closest synsets there
relate to types of twayblade (oewn-12091760-n),
followed closely by a variety of seemingly random
concepts, as it seems the noise has taken over.

4.5 Performance characteristics
All of the models described in this paper can each
be built in a matter of minutes on an ordinary
consumer-grade laptop. The models using larger
8192-dimensional vectors occupy a little over 200
MB on disk or a little over 300 MB once loaded
into memory. Depending on the application, one
may be able to use smaller vectors, which take up
much less space.

5 Conclusion and Outlook

In this paper, we described how techniques of VSAs
could be applied to linguistic resources, such as
wordnets, in order to create word vectors that can
be used in a manner akin to word embeddings, but
which offer some key advantages over conventional
word embeddings.

The performance of these vectors on estab-
lished word similarity benchmarks is similar to
other WordNet-based methods, if not strictly equal
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Language eng fin fra cmn pol ara heb
Wordnet oewn omw-fi omw-fr omw-cmn omw-pl omw-arb omw-he
No. of synsets 120039 116763 59091 42312 33826 9916 5448
OOV 28 180 194 860 939 1269 1697

Path similarity 0.482 0.416 0.350 0.154 0.065 0.138 0.034
VSA, 𝑑 = 5, 𝑛 = 8192 0.434 0.444 0.388 0.153 0.126 0.196 0.070

Table 3: Correlation with human ratings in the Multi-SimLex dataset. Languages are identified by their
ISO 639-3 language code, and wordnets by the specifier used by the Python wn package. The baseline
path similarities were calculated using the “max” heuristic, and the VSA similarities using the “average”
heuristic.

𝑛 SimLex WS353-S MEN WS353-R

8192 0.442 0.590 0.381 0.156
4096 0.438 0.548 0.383 0.140
2048 0.421 0.576 0.371 0.174
1024 0.429 0.537 0.344 0.125
512 0.427 0.512 0.334 0.111

Table 4: Correlation with benchmarks as vector
size is varied. All models use a maximum depth
of 𝑑 = 5 and the “average” heuristic.

to them, but, in exchange for some 10 percent-
age points of correlation, the vectors produced by
the method described here are inspectable, inter-
pretable and can be improved incrementally. Fur-
thermore, in contrast to the more conventional ap-
proaches, these vectors require few resources and
can be built using ordinary computer hardware.

In principle, such models can be constructed
from any wordnet. Though larger wordnets such as
the OEWN contain many synsets and cover more
lexical items, it appears that even wordnets with
much fewer synsets can still leverage the under-
lying structure of the OMW such that the derived
vector representations can be useful. This suggests
that the approach described here could be valuable
in situations in which it is infeasible to compile a
large enough corpus for usable word embeddings
or in which one seeks more transparency as to the
contents of word vectors than distributional meth-
ods generally allow.

Future work Since the collection of seman-
tic vectors functions somewhat like a queryable
database, it would be interesting to investigate to
what degree query vectors and comparison opera-
tions could be constructed in order to try and query
relations other than similarity: For instance, by ex-

amining a synset’s distance from nodes that func-
tion as paradigm words for concreteness, similar
to approaches described by Turney et al. (2011),
whether one could use this same model to com-
pare the concreteness of concepts. Alternatively,
perhaps it could be possible to compare vectors
that have been modified in some systematic way,
perhaps certain relations have been unbound from
the vectors, in order to emphasize some particu-
lar aspect of their semantics or to retrieve some
particular relation between them.

Sometimes there is little to distinguish some
synsets from one another, since the set of relations
they participate in is very similar or the same, so
that our current model sees them as equivalent.
This is apparent in the query (7), where all of the
second-best answers are presented as equally close,
which is a little counterintuitive. One idea would
involve making use of the definition text as a use-
ful workaround. For example, one could observe
which words occur in which definitions and infer
new relations for definitions that share significant
overlap.

Finally, there is a lot of potential in encoding
the semantic information in wordnets with VSAs
in ways that are very different from the one we im-
plemented in this study. Exploring some of these
alternative approaches is a promising avenue for
future work.
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