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Abstract

Internal representations in transformer
models can encode useful linguistic
knowledge about syntax. Such knowledge
could help optimise the data annota-
tion process. However, identifying and
extracting such representations from
big language models is challenging. In
this paper we evaluate two multilingual
transformers for the presence of knowl-
edge about the syntactic complexity of
sentences and examine different vector
norms. We provide a fine-grained eval-
vation of different norms in different
layers and for different languages. Our
results suggest that no single part in the
models would be the primary source for
the knowledge of syntactic complexity.
But some norms show a higher degree
of sensitivity to syntactic complexity,
depending on the language and model
used.

1 Introduction

One of the most successful recent developments in
NLP is the self-attention mechanism (Cheng et al.,
2016; Lin et al., 2017), which has been used as the
underlying operation of recent transformer mod-
els (Vaswani et al., 2017). The success of the
transformer models has been wide-spread, from
semantic (Tenney et al., 2019b) and syntactic (Ra-
ganato and Tiedemann, 2018; Vig and Belinkov,
2019; Clark et al., 2019) tasks, to more pragmat-
ically focused tasks (Ettinger, 2020) and multi-
modal problems (Bugliarello et al., 2021). In this
paper we contribute to the research on what makes
transformers so successful in learning linguistic
knowledge and examine the ability of such models
to estimate syntactic complexity of sentences.
Knowing if a model reacts to the syntactic com-
plexity of sentences is useful because if com-
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plexity can be estimated without training a model
(during inference time), this can be taken into
account when fine-tuning the model, allowing
for more efficient sampling of batches during
training (Zhao and Zhang, 2015; Katharopoulos
and Fleuret, 2018), curriculum learning strate-
gies (Bengio et al., 2009; Hacohen and Wein-
shall, 2019) and possibly as an estimator of
unsupervised/zero-shot performance. Another as-
pect we consider is whether the syntactic complex-
ity of sentences can be captured in different lan-
guages or if it works particularly well for some,
as this would allow vector norms to be used as an
analysis tool regardless of the language.

We examine the transformer representations for
presence of linguistic knowledge by first extract-
ing vector norms, as these can be obtained by
simply passing a sentence through a pre-trained
model without fine-tuning. The norms of vectors
have been used to both analyse models (Kobayashi
et al., 2020) and improve models, for example by
using the norm as an indicator of the difficulty of
translating a sentence (Platanios et al., 2019; Liu
et al., 2020), or as a way to select informative ex-
amples from a corpora (Lu and Zhang, 2022). The
L2-norm was also exploited by (Hewitt and Man-
ning, 2019) to construct dependency trees from the
dot-product of word pairs. In this paper we in-
vestigate whether the Euclidean norm (L2-norm)
is an indicator of the syntactic complexity in de-
pendency trees. We consider two distance met-
rics: dependency and hierarchical distance, and
we investigate three sources of L2-norms: CLS,
ROOT and average over tokens. We finally eval-
uate the ability of the transformer to estimate syn-
tactic complexity of a sentence by looking at the
pearson p correlation between vector norms and
distance metrics of dependency trees. This will
show whether the norm of the representations in
a transformer increase or decrease as the syntactic
complexity changes.
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We present an analysis across many languages,
and we use only pre-trained large language model
representations. This is useful for many reasons,
one of them being that it can help inform annota-
tors that a certain sentence is a syntactically com-
plex one, or not, and this can helps annotators
recognize difficult sentences during the annotation
process. Additionally, this work provides another
use case for LLMs, namely as an aid for dataset
creators. That is, if a silver-standard is obtained
from a model, we still want to identify possible
problematic sentences that should be reviewed by
a human annotator. By analysing different norms
and syntactic complexity in different languages,
we also provide valuable information about how
the MLM objective of transformer models encode
syntactic complexity.

In this work we focus on the following ques-
tions:

* Which norms are most efficient for estimat-
ing dependency and hierarchical distance?

* Are different models better at estimating de-
pendency or hierarchical distance?

* Is the estimation of dependency and hierar-
chical distance influenced by the language in
question?

The questions we investigate are relevant for
better interpretability of neural language models
(Belinkov and Glass, 2019). We provide insights
on whether transformers can be used (without
training) as the knowledge source for more ef-
ficient subsequent annotation, training and fine-
tuning. We also examine the differences between
norms in different model layers concerning many
languages.

2 Dependency distance metrics

In this paper we consider syntactic complexity of
sentences through the lens of dependency trees.
Quantifying these dependencies heavily relies on
the word order, which can be represented either
linearly or hierarchically (structurally). Depend-
ing on the language, either of the ways is preferred
by its speakers and a reciprocal relation between
the two can be observed, e.g. Czech relies on
structural order more than English for longer sen-
tences (Jing and Liu, 2015a). We believe that such
fine-grained difference between how languages
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use syntax is important for the models to cap-
ture. Therefore, we represent the syntactic com-
plexity of sentences by calculating mean linear
dependency distance (MDD) and mean hierarchi-
cal dependency distance (MHD). For evaluation
we compute correlation between different vector
norms and MDD / MHD and treat this intrinsic
measure as an indicator of the amount of linguis-
tic knowledge about syntactic complexity that the
model encodes. We extract dependency trees from
the Universal Dependency treebanks (de Marneffe
et al., 2021). For a tree such as Figure 1, there
are two distance metrics that we are interested in,
dependency and hierarchical distance.

Mean Dependency Distance (MDD) In a de-
pendency tree, the mean dependency distance
(Liu, 2008) is the number of intervening words be-
tween the head, and the dependent. We can con-
sider a function fp..q that takes as input a word,
and outputs the distance to its head. To calculate
the mean dependency distance, we employ Equa-
tion (1):

1 n
MDD(S) = n;fhead(si) (1)
1=
For example, in Figure 1, the only head-
dependent pair with more than one intervening
word is that between ROOT and runs, where there
are 2 intervening words. Thus, the mean depen-

dency distance of the sentence is W =
1.2.

ROOT

DET  NSUB DOBJ
NN
ROOT The girl runs home

Figure 1: Dependency tree of the sentence The
girl runs.

Mean Hierachical Distance (MHD) For calcu-
lating mean hierarchical distance (Jing and Liu,
2015b), we consider the shortest path from word
1 to the ROOT node as a function f,,.;. We cal-
culate the mean hierarchical distance as follows:

1 n
MHD<S) = E E froot(si) (2)
=1

The hierarchical distance between words in the
sentence “The girl runs home” is visualised in Fig-



ure 2, where we arrive at an average hierarchical
distance of % = 2. Because the ROOT is
always distance 0 from itself, we ignore this in the
calculations.

ROOT

runs (1)

T

girl (2) home (2)

|
the (3)

Figure 2: Hierarchical representation of Figure 1.
The hierarchical depth for each word is given in
parentheses.

3 Vector norms

We are interested in whether the vector norms cap-
ture behavior trends of syntactic complexity of
sentences in different languages. We use the eu-
clidean (L2) norm as our primary method for norm
computation. The euclidean norm is defined as
follows over a vector v of length n:

V4. V2

3)

The representations that are used to compute the
sentence vector norm can be taken arbitrarily from
different representations inside the model. Here
we extract three such representations and compute
norms for each of them:

[v]l2 =

* CLS: the norm of the CLS token which is
appended to every sentence, and which func-
tions as a sentence “summary” in the trans-
former model. The CLS norm of the first self-
attention layer in the model is the same for all
sentences, thus do not provide any insights.

ROOT: the norm of the ROOT token. In de-
pendency trees this token represents the top-
level node in the tree. Because transformers
use sub-word tokenisation the root may con-
tain several sub-word tokens. In this case we
consider the mean representation of all sub-
words.

MEAN: the mean of the norms of all tokens
in a sentence. This norm would then consider
the average representation across all words in
the sentence.
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In our experiments we consider the norms ob-
tained from two different models, multilingual
BERT (m-BERT) (Devlin et al., 2019) and XLM-
RoBERTa (XLM-R) (Conneau et al., 2020). For
both models, we use the base model provided by
the HuggingFace (Wolf et al., 2019) library.

We compute the Pearson correlation (Freed-
man et al., 2007) between the dependency distance
metrics and the vector norms. We obtain a mean
correlation score for each language by averaging
scores across all sentences in this language. A
high correlation score means that a specific type
of vector norm within the particular model’s layer
reflects bigger distance scores. A low score (or
a negative score) indicates that the vector norm
and dependency distance are in an opposite trend:
when one becomes high, another one gets low.
Observing differences in the behaviour of differ-
ent vector norm representations and distance met-
rics allows us to determine which mean will likely
encode which type of knowledge.

4 Treebanks

We use the parallel sentences from the PUD cor-
pus (Zeman et al., 2017). For each language in
the dataset, it contains 1000 sentences. The sen-
tences are the same for all languages and have
been translated and annotated by experts. In the
PUD dataset, dependency trees from the follow-
ing languages are included: Arabic, Czech, En-
glish, French, German, Hindi, Icelandic, Italian,
Polish, Portuguese, Russian, Spanish, Swedish,
Thai, Chinese, Turkish, Korean, Japanese, Indone-
sian and Finnish. The majority of the languages
are from the Indo-European language family, how-
ever, other distant families are also included such
as Uralic, Turkic, Austronesian, Sino-Tibetan, and
Tai-Kadai. The primary attractive feature of the
PUD dataset for our experiments is that the re-
sults we obtain for the different languages are di-
rectly comparable because the same sentence is
translated. This allows us to reliably ascertain the
models ability to encode different dependency tree
metrics across languages.

We summarize each language’s mean depen-
dency and hierarchical distances in Table 1. The
hierarchical distance for all languages is higher
than the linear distance between syntactic depen-
dants. This artefact of the dataset is crucial as it
might affect how successful different norms are in
capturing different dependencies. Previous work



Language | MDD MHD
Arabic 3.01 4.47
Chinese 3.29 4.20
Czech 3.01 4.29
English 3.16 4.23
Finnish 2.83 3.99
French 3.09 443
German 3.71 421
Hindi 3.51 4.33
Icelandic 2.86 422
Indonesian 2.84 4.27
Italian 3.09 441
Japanese 2.87 451
Korean 2.54 4.40
Polish 2.87 4.26
Portuguese | 3.07 4.41
Russian 2.91 431
Spanish 3.07 442
Swedish 3.03 4.15
Thai 2.38 4.61
Turkish 2770  4.19
Mean 2.99 431
Std 0.74  0.70

Table 1: Mean dependency and hierarchical dis-
tance for different treebanks.

has shown that models can capture hierarchical
structures in natural language, but only to a de-
gree (Wilcox et al., 2019); therefore, it would be
interesting to see whether the differences in dis-
tances found in the dataset have an impact on the
correlation scores. The standard deviation reveals
that both metrics vary about the same amount. The
distribution of mean dependency and hierarchical
distances over all treebanks is given in Figure 3.
The median of dependency distance is 2.92 with
a skew of 0.74, while the mean hierarchical dis-
tance is 4.25 with a skew of 0.73. Because the
skew is below 1 for both distances, this shows that,
when considering the distances over all languages,
they tend to minimize both the MDD, and MHD
(Futrell et al., 2015).

5 Results

Table 2 and Table 3 show Pearsons p correla-
tion scores between various norms and the dis-
tance metrics for m-BERT and XLM-R respec-
tively. On a high level, we observe that m-BERT
and XLM-R exhibit vastly different behaviours re-
garding what norms best predict the distances. For
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Figure 3: Distribution of MDD and MHD over all
PUD treebanks.

base m-BERT (Table 2), we see that the mean
norm over all sub-word tokens in a sentence cor-
relates strongly with both distance metrics. That
is, if this specific norm of a sentence in m-BERT
is high, it is likely that either the MDD or MHD
is also high. Based on the mean correlation score,
we see that MEAN is generally a better predic-
tor than the other two norms (ROOT and CLS).
A similar result is observed for the base XLM-R
model (Table 3): the MEAN norm has a posi-
tive correlation with either of the distance metrics.
However, this trend is not strongly pronounced
since the mean correlation scores for the best norm
are lower for XLM-R (0.18 and 0.19) than for
m-BERT (0.54 and 0.62). The CLS norm ex-
hibits a stronger negative correlation for XLM-R
models (in fact, it’s the best-observed correlation
for XLM-R), which means that when the norm
is high, the mean distance between the words is
small. ROOT-based vectors are the least use-
ful across both models. The results indicate that
MEAN norms in m-BERT are better estimators
for sentences’ syntactic complexity than XLM-R,
which has a higher correlation for CLS norms, al-
though in a different direction. However, XLM-
R significantly outperforms m-BERT on various
cross-lingual tasks (Conneau et al., 2020); still, its
internal representations are more diluted, and there
is no clear correspondence to the trends in syn-
tactic complexity of sentences because of overall
slightly weaker correlations.



Root Mean CLS
Arabic 0.17 053 -0.20
Chinese 043 049 0.04*
Czech 0.16 053 -0.19
English 022 056 -0.10
Finnish 022 049 -0.16
French 027 062 -0.10
German 026  0.58 -0.11
Hindi 038 060 -0.16
Icelandic 020 049 -0.19
Indonesian 028 056 -0.20
Italian 035 056 -0.06*
Japanese 0.36 0.54 0.08
Korean 0.09 050 -0.06*
Polish 0.12 054 -0.15
Portuguese 030 0.60 -0.19
Russian 023 057 -0.14
Spanish 033 057 -0.13
Swedish 029 055 -0.23
Thai 0.06 043 -0.15
Turkish -0.00*  0.54 0.02
Mean 023 054 -0.11

(a) Dependency distance

Root Mean CLS
Arabic 0.21 057 -0.28
Chinese 0.53 057 0.04*
Czech 021 066 -0.15
English 033 064 -0.06
Finnish 030 066 -0.20
French 035 065 -0.14
German 032 066 -0.22
Hindi 040 061 -0.21
Icelandic 0.23 0.61 -0.12
Indonesian | 0.33  0.62 -0.20
Italian 038 0.66 -0.16
Japanese 045 0.61 -0.09
Korean 0.08 054 -0.14
Polish 0.18 061 -0.14
Portuguese | 0.38  0.67 -0.19
Russian 025 065 -0.13
Spanish 034 065 -0.13
Swedish 036 0.66 -0.19
Thai 0.18 058 -0.25
Turkish 0.02*  0.62 -0.07
Mean 029 062 -0.15

(b) Hierarchical distance

Table 2: base m-BERT: Pearsons p between the CLS, ROOT, and MEAN with respect to MDD (a)
and MHD (b) distances extracted from the PUD treebanks. Correlations with p > .05 are indicated by *.

6 Peeking inside the model’s layers

We next perform a more fine-grained analysis of
the internal models’ representations. Our goal is to
examine to what degree specific layers of the mod-
els capture information about the syntactic com-
plexity of sentences. This analysis allows us to
narrow down the search for the source of better
representations in large language models. The cor-
relations per layer using the m-BERT model are
shown in Figure 4 for MDD and in Figure 5 for
MHD. Similarly, Figure 6 and Figure 7 show cor-
relations per layer for the XLM-R model.

Discussion For the m-BERT model, MEAN
vector norms have large correlation scores in the
first few layers, while in deeper layers, the correla-
tion drops only to spike again in the last layer. This
behaviour is approximately identical for all lan-
guages, with some having a slightly smaller corre-
lation with MDD across all layers, e.g. Thai. The
trend is very similar for correlation with MHD: the
scores are the highest in approximately the first
six layers and smaller in deeper layers except for
the last layer, in which the scores are high again.
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This result mirrors previous findings showing that
language models capture syntactic knowledge in
earlier layers, which allows them to learn com-
plementary semantic knowledge in deeper layers
(Peters et al., 2018; Kovaleva et al., 2019; Tenney
et al., 2019a), which could be the reason for a more
negligible correlation with syntactic complexity in
deeper layers. CLS vector norms in the first layer
have the highest (positive) correlation with both
types of distances across most languages. The
correlation is still strong in subsequent layers, al-
though in a different direction (negative), with a
substantial reduction in the last layer. Some no-
table exceptions are Chinese, Japanese and Thai,
for which the highest correlation is observed in
the second or the third layer. After these layers,
the correlation effect is smaller than for other lan-
guages. ROOT vector norms have a small correla-
tion with the syntactic complexity, suggesting that
these norms are not informative enough and richer
representations are required.

For the XLLM-R, correlation scores for MEAN
vector norms vary a lot among the layers. How-
ever, the correlation spikes in the second layer



Root Mean CLS
Arabic 0.22 0.06* -0.35
Chinese 029 024 -0.37
Czech 0.15 037 -0.24
English 0.19 0.15 -0.29
Finnish 0.07 0.08 -0.27
French 0.12 029 -0.32
German 0.16 0.08 -0.39
Hindi 0.25 053 0.08
Icelandic 0.10 021 -0.31
Indonesian 0.13 -0.10 -0.32
Italian 0.14 021 -0.28
Japanese 0.16 0.32 -0.33
Korean 0.17 0.09 -0.36
Polish 0.15 0.13 -0.26
Portuguese 0.12 0.03* -0.39
Russian 020 024 -0.30
Spanish 0.15 0.10 -0.36
Swedish 0.10 0.10 -0.35
Thai -0.06*  0.39 -0.15
Turkish 0.11  0.13 -0.32
Mean 0.14 0.18 -0.29

(a) Dependency distance

Root Mean CLS
Arabic 0.16 0.04* -0.42
Chinese 021 029 -046
Czech 0.19 044 -0.33
English 0.16 0.06 -0.44
Finnish 0.12 007 -0.41
French 0.12 028 -0.38
German 0.18 0.09 -043
Hindi 022 046 -0.11
Icelandic 0.11 0.23 -0.38
Indonesian | 0.11 -0.14 -0.41
Italian 0.14 0.19 -041
Japanese 0.06 041 -0.42
Korean 0.26 0.12 -0.45
Polish 0.11  0.10 -0.40
Portuguese | 0.08 0.00* -0.46
Russian 024 025 -042
Spanish 0.17 0.08 -0.46
Swedish 0.13 0.09 -0.45
Thai 0.09 053 -0.27
Turkish 0.09 0.12 -0.37
Mean 0.14 0.19 -0.39

(b) Hierarchical distance

Table 3: base XLM-R: Pearsons p between the CLS, ROOT, and MEAN with respect to MDD (a) and
MHD (b) distances extracted from the PUD treebanks. Correlations with p > .05 are indicated by *.

and reaches low values in the last layer for many
languages, which is opposite to the behaviour
of mean vector norms in m-BERT. CLS vector
norms and their correlation with distance metrics
similarly varies between layers, but not languages.
All languages appear to have similar correlation
scores depending on the layer. ROOT vector
norms have a very small correlation (positive or
negative) for all languages across all layers ex-
cept the last one. Interestingly, XLM-R does not
encode the knowledge of syntactic complexity in
representations of the root of the sentence, which
mirrors results for m-BERT.

Overall, m-BERT exhibits much more pro-
nounced differences between layers regarding the
syntactic complexity of sentences. XLM-R, on the
contrary, is much harder to understand and use
for finding parts in the model where a particular
norm is the most useful. For m-BERT, we rec-
ommend using mean vector norms from the first
layers to identify the knowledge of syntactic com-
plexity. For XLM-R, CLS or MEAN can be used.
Neither model has useful ROOT representations.
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7 Discussion

Norm types and models We find that the
ROOT and MEAN norms produce only weak cor-
relations in the XLLM-R model across languages,
suggesting that XLM-R better encodes syntac-
tic information about sentences in its CLS token
rather than in the sub-word tokens themselves. We
see an inverse trend for m-BERT: syntactic com-
plexity is strongly encoded in the sub-word tokens
(MEAN and ROOT) while not in the CLS token.
This indicates that concerning encoding syntactic
complexity, the XLM-R model performs well in
pooling SC information to the CLS token during
the language modelling training and also reduces
indications of syntactic complexity from the sub-
word tokens, whereas in m-BERT syntactic com-
plexity is strongly encoded in the sub-word tokens.
We suggest that the CLS token in XLM-R gener-
ally contains more information about syntax than
the CLS token in m-BERT.

MDD vs MHD In both models all three vector
norms have a stronger correlation with MHD and a
weaker correlation with MDD. However, the mod-
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Figure 7:

els have not been provided with information about
the hierarchy of dependencies in sentences; there-
fore, it is surprising to see such a trend. We hy-
pothesise that this is because of how self-attention
functions. In self-attention, each word in a sen-
tence is multiplied by all other words in this sen-

(b) Root
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(c) Mean

base XLM-R: correlation with MHD across layers.

tence. This process leads to the model having
no inherent inductive bias towards linear relation-
ships; rather, it enables models to find relation-
ships which are not linear more easily. There-
fore, this directly impacts the differences between
how linear and hierarchical knowledge is acquired.



Previous work has shown that self-attention might
capture hierarchically organised knowledge in dif-
ferent kinds of tasks (Yang et al., 2019; Ilinykh and
Dobnik, 2021); the result aligns with our finding.

Language-to-language comparison Knowing
which norms better correlate with which lan-
guages across models is helpful because this pro-
vides insights into what type of representations
one should extract when working with specific
languages. Based on the results in Section 5, for
m-BERT, the MEAN norm correlates with syntac-
tic complexity the most across languages. We can
also note that m-BERT is better correlated with
the MHD across languages and norms. This is
also the case for the ROOT and MEAN norm,
while the CLS norm exhibits some deviations for
this. For the CLS norm: Czech, English, Ice-
landic, Japanese, Russian and Swedish show a
slightly stronger negative correlation with MDD
than MHD. There appears to be no clear expla-
nation, as the languages differ in the script used
(Latin, Cyrillic, and Kanji) and the language fam-
ilies. We do not put much weight on this deviation
because the CLS norm generally provides a weak
negative correlation with both distances.

XLM-R shows more varied trends. The CLS
norm shows the strong (negative) correlation with
MDD and MHD, —.29 and —.39, respectively. As
in m-BERT, this correlation is stronger for MHD.
As both models are based on the self-attention
mechanism, this is not a surprising finding. How-
ever, XLM-R exhibits some stronger deviations
for the preference towards MHD. This happens
mainly for the root token, where Arabic, Chinese,
English, Hindi, Japanese, Polish, Portuguese and
Turkish better encode MDD. Interestingly, we see
this preference in so many languages for the root
token, as it is the top node in the dependency tree.
This indicates that while the ROOT norm is not
the most correlated norm on average, it exhibits
more variation in what it captures than the other
norms. MDD is preferred only for Hindi with the
CLS token for the other norms and for French,
Hindi, Italian and Polish using the MEAN norm.

Overall, there are differences in how m-BERT
and XLM-R capture the knowledge of the syn-
tactic complexity of sentences across languages.
While m-BERT is computing better representa-
tions for mean norm over sub-words for many of
the languages in the PUD treebank, XLM-R has
better CLS-token representations, possibly due to
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the larger dataset that it has been pre-trained on.

7.1 Research questions revisited

We can now consider the initial research questions
posed in the introduction.

Which norms are most efficient for estimat-
ing dependency and hierarchical distance? In
general, for m-BERT the mean norm over the to-
kens in the sentence is the best indicator across
languages. For XLM-R the story is different, with
the mean norm over tokens not showing a con-
siderable correlation. In contrast, the CLS-based
norms show a stronger negative correlation with
both dependency and hierarchical distance.

Are different models better at estimating de-
pendency or hierarchical distance? Yes, we
find that both m-BERT and XLM-R exhibit
stronger correlations with hierarchical (structural)
distances than dependency (linear) distances, on
average. However, we can also observe deviations
from this, both concerning the models and norm

type.

Is the estimation of dependency and hierarchi-
cal distance influenced by the language in ques-
tion? We can note that we can observe quite dif-
ferent correlations for all vector norms when com-
paring the languages; however, they still generally
follow the same trends for a given norm type.

8 Conclusions and future work

We conclude by hypothesising how our findings
could aid data annotation efforts. We show that
for both models, we can identify a specific type of
norm that is a relatively strong indicator of syn-
tactic complexity across languages. We see at
least two potential uses of such a result. First, it
enables dataset creators to use a machine learn-
ing model to label data and then select examples
which may require the aid of a human to fine-
tune the annotation. Secondly, our findings enable
dataset creators to rank examples in terms of syn-
tactic complexity. This can be used to assign some
examples to annotators based on their experience,
where expert annotators are assigned one set of ex-
amples, and novice/intermediate annotators are as-
signed another set of examples. For future work,
we would like to explore using vector norms for
these purposes, as it can help create better datasets
by not assigning examples to annotate randomly
but in an informed manner.
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