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Abstract

Diffusion probabilistic models have shown
great success in generating high-quality im-
ages controllably, and researchers have tried to
utilize this controllability into text generation
domain. Previous works on diffusion-based
language models have shown that they can
be trained without external knowledge (such
as pre-trained weights) and still achieve sta-
ble performance and controllability. In this
paper, we trained a diffusion-based model on
StylePTB dataset, the standard benchmark for
fine-grained text style transfers. The tasks in
StylePTB requires much more refined control
over the output text compared to tasks eval-
uated in previous works, and our model was
able to achieve state-of-the-art performance
on StylePTB on both individual and compo-
sitional transfers. Moreover, our model, trained
on limited data from StylePTB without external
knowledge, outperforms previous works that
utilized pretrained weights, embeddings, and
external grammar parsers, and this may indi-
cate that diffusion-based language models have
great potential under low-resource settings.
Our code is available at https://github.
com/lvyiwei1/DiffuSeq_StylePTB

1 Introduction

Diffusion probabilistic models (Ho et al., 2020)
have became the state-of-the-art technique in visual
generative tasks. By starting from random gaus-
sian noise and gradual denoising, they are able to
generate images that look realistic in details. More-
over, conditional diffusion models such as stable
diffusion (Rombach et al., 2022) are able to achieve
detailed control over the generated output by condi-
tioning on text, layouts, etc. The generated images
are faithful to the text description or layouts, often
to the finest details.

Analogically, researchers have tried to utilize
the controllability of diffusion models to achieve
more controllable language generation. For ex-

ample, DiffuSeq (Gong et al., 2022) applies diffu-
sion models to sequence-sequence text generation
tasks such as paraphrasing, question generation and
text simplification; Diffusion-LM (Li et al., 2022)
combined diffusion models with language models
to control language generation by specifying gen-
eration length, syntax tree, semantic context, etc.
What made these diffusion-based language mod-
els impressive is that they are trained from scratch
with zero external knowledge (i.e. no pre-trained
word embeddings or model weights, no external
grammar parsers, etc) and on very few data (on
the order of 105 tokens) compared to any large lan-
guage models (for example, GPT-3’s (Brown et al.,
2020) training data is on the order 1011 tokens),
so they have to learn representations at all levels
(word embeddings, sentence structures, etc) from
scratch with very limited data.

However, while the earlier tasks assessed on
Diffusion-LM and DiffuSeq require a degree of
control over the generated output, they are inca-
pable of modifying the existing text to exhibit spe-
cific stylistic characteristics. In this paper, we
would like to further examine the capabilities of
diffusion-based language models on fine-grained
text style transfer, an important task that requires
more fine-grained control than the tasks from pre-
vious works on diffusion-based language model-
ing because it only allows changing the specified
fine-grained stylistic properties of the input while
leaving the rest unchanged. For example, "verb em-
phasis" is a fine-grained style transfer that requires
the model to rewrite the sentence emphasizing a
certain verb, without changing any other informa-
tion that the original sentence conveys. In compari-
son, previous evaluation tasks such as controlling
sequence length, semantic context, etc essentially
control one aspect at a time and require no control
over any other properties of generated text.

We use 13 non-lexical transfers from
StylePTB (Lyu et al., 2021) dataset, where
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Aspect Transfers Original Sentence
Additional
Information

Transformed Sentence
Number of Pairs
in StylePTB dataset

Syntax

To Future Tense
She travels to Paris every
summer to visit her family.

She will travel to Paris next
summer to visit her family.

7272

To Present Tense
She had been studying
architecture for five years.

She has been studying architecture for
five years.

4365

To Past Tense He walks to the store every day. He walked to the store every day. 4422
Activate to Passive The cat chased the mouse. The mouse was chased by the cat. 2808

Passive to Activate
The proposal was approved by
the committee yesterday.

The committee
approved the proposal yesterday.

2808

PP Front to Back
Having watched the movie,
they left the theater.

They left the theater after
having watched the movie.

467

PP Back to Front
They have been planning
their vacation for months.

For months, they have been
planning their vacation.

467

Semantic

ADJ/ADV Removal
The extremely talented musician
played a beautiful melody on the piano.

The musician played
a melody on the piano.

4863

PP Removal
She had been studying for hours
before taking the test.

She had been studying
before taking the test.

4767

Substatement Removal
He was unhappy that he had failed.
the exam He was unhappy. 1345

Infomation Addition
The stock was up three
percent according to the man.

"man", "lazy"
The stock was up three percent
according to the lazy man.

2114

Thematics
Verb/Action Emphasis She reads books in pastime. "read" Reading books is her favorite pastime. 1201

Adjective Emphasis
The scenic forest is
Michele’s favorite place.

"scenic" Michele’s favorite forest is scenic. 696

Table 1: The 13 non-lexical fine-grained text style transfers from the StylePTB dataset (Lyu et al., 2021). We present
one example sentence pair before/after each transfer, as well as the total number of sentence pairs available for each
transfer in StylePTB. As we can see, the transfers require changing one specific stylistic aspect of the sentence
while leaving all other aspects unchanged, and the amount of data available for training is limited (compared to the
typical amount of data required to train large language models nowadays).

there are at most a few thousand sentence pairs
available for each transfer, as shown in Table 1.
Since identifying the grammatical structure of the
sentence can be very helpful for most of these
transfers (such as active-to-passive), some previous
methods (such as Neural QCFG (Kim, 2021))
utilizes external grammar parsers to gain such
information. We trained a diffusion-based model
on StylePTB data without any pre-trained weights
or external grammar parsers. Therefore, our
model has to start from zero grammar/linguistic
knowledge and learn all of them from very limited
training data (StylePTB only has 7719 sentences
from Penn Tree Bank (Marcus et al., 1993) plus
their transferred outputs). Even under these hard
conditions, our model still managed to outperform
previous works that do utilize external weights or
grammar parsers. Moreover, we also evaluate the
capabilities of diffusion-based language models
on performing multiple transfers using one single
model and composing multiple learned transfers
on a single sentence. We list our contributions as
follows:

• We trained a diffusion-based language model
(adapted from DiffuSeq (Gong et al., 2022))

that can perform fine-grained text style trans-
fer from scratch with very limited training
data and no external weights or tools. The
model also supports multitasking and compos-
ing multiple fine-grained transfers.

• Our model achieves state-of-the-art perfor-
mance on fine-grained text style transfers in
StylePTB. Our multitask model (i.e. one sin-
gle model that can perform all 13 transfers)
achieves best performance compared to pre-
vious works on the same tasks on 88 out of 91
metrics (7 metrics per transfer), and gets very
close to human performance on tasks with
easy and medium difficulties. We also eval-
uated our model on composition of multiple
fine-grained transfers, and we achieved best
performance on these tasks as well.

• Thr/ough the evaluations, we demonstrated
the extraordinary capabilities of diffusion-
based language models in asserting extremely
fine-grained control over generated text, and
that this type of language model have great po-
tential in controllable natural language gener-
ation under low-resource settings as it is able
to achieve state-of-the-art performance with
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limited training data and no external knowl-
edge.

2 Backgrounds

2.1 Fine-grained Text Style Transfer and
StylePTB

An import challenge for AI is to convey intentions
using different stylistic attributes, and automated
text style transfer is an essential step towards that.
Text style transfer aims to controllably convert
source text with targeted stylistic properties, with
important applications in human-AI interactions
including dialog systems (Celikyilmaz et al., 2018)
and intelligent agents (Kim et al., 2013; Liang et al.,
2020; Pittermann et al., 2010) that can communi-
cate with specific text styles for different situations,
target audiences, and environments (Lample et al.,
2019; Li et al., 2018).

There has been extensive research on high-level
style transfers such as sentiment transfers (Shen
et al., 2017) and formality transfers (Rao and
Tetreault, 2018). However, high-level style trans-
fers lack the ability to fully control the style of
the output. For example, there are many ways
to convert a positive comment about a restaurant
into a negative one, and high-level text style trans-
fers do not allow control over which of the pos-
sible outputs (that may have different styles in
non-sentiment aspects) can be generated. Fine-
grained text style transfer is important because they
allow fine-grained control over the generated out-
put. (Lyu et al., 2021) defined a set of fine-grained
text style transfer along four lingustic axis:

• Lexical Transfers: Word changes
• Syntax Transfers: Grammar and sentence

structure changes
• Semantic Transfers: Meaning changes
• Thematic Transfers: Situational changes or

word emphasis

Along these 4 axes, it defined 21 individual fine-
grained transfers, 13 of which are non-lexical. Ex-
amples of the non-lexical transfers are shown in
Table 1. Compared to other forms of controllable
text generation, fine-grained text style transfer has
the advantage of being able to assert control over
text generated by uncontrollable models. For ex-
ample, we can use fine-grained text style transfers
to add specific stylistic properties to free-form text
generated by large language models while keep-
ing the content of the generated text unchanged.

Fine-grained text style transfers can be composed
to achieve higher-level style transfers, and they
even have the potential to mitigate social bias in
large text generation models (Lyu et al., 2021).
Therefore, it is important to develop techniques to
achieve automated fine-grained text style transfer.
Existing works are still quite far from perfect on a
lot of the fine-grained style transfers compared to
human performance (Lyu et al., 2021; Kim, 2021),
and composing multiple fine-grained style transfers
remains challenging.

2.2 Diffusion Probabilistic Models
Recently, diffusion models (Ho et al., 2020) is
widely used to generate high quality and diverse
images. Its methodology consists of two phases:
the first phase is the forward diffusion phase, which
adds Gaussian noise to the input image x0 as the
time stamp increases, and after enough steps the
image is reduced to pure Gaussian noise xt. The
second phase is the recovery phase, in which a
model is trained to gradually remove noise from xt
until it recovers the original image x0. During infer-
ence, we start from a randomly sampled gaussian
noise xt and use the denoising model to gradually
infer an image x0.

Diffusion-based language generation models fol-
lows a similar approach where we perform the dif-
fusion and denoising process in the token embed-
ding space. We will explain the model we use,
which is built upon DiffuSeq (Gong et al., 2022),
in details in the next section.

3 Methodology
We adapt DiffuSeq (Gong et al., 2022) to be able
to perform fine-grained text style transfer given a
source sentence and specified transfer operation(s),
as illustrated in Figure 1. We model the transfer as
a conditional generation process, where the condi-
tion includes the source sentence and the specified
transfer operation(s). We first define a set of special
style tokens, one for each possible individual fine-
grained transfer. If we wish to perform one or more
transfer on the source sentence, we will prepend
the corresponding special token(s) to the beginning
of the source sentence to form the condition S.

We use BERT tokenizer to tokenize the input
into discrete token ids, and adopt a token embed-
ding layer to encode both the source (including
prepended style tokens) and the ground truth target
sentence (during training) to obtain the embedded
source ZS and target ZTRG

0 . For the diffusion pro-
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Figure 1: An illustration of the training and inference process of our diffusion-based language model. The diffusion
process is performed over the sequence of token embeddings of the target sentence ZTRG

0 , and the source sentence’s
token embeddings (ZS) are concatenated before ZTRG. During the backward diffusion process, the combined
sequence is fed into the transformer model to gradually recover/generate ZTRG

0 .

cess, we use a transformer model to recover the
target embedding. Both the diffusion transformer
and the token embeddings are initialized randomly
and jointly optimized. In other words, our model
does not rely on any prior knowledge about our
task or the English Language in general.

We use the simplified diffusion objective dur-
ing training: for each input (S, TRG) where S is
the source sentence (with style tokens) and TRG
is the ground truth target sentence, we randomly
sample a step number t from 1, 2, ...T , where T is
the maximum number of steps, and add t steps of
random Gaussian noise to ZTRG

0 following a linear
diffusion schedule to obtain ZTRG

t . We then con-
catenate ZS and ZTRG

t and input the concatenated
sequence into our diffusion transformer, where we
only take the output embeddings at the locations
corresponding to ZTRG

t as Z ′TRG
0 . Our training ob-

jective is simply going to be the MSE Loss between
ZTRG
0 and Z ′TRG

0 .

During inference, we randomly initialize
Z ′TRG
T ∼ N(0, 1), and encode the condition

(source sentence and style tokens) into ZS . Then
we concatenate them and use our transformer to
predict a temporary Z ′TRG

0temp
, add T−1 steps of noise

back to the temporary Z ′TRG
0temp

to obtain Z ′TRG
T−1 . We

repeat this process until we get Z ′TRG
0 . For each

embedding in Z ′TRG
0 , we find the closest embed-

ding in our token embedding layer by cosine dis-
tance, and decode the embedding to that token.
Then we combine the tokens to form the output

sentence in natural language.

4 Experiments

4.1 Dataset

StylePTB (Lyu et al., 2021) contains paired sen-
tences before/after each transfer for 21 fine-grained
transfers, as well as paired data for compositions of
multiple fine-grained transfers. For single transfers,
we will focus on the 13 non-lexical fine-grained
style transfers following (Lyu et al., 2021). The
number of sentence pairs available from StylePTB
for each transfer and examples of sentences be-
fore/after each transfer are shown in Table 1. For
compositional transfers, we will use the Tense +
Voice and Tense + PP Removal transfers from the
compositional part of StylePTB dataset (same as
the ones used for evaluation in (Lyu et al., 2021)).
Each compositional dataset contains all combina-
tions of valid transfers (for example, Tense + Voice
dataset contains all valid combinations of 0/1/2
transfers regarding tense and voice, such as To-
Future + Active-To-Passive or To-Past + No-Voice-
Change).

StylePTB was built with only 7719 different sen-
tences from Penn Tree Bank (Marcus et al., 1993)
plus their stylistic variations, so both the amount
and the diversity of training data are very limited,
thus making this task even more challenging for
DiffuSeq since it does not have access to exter-
nal knowledge or pre-trained weights and have to
extract all linguistic knowledge from limited data.
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For fair comparison, we preprocess the data fol-
lowing the same criterion as (Lyu et al., 2021):
we replace numbers with NUM token, and we re-
place each word that occurs less than 3 times in
the training set with UNK token. We also split the
data into train/valid/test splits with proportions of
0.9/0.05/0.05 using the same splits as all previous
works.

4.2 Evaluation Metrics
We use the same evaluation methods as (Lyu et al.,
2021) and report 7 metrics from nlg-eval pack-
age (Sharma et al., 2017) (BLEU 1-4, METEOR,
ROUGE-L, CiDER) between the generated trans-
ferred sentence and the ground truth target sentence
from the dataset.

4.3 Single style transfer experiment
4.3.1 Baselines
We report performance of the following baselines
for single style transfer:

1. GPT-2: Directly finetuning GPT-2 medium
model (Radford et al., 2019) with paired data.
Performance reported from (Lyu et al., 2021).

2. Seq2Seq: GRU sequence-to-sequence lan-
guage model (Sutskever et al., 2014) with
attention. Performance reported from (Lyu
et al., 2021).

3. RetrieveEdit (Hashimoto et al., 2018): For
an input data x, a retriever model will go
through the training set to find a similar sen-
tence pair (x′, y′) and a trained editor edits y′

into desired output y. Performance reported
from (Lyu et al., 2021).

4. Steering Vector (Subramani et al., 2022):
extract steering vectors directly from pre-
trained LMs to guide generation

5. TAILOR (Ross et al., 2021): output sen-
tences conditioned on control codes by a pre-
trained seq2seq model

6. Neural QCFG (Kim, 2021): It presents a
sequence-to-sequence text learning by explic-
itly modeling the alignment between target
trees with the source.

7. Neural QCFG + copy (Kim, 2021): Neural
QCFG with an option to copy certain tokens
from source sentence

Among these baselines, GPT-2, Steering Vector
and TAILOR uses pre-trained language models,
Neural QCFG and Neural QCFG + copy requires

external grammar parsers, and RetrieveEdit uses
GLOVE word embeddings.

We also included Human performance on these
tasks (reported in (Lyu et al., 2021) by asking hu-
man annotators to manually perform the style trans-
fer tasks) for comparison.

4.3.2 Results and Analysis

For single style transfers, we tried two different
diffusion-based approaches: (1) we train a separate
diffusion model for each individual style transfer,
and (2) we train one diffusion model for all 13
transfers evaluated. For approach (2), we add a
style token at the beginning of the input sentence to
indicate which of the 13 transfers needs to be per-
formed. We call approach (2) DiffuSeq Multitask.

The original StylePTB paper (Lyu et al., 2021)
puts the non-lexical transfers into 3 difficulty cate-
gories (easy, medium, hard) by average hamming
distance between input and output of the transfer.
We report the results of our experiment using the
same categorization, where we show results on easy
and medium transfers in Table 2 and hard transfers
in Table 3.

Surprisingly, DiffuSeq Multitask outperforms
DiffuSeq on all transfers, even though DiffuSeq
Multitask has to handle 13 different transfers in
one model while each DiffuSeq model only needs
to handle 1 transfer. This is possibly due to the ad-
ditional training data from all the tasks that the mul-
titask model learns better representations for words
and sentences and gains more accurate knowledge
of grammatical patterns of English, which is shared
across all tasks.

Moreover, DiffuSeq Multitask significantly out-
performs all baselines in all easy and medium trans-
fers, and also achieves state-of-the-art on most met-
rics on hard transfers, only falling slightly behind
Neural QCFG + copy in some metrics. This is
really impressive considering that our approach
leverages no external knowledge while all baselines
except Seq2Seq utilizes either pretrained language
models, pretrained word embeddings, or external
grammar tree parser. Neural-QCFG-based meth-
ods are especially dependent on external linguistics
knowledge and existing grammar parsers. DiffuSeq
Multitask’s performance is also on par with human
performance on easy and medium transfers, indicat-
ing that DiffuSeq Multitask is close to fully solving
the easy and medium difficulty transfers.
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Easy Transfers Baseline Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE_L CiDER

To Future Tense

GPT2 0.895 0.852 0.813 0.778 0.540 0.899 7.709
SEQ2SEQ 0.527 0.368 0.261 0.188 0.173 0.531 1.525
RETRIEVEEDIT 0.899 0.854 0.815 0.778 0.531 0.901 7.731
STEERING VECTOR 0.699 - - - - -
TAILOR 0.873 - - - - - -
DIFFUSEQ 0.976 0.956 0.937 0.917 0.646 0.973 9.145
DIFFUSEQ MULTITASK 0.985 0.972 0.959 0.946 0.677 0.983 9.454
HUMAN 0.954 0.915 0.884 0.855 0.636 0.964 9.174

To Past Tense

GPT2 0.836 0.776 0.722 0.674 0.484 0.842 6.700
SEQ2SEQ 0.478 0.313 0.204 0.133 0.155 0.490 1.374
RETRIEVEEDIT 0.935 0.903 0.873 0.847 0.606 0.933 8.358
STEERING VECTOR 0.478 - - - - - -
TAILOR 0.711 - - - - - -
DIFFUSEQ 0.973 0.959 0.946 0.932 0.697 0.976 9.352
DIFFUSEQ MULTITASK 0.986 0.977 0.968 0.958 0.709 0.987 9.588
HUMAN 0.974 0.957 0.939 0.916 0.709 0.982 9.549

To Present Tense

GPT2 0.754 0.663 0.586 0.524 0.412 0.772 5.293
SEQ2SEQ 0.516 0.361 0.267 0.210 0.190 0.518 1.819
RETRIEVEEDIT 0.909 0.870 0.830 0.793 0.599 0.916 7.987
STEERING VECTOR 0.692 - - - - - -
TAILOR 0.884 - - - - - -
DIFFUSEQ 0.965 0.948 0.932 0.916 0.713 0.964 9.072
DIFFUSEQ MULTITASK 0.975 0.961 0.947 0.933 0.719 0.977 9.310
HUMAN 0.969 0.952 0.936 0.918 0.745 0.979 9.501

ADJ or ADV Removal

GPT2 0.647 0.508 0.394 0.308 0.313 0.652 3.259
SEQ2SEQ 0.450 0.274 0.172 0.112 0.140 0.469 1.171
RETRIEVEEDIT 0.897 0.841 0.786 0.731 0.511 0.919 7.461
STEERING VECTOR 0.721 - - - - - -
TAILOR 0.781 - - - - - -
DIFFUSEQ 0.903 0.809 0.731 0.664 0.488 0.888 6.708
DIFFUSEQ MULTITASK 0.949 0.908 0.868 0.829 0.563 0.946 8.237
HUMAN 0.933 0.894 0.870 0.847 0.591 0.965 8.924

Medium Transfers Baseline Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE_L CiDER

PP Front to Back

GPT2 0.398 0.210 0.081 0.001 0.184 0.406 0.886
SEQ2SEQ 0.393 0.280 0.207 0.161 0.162 0.391 1.492
RETRIEVEEDIT 0.541 0.423 0.301 0.176 0.247 0.547 2.536
STEERING VECTOR 0.819 - - - - - -
TAILOR 0.842 - - - - - -
DIFFUSEQ 0.605 0.409 0.301 0.247 0.271 0.514 2.273
DIFFUSEQ MULTITASK 0.978 0.931 0.893 0.856 0.567 0.901 8.374
HUMAN 0.965 0.959 0.952 0.945 0.690 0.970 9.671

PP Front to Back

GPT2 0.407 0.241 0.091 0.001 0.166 0.406 0.931
SEQ2SEQ 0.298 0.157 0.090 0.060 0.112 0.284 0.606
RETRIEVEEDIT 0.649 0.584 0.535 0.491 0.333 0.656 4.667
DIFFUSEQ 0.603 0.400 0.291 0.242 0.266 0.514 2.255
DIFFUSEQ MULTITASK 0.983 0.944 0.905 0.868 0.610 0.950 8.664
HUMAN 1.000 1.000 1.000 1.000 1.000 1.000 10.000

PP Removal

GPT2 0.763 0.700 0.645 0.593 0.419 0.787 6.012
SEQ2SEQ 0.330 0.195 0.121 0.081 0.112 0.363 1.004
RETRIEVEEDIT 0.798 0.770 0.739 0.712 0.478 0.846 7.111
STEERING VECTOR 0.393 - - - - - -
TAILOR 0.717 - - - - - -
DIFFUSEQ 0.856 0.803 0.758 0.717 0.515 0.872 7.235
DIFFUSEQ MULTITASK 0.950 0.937 0.919 0.902 0.624 0.948 8.606
HUMAN 0.957 0.944 0.931 0.919 0.681 0.976 9.207

Substatement Removal

GPT2 0.430 0.332 0.247 0.176 0.250 0.588 3.090
SEQ2SEQ 0.317 0.192 0.110 0.001 0.100 0.368 1.041
RETRIEVEEDIT 0.706 0.678 0.647 0.607 0.405 0.767 6.183
STEERING VECTOR 0.120 - - - - - -
DIFFUSEQ 0.688 0.592 0.493 0.388 0.364 0.718 4.285
DIFFUSEQ MULTITASK 0.884 0.860 0.825 0.781 0.555 0.895 7.165
HUMAN 0.731 0.720 0.705 0.685 0.607 0.788 7.691

Information Addition

GPT2 0.479 0.305 0.189 0.121 0.207 0.475 1.359
SEQ2SEQ 0.345 0.180 0.094 0.053 0.098 0.335 0.632
STEERING VECTOR 0.772 - - - - - -
RETRIEVEEDIT 0.493 0.396 0.328 0.275 0.284 0.603 3.401
DIFFUSEQ 0.809 0.572 0.420 0.3081 0.3829 0.676 3.439
DIFFUSEQ MULTITASK 0.911 0.800 0.706 0.623 0.483 0.835 6.038
HUMAN 0.846 0.762 0.690 0.624 0.521 0.892 6.863

Table 2: Evaluation results on easy and medium transfers. DiffuSeq Multitask achieves State of the art performance
in every metric, and is on par with human performance.
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Hard Transfers Baseline Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE_L CiDER

Active To Passive

GPT2 0.476 0.329 0.238 0.189 0.216 0.464 1.820
SEQ2SEQ 0.373 0.220 0.141 0.103 0.131 0.345 0.845
RETRIEVEEDIT 0.681 0.598 0.503 0.427 0.383 0.663 4.535
STEERING VECTOR 0.666 - - - - - -
TAILOR 0.556 - - - - - -
NEURAL QCFG 0.431 0.637 0.548 0.472 0.415 0.695 4.294
NEURAL QCFG + COPY 0.836 0.771 0.713 0.662 0.499 0.803 6.410
DIFFUSEQ 0.839 0.580 0.302 0.196 0.225 0.512 2.344
DIFFUSEQ MULTITASK 0.918 0.835 0.752 0.681 0.521 0.844 6.913
HUMAN 0.931 0.881 0.835 0.795 0.587 0.905 8.603

Passive To Active

GPT2 0.433 0.271 0.167 0.120 0.191 0.434 1.329
SEQ2SEQ 0.339 0.214 0.160 0.132 0.126 0.331 1.062
RETRIEVEEDIT 0.714 0.659 0.559 0.474 0.397 0.732 5.024
STEERING VECTOR 0.574 - - - - - -
DIFFUSEQ 0.829 0.550 0.282 0.192 0.205 0.502 2.224
DIFFUSEQ MULTITASK 0.955 0.896 0.834 0.777 0.555 0.913 8.028
HUMAN 0.977 0.962 0.942 0.919 0.685 0.973 9.409

Adjective Emphasis

GPT2 0.263 0.079 0.028 0.000 0.112 0.188 0.386
SEQ2SEQ 0.187 0.058 0.018 0.000 0.059 0.179 0.141
RETRIEVEEDIT 0.387 0.276 0.211 0.164 0.193 0.369 1.679
STEERING VECTOR 0.774 - - - - - -
NEURAL QCFG 0.348 0.178 0.062 0.000 0.162 0.317 0.667
NEURAL QCFG + COPY 0.676 0.506 0.393 0.316 0.373 0.683 3.424
DIFFUSEQ 0.620 0.382 0.215 0.152 0.243 0.335 2.231
DIFFUSEQ MULTITASK 0.775 0.600 0.477 0.386 0.423 0.673 4.007
HUMAN 0.834 0.753 0.679 0.611 0.522 0.811 6.796

Verb/Action Emphasis

GPT2 0.309 0.170 0.095 0.041 0.140 0.292 0.593
SEQ2SEQ 0.289 0.127 0.066 0.038 0.098 0.275 0.300
RETRIEVEEDIT 0.416 0.284 0.209 0.148 0.223 0.423 1.778
STEERING VECTOR 0.548 - - - - - -
NEURAL QCFG 0.431 0.250 0.14 0.073 0.219 0.408 1.097
NEURAL QCFG + COPY 0.664 0.512 0.407 0.319 0.370 0.589 3.227
DIFFUSEQ 0.453 0.210 0.101 0.054 0.205 0.379 0.785
DIFFUSEQ MULTITASK 0.693 0.516 0.370 0.261 0.373 0.596 2.950
HUMAN 0.649 0.569 0.493 0.421 0.433 0.693 5.668

Table 3: Evaluation results on hard transfers. Diffuseq Multitask achieves State-of-the-art performance on most
metrics, and is only slightly behind Neural QCFG + copy on some metrics.

4.4 Compositional style transfer experiment
4.4.1 Baselines
We will report performance of the following base-
lines for compositional fine-grained style transfers:

1. SeqGPT: Sequentially applying fine-tuned
GPT-2 for each single style transfer. Perfor-
mance reported from (Lyu et al., 2021).

2. CS-GPT: A modified GPT-2 model that takes
in style tokens as indication of which style
transfers to apply. Performance reported from
(Lyu et al., 2021).

4.4.2 Results and Analysis
For compositions of multiple fine-grained style
transfers, we train one single DiffuSeq model to
handle all compositions and use style tokens to
indicate which transfers to compose for the input
sentence, similar to CS-GPT (Lyu et al., 2021).
The results are shown in Table 4. DiffuSeq signif-
icantly outperforms baselines in all tasks and all
metrics. Therefore, not only does our diffusion

model work well for single fine-grained style trans-
fers, it also works well for compositions of multiple
fine-grained style transfers.

5 Related Works

5.1 Automated Text Style Transfer
The goal of the text style transfer (TST) task is to
change the style of the sentence while retaining
its style-independent content. Previous works in
TST includes the following approaches: statistical
NLP methods (Hovy, 1987; Xu et al., 2012), neural
generative models (Prabhumoye et al., 2018; Lam-
ple et al., 2019; He et al., 2020), Retrieve-and-Edit
approaches (Li et al., 2018; Hashimoto et al., 2018;
Guu et al., 2018; Sudhakar et al., 2019; Madaan
et al., 2020), and Transformer-based approach (Lyu
et al., 2021). Some of these methods can already
achieve high performance on certain high-level
transfers (such as sentiment transfers (Shen et al.,
2017) and formality transfers (Rao and Tetreault,
2018)), but fine-grained text style tranfer remains
challenging for the above approaches (Lyu et al.,
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Dataset Transfers Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE_L CiDER

Tense
+
Voice

ToPast+
ActiveToPassive

SEQGPT 0.332 0.155 0.057 0.024 0.144 0.300 0.636
CS-GPT 0.409 0.238 0.133 0.064 0.180 0.378 1.029
DIFFUSEQ 0.744 0.555 0.420 0.324 0.353 0.656 3.753

ToFuture+
ActiveToPassive

SEQGPT 0.391 0.222 0.120 0.065 0.167 0.373 0.866
CS-GPT 0.496 0.340 0.240 0.185 0.217 0.479 1.800
DIFFUSEQ 0.821 0.705 0.615 0.542 0.414 0.762 5.281

ToFuture+
PassiveToActive

SEQGPT 0.401 0.212 0.097 0.048 0.163 0.385 0.888
CS-GPT 0.528 0.364 0.259 0.197 0.234 0.524 2.020
DIFFUSEQ 0.744 0.555 0.420 0.324 0.353 0.656 3.753

ToPast+
PassiveToActive

SEQGPT 0.381 0.210 0.098 0.045 0.156 0.368 0.876
CS-GPT 0.474 0.297 0.175 0.099 0.206 0.473 1.513
DIFFUSEQ 0.864 0.772 0.697 0.635 0.460 0.825 6.519

ToPresent+
PassiveToActive

SEQGPT 0.348 0.189 0.085 0.037 0.142 0.343 0.745
CS-GPT 0.523 0.366 0.264 0.210 0.243 0.522 2.118
DIFFUSEQ 0.797 0.686 0.603 0.536 0.414 0.756 5.378

ToPresent+
ActiveToPassive

SEQGPT 0.396 0.256 0.177 0.136 0.179 0.384 1.209
CS-GPT 0.503 0.358 0.271 0.223 0.233 0.491 2.118
DIFFUSEQ 0.878 0.787 0.715 0.656 0.482 0.849 6.823

Tense
+
PP
Removal

ToFuture+
PPRemoval

SEQGPT 0.722 0.644 0.581 0.524 0.385 0.755 5.562
CS-GPT 0.738 0.652 0.578 0.518 0.393 0.755 5.289
DiffuSeq 0.913 0.876 0.841 0.808 0.557 0.911 7.906

ToPast+
PPRemoval

SEQGPT 0.714 0.640 0.573 0.510 0.374 0.724 5.152
CS-GPT 0.772 0.695 0.624 0.564 0.421 0.775 5.585
DiffuSeq 0.911 0.881 0.849 0.818 0.568 0.908 7.825

ToPresent+
PPRemoval

SEQGPT 0.618 0.518 0.435 0.368 0.338 0.663 4.119
CS-GPT 0.709 0.609 0.523 0.446 0.718 0.718 4.588
DiffuSeq 0.908 0.859 0.820 0.788 0.558 0.895 7.439

Table 4: Results on compositions of Tense + Voice transfers and Tense + PP Removal Transfers. DiffuSeq was able
to outperform all 3 baselines from (Lyu et al., 2021) by a large margin.

2021). In this paper, we explored a new approach
for fine-grained TST utilizing Diffusion Models.

5.2 Natural language processing with
diffusion model

There have been two approaches for leveraging
diffusion models into text data: the first approach
takes advantage of the diffusion model in the con-
tinuous domain, like Diffusion-LM (Li et al., 2022),
and DiffuSeq (Gong et al., 2022), where we start
from a gaussian noise vector, and gradually denoise
this noise vector to the desired sentence; the sec-
ond approach applies diffusion model into discrete
state space, like Multinomial Diffusion (Hooge-
boom et al., 2021), DDPMs (Austin et al., 2021),
and DiffusionBERT (Austin et al., 2021). In this pa-
per, we chose to build upon the first type of model,
because they are closer to the original diffusion
models for images (where diffusion happens in
continuous space) and they have shown successes
on tasks that requires control over generations.

6 Limitations and Future works

One significant limitation of our work is that we
only explored the capabilities of diffusion-based
language models under a challenging circumstance

where it is not allowed to use pre-trained weights or
grammar parsers, which means we did not utilize
this kind of model to its full potential, so a fu-
ture research direction could be exploring possible
ways to further improve the model’s performance
by leveraging pretrained weights or word embed-
dings, and train with enough data to find the full
potential of these models.

Another limitation of our work is that we only ex-
plored one typical diffusion-based language model,
so our conclusions may not generalize to special
types of diffusion-based language models (such
as ones that uses discrete state space). We also
conducted all experiments using the exact same
model architecture design. In the future, we plan
to experiment with different architectures for the
diffusion model, such as more sophisticated con-
ditioning methods (currently we just concatenate
the source to the target, but we would like to try
other ways of conditioning on the source, such as
cross attention, as these conditioning methods for
diffusion models have promising performance in
the image generation domain).

Lastly, we found that diffusion-based language
models work well with limited data and no external
knowledge or pre-trained weights, thus these mod-
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els may have great potential under low-resource
settings, but we didn’t apply them to any real low-
resource settings (such as low-resource languages,
rare domains, etc) in this paper, and we would like
to do that in the future to explore the full potential
of diffusion-based language models.

7 Conclusions

In this paper, we explored the capabilities of
diffusion-based models on fine-grained text style
transfer, a task that requires a high level of control
over generated text, with no external knowledge or
pre-trained weights and with very limited training
data. Our diffusion-based language model, which
builds upon DiffuSeq (Gong et al., 2022), achieves
state-of-the-art performance on all transfers as well
as composition of transfers, outperforming all pre-
vious works on this dataset, including ones that
uses pre-trained weights, word embeddings, and
external grammar parsers. It is even on par with
human performance on many transfers. Therefore,
our model is a great step towards solving automated
fine-grained text style transfer.

Moreover, our work, together with previous
works such as Diffusion-LM (Li et al., 2022),
demonstrates that diffusion-based language mod-
els could have great potential in controllable text
generation under low-resource settings. Under low-
resource settings (such as rarely spoken language
or uncommon tasks), it would be difficult to find ex-
isting large language models or pre-trained weights,
and available training data will likely be very lim-
ited, so most approaches based on finetuning ex-
isting models or large amounts of training will not
work well, and diffusion-based language models
could be an alternative to consider.

Acknowledgement

This work is supported in part by grants from NSF
IIS 1453651, NIH K12 NS080223, Cook Family
Brain Tumor Research Fund, Mark Trauner Brain
Research Fund: Zenkel Family Foundation, Ian’s
Friends Foundation, and the Investigators Awards
grant program of Precision Health at the University
of Michigan. Any opinions, findings, conclusions,
or recommendations expressed in this work are
those of the author(s) and do not necessarily reflect
the views of the NSF, NIH, Cook Family Brain Tu-
mor Research Fund, Mark Trauner Brain Research
Fund: Zenkel Family Foundation, Ian’s Friends
Foundation, or Precision Health at the University

of Michigan. We are grateful to the reviewers for
their helpful review and feedback.

References
Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel

Tarlow, and Rianne van den Berg. 2021. Structured
denoising diffusion models in discrete state-spaces.
Advances in Neural Information Processing Systems,
34:17981–17993.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Asli Celikyilmaz, Li Deng, and Dilek Hakkani-Tür.
2018. Deep learning in spoken and text-based dia-
log systems. In Deep Learning in Natural Language
Processing, pages 49–78. Springer.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and LingPeng Kong. 2022. Diffuseq: Sequence to se-
quence text generation with diffusion models. arXiv
preprint arXiv:2210.08933.

Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association
for Computational Linguistics, 6:437–450.

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren,
and Percy S Liang. 2018. A retrieve-and-edit frame-
work for predicting structured outputs. In Advances
in Neural Information Processing Systems, pages
10052–10062.

Junxian He, Xinyi Wang, Graham Neubig, and Taylor
Berg-Kirkpatrick. 2020. A probabilistic formulation
of unsupervised text style transfer. arXiv preprint
arXiv:2002.03912.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–
6851.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini,
Patrick Forré, and Max Welling. 2021. Argmax flows
and multinomial diffusion: Learning categorical dis-
tributions. Advances in Neural Information Process-
ing Systems, 34:12454–12465.

Eduard Hovy. 1987. Generating natural language un-
der pragmatic constraints. Journal of Pragmatics,
11(6):689–719.

Elizabeth S Kim, Lauren D Berkovits, Emily P Bernier,
Dan Leyzberg, Frederick Shic, Rhea Paul, and Brian
Scassellati. 2013. Social robots as embedded rein-
forcers of social behavior in children with autism.
Journal of autism and developmental disorders.

73



Yoon Kim. 2021. Sequence-to-sequence learning with
latent neural grammars. Advances in Neural Infor-
mation Processing Systems, 34:26302–26317.

Guillaume Lample, Sandeep Subramanian, Eric Smith,
Ludovic Denoyer, Marc’Aurelio Ranzato, and Y-Lan
Boureau. 2019. Multiple-attribute text rewriting. In
International Conference on Learning Representa-
tions.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to senti-
ment and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874. Association for Computational
Linguistics.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy
Liang, and Tatsunori B Hashimoto. 2022. Diffusion-
lm improves controllable text generation. arXiv
preprint arXiv:2205.14217.

Paul Pu Liang, Jeffrey Chen, Ruslan Salakhutdinov,
Louis-Philippe Morency, and Satwik Kottur. 2020.
On emergent communication in competitive multi-
agent teams. In AAMAS.

Yiwei Lyu, Paul Pu Liang, Hai Pham, Eduard Hovy,
Barnabás Póczos, Ruslan Salakhutdinov, and Louis-
Philippe Morency. 2021. Styleptb: A compositional
benchmark for fine-grained controllable text style
transfer. arXiv preprint arXiv:2104.05196.

Aman Madaan, Amrith Setlur, Tanmay Parekh, Barn-
abas Poczos, Graham Neubig, Yiming Yang, Ruslan
Salakhutdinov, Alan W Black, and Shrimai Prabhu-
moye. 2020. Politeness transfer: A tag and generate
approach. arXiv preprint arXiv:2004.14257.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Johannes Pittermann, Angela Pittermann, and Wolfgang
Minker. 2010. Emotion recognition and adaptation
in spoken dialogue systems. International Journal of
Speech Technology.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhut-
dinov, and Alan W Black. 2018. Style transfer
through back-translation. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 866–876.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Sudha Rao and Joel Tetreault. 2018. Dear sir or madam,
may i introduce the gyafc dataset: Corpus, bench-
marks and metrics for formality style transfer. arXiv
preprint arXiv:1803.06535.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10684–10695.

Alexis Ross, Tongshuang Wu, Hao Peng, Matthew E
Peters, and Matt Gardner. 2021. Tailor: Generating
and perturbing text with semantic controls. arXiv
preprint arXiv:2107.07150.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and
Jeremie Zumer. 2017. Relevance of unsupervised
metrics in task-oriented dialogue for evaluating natu-
ral language generation. CoRR, abs/1706.09799.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in Neural Informa-
tion Processing Systems, pages 6833–6844.

Nishant Subramani, Nivedita Suresh, and Matthew E
Peters. 2022. Extracting latent steering vectors
from pretrained language models. arXiv preprint
arXiv:2205.05124.

Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Mah-
eswaran. 2019. Transforming delete, retrieve, gener-
ate approach for controlled text style transfer. arXiv
preprint arXiv:1908.09368.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112.

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and
Colin Cherry. 2012. Paraphrasing for style. In Pro-
ceedings of COLING 2012, pages 2899–2914.

74

https://openreview.net/forum?id=H1g2NhC5KQ
https://doi.org/10.18653/v1/N18-1169
https://doi.org/10.18653/v1/N18-1169
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
http://aclweb.org/anthology/P18-1080
http://aclweb.org/anthology/P18-1080
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799

