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Abstract
Local coherence is essential for text genera-
tion models. We identify two important as-
pects of local coherence within the visual sto-
rytelling task: (1) the model needs to represent
re-occurrences of characters within the image
sequence in order to mention them correctly in
the story; (2) character representations should
enable us to find instances of the same char-
acters and distinguish different characters. In
this paper, we propose a loss function inspired
by a linguistic theory of coherence for learning
image sequence representations. We further
propose combining features from an object de-
tector and a face detector to construct stronger
character features. To evaluate visual ground-
ing that current reference-based metrics do not
measure, we propose a character matching met-
ric to check whether the models generate refer-
ring expressions correctly for characters in in-
put image sequences. Experiments on a visual
story generation dataset show that our proposed
features and loss function are effective for gen-
erating more coherent and visually grounded
stories. Our code is available at https://
github.com/vwprompt/vcl.

1 Introduction

Storytelling is humans using language to convey
stories to audiences, which is one of the oldest hu-
man activities of language use (Lucarevschi, 2016).
In this paper, we focus on the visual storytelling
task of generating stories from visual narratives,
i.e., a sequence of images with a plot (Park and
Kim, 2015; Huang et al., 2016; Hong et al., 2023).
Stories, unlike image captions, contain several char-
acters and events involving recurrent characters
and their interactions with each other and the en-
vironment. Especially, characters are among the
most important aspects of story writing (Goldfarb-
Tarrant et al., 2020).

However, the current state-of-the-art (SOTA) vi-
sual storytelling models often fail to generate cor-
rect referring expressions for characters (Modi and

Parde, 2019). To confirm this, we generate 50 sto-
ries using a SOTA model (TAPM; Yu et al., 2021)
and annotate different types of errors.1 The most
prevalent error that appears in 60% of the generated
stories is lacking local coherence which manifests
as the characters appearing in the image not being
mentioned correctly in the stories. For instance, in
the first two rows of Figure 1, the character Jeremy
appears across all images. The SOTA model TAPM
first mentions him as Jeremy in the first sentence
but misses him in the second sentence and inconsis-
tently misnames him as Adam in the last sentence.

We identify two fundamental causes of this prob-
lem: 1) Most previous models do not represent the
recurrence of characters in the image sequence ex-
plicitly. In particular, it is not clear whether the
parameters in the model can capture character re-
currence such that the visual coherence, local coher-
ence in image sequences, can be reflected in textual
coherence by repeated mentions of the recurrent
characters in the story. We argue that a model that
captures and represents the visual coherence better
would also lead to more coherent stories.

2) Previous models mostly consider visual fea-
tures without a focus on human characters, such as
features extracted with a general vision backbone
model. These features lack enough power to repre-
sent properties such as age, gender, face, or body
shape. As a result, models using these features
cannot distinguish between different instances of
the same human character, which introduces wrong
character mentions in generated stories.

Our contributions for tackling these limitations:
(a) To tackle limitation 1), we propose a new

ranking loss function, Visual Coherence Loss
(VCL), which is inspired by models of cohesion
in language (see section 4.1). VCL punishes stand-
alone instances and rewards instances that appear

1TAPM is the only SOTA model that has publically avail-
able source code. See Appendix A for the details of annota-
tion.
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Model CM METEOR

TAPM 
(SOTA)

Jeremy was hiding behind the wall . ??? Adam was able to get up and leave the 
building . Adam was able to escape . 0.5 22.67

VCL Jeremy was in the middle of a fight with a gun . ??? Jeremy was hiding behind the 
wall . Jeremy is still in the room and he is trying to get out . 0.83 38.6

VCL + 
Insigh=ace

Jeremy was hiding behind the wall . Jeremy and Adam were hiding behind the wall . 
Jeremy was hiding behind a wall . 1 22.74

Oracle Jeremy was the one who was hiding in the room . ??? Adam was not happy with the plan . 
Jeremy was hiding behind the stairs . 0.83 27.16

Human Jeremy was trying to escape with a gun and bullets around his neck. Adam found Jeremy 
sitting on the stairs. Jeremy started weeping and begging for his forgiveness. 1 -

AdamJeremy Jeremy Jeremy

Figure 1: Case study of generated/human-written stories given an example image sequence. ??? denotes the error of
Too Few REs defined in 5.2. The Wrong Referring Expression error is marked with a red background. We also
report the CM scores together with METEOR scores.

consecutively in visual narratives. Experiments
show that the proposed loss function increases the
coherence of the generated stories (see section 5.1).

(b) To obtain better character representations
and tackle limitation 2), we experiment with dif-
ferent features that have proven useful for person
re-identification tasks (see section 6). We then
add the resulting features separately to visual story
generation models. Experiments show that the rep-
resentation from the face detector is most effective
for character representation.

(c) When evaluating the stories generated by the
models, we find that reference-based metrics can-
not capture referring expression errors, so we pro-
pose a new evaluation metric character matching
(CM) for image-text relevance in visual stories (see
section 3). This metric is based on a weighted bi-
partite matching graph between the instances in the
images and the co-referring expressions in the sto-
ries. We compute a coefficient from the weighted
bipartite matching that measures local coherence.
We apply our metric to prove the effectiveness of
our loss function.

2 Related Work

Visually-grounded Story Generation. Modelling
visual grounding is essential for vision-based lan-
guage generation tasks like image captioning (Pont-
Tuset et al., 2020), paragraph generation (Ilinykh
and Dobnik, 2022) and visual dialog (Yu et al.,
2022). However, previous work in visual story
generation conducted experiments only on the Vi-
sual Storytelling dataset (VIST, Huang et al., 2016),

which doesn’t have annotations for visual ground-
ing. Parallel to our research, Liu and Keller (2023)
annotate recurring characters in the VIST dataset
which enable further exploration of grounding hu-
man characters in visual narratives.

Most of the previous models for visual story-
telling only use global features, full image features
extracted with a general vision backbone model
trained on the image classification task (Yu et al.,
2017; Wang et al., 2018; Huang et al., 2019). Some
recent researches use local features, which are fea-
tures of a specific part of the image such as objects,
to generate visually grounded stories (Wang et al.,
2020; Hong et al., 2020; Yu et al., 2021; Qi et al.,
2021; Braude et al., 2022). Only a few works make
use of human-related features like emotions (Li
et al., 2019), sentiments (Chen et al., 2022) or per-
sona (Chandu et al., 2019). One work that focuses
on recurrences of characters is Dong et al. (2019),
which employs a Bi-LSTM to encode conference
chains in texts. However, their model requires tex-
tual features from the corresponding conference
chains as input in the test time. On the contrary,
our model only requires visual features from the
images.

Coherent Story Generation. Coherence is one
of the major properties that people would like to
achieve in story generation (Alabdulkarim et al.,
2021). Previous work generates a story conditioned
on a prompt such as keywords (Yao et al., 2019),
story plot (Rashkin et al., 2020), cue phrases (Xu
et al., 2020), or scripts (Pu et al., 2022). Training
data for story generation includes the STORIUM
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dataset (Akoury et al., 2020). Its collaboratively-
written long stories contain rich annotations such
as narrator prompts, character goals, and other at-
tributes to guide story generation. Previous models
based on these datasets require access to charac-
ter labels which are expensive to obtain and not
always available in real-world settings. In contrast,
our model only needs an additional loss function
during model training.
Character Representations for NLG. Characters
are essential to stories written and read by humans.
Unfortunately, only a limited amount of work has
been done on constructing explicit character repre-
sentations. In story generation, Clark et al. (2018)
represent characters with separate trainable param-
eters and integrate them with the latent represen-
tations of the language decoder using max pool-
ing. But they only apply their method to refer-
ring expression generation instead of end-to-end
story generation. In movie description, Rohrbach
et al. (2017) extract head and body representa-
tions for characters and train the model for charac-
ter re-identification and movie description jointly.
However, all these methods integrate character fea-
tures into RNN language decoders. Our model is
the first attempt to encode character explicitly in
Transformer-based models.

3 Image-Text Relevance Metric

In previous visually-grounded story generation
work, models are evaluated with reference-based
metrics like METEOR. However, the reference-
based metrics only measure similarities between
reference texts and generated stories such that the
actual relevance of input images to output text is
not evaluated. Specifically, we design a character-
matching metric (CM) to determine whether ex-
pressions referring to human characters in image
sequences are generated correctly.

The computation process of CM is in Figure
2. For each pair of image sequence and story,
we first construct the appearance matrices V ∈
{1,−1}m×nv and T ∈ {1,−1}m×nt , which in-
dicate for each character whether it is present (1)
vs. absent (−1) in an image or a sentence, where nv

is the number of characters in the image sequence,
nt is the number of referring expressions in gener-
ated stories and m is the number of images/texts.
We then compute the matrix of matching scores
of each pair as: M = VTT. We normalize the
matching scores to the domain [0, 1] and obtain

Jack Will Male0 Male1

1 -1

Male0 was on a 
call with a 
client, getting 
stressed over a 
business deal that 
wasn't going well.

1 -1

1 -1

Male0 put the 
phone down after 
an unsuccessful 
deal and decided 
to go get a coffee 
at the nearby 
coffee.

1 -1

1 1

At the coffee 
shop, he started 
talking to the 
waiter Male1 about 
the unfortunate 
call.

1 1

1 1

Male1 told him he 
would convince the 
client to accept 
the deal if he 
could work for 
Male0.

1 1

1 1

Male1 then called 
the client and 
successfully 
struck the deal. -1 1

40

Will

Jack

Jack

Jack

Will Jack

Jack Will

Visual:  V Textual: T

Male0 Male1

Jack 3 1

Will -1 5

Male0 Male1

Jack 0.8 0.2

Will 0.4 1

VTT
NormalizationDot product

Figure 2: Computation process of character matching
metric demonstrated with an example pair of image se-
quence and text. We show the corresponding Visual
appearance matrices (V) and textual appearance matri-
ces (T) of characters. The resulting maximum weighted
bipartite match is in red boxes.

the matrix M′ = (M/m + 1)/2. To obtain the
optimal match between the images and sentences
by the occurrences of characters, we compute the
maximum weighted bipartite matching by applying
the Hopcroft-Karp algorithm (Hopcroft and Karp,
1973) implemented in SciPy (Virtanen et al., 2020).
The final overall character matching score is ob-
tained by averaging the scores of the maximum
matches across all characters (e.g. 0.9 in Figure 2).

3.1 Analysis of Baselines

We apply our CM metric to show the limitation of
current models, which requires the labels of char-
acters in image sequences. We use Visual Writing
Prompts (VWP; Hong et al., 2023), a vision-based
dataset that contains image sequences aligned with
human-written stories in English2. In VWP, each
image is corresponding to a piece of text. Instances
of each main character are annotated with the name
of the character (see Figure 1). Our baselines are:

Seq2Seq. (Seq2Seq; Huang et al., 2016) is a

2https://vwprompt.github.io/
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Generated Context: w
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Local Encoder: fζ
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Visual Coherence Loss: ℒR
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Global Encoder: fθ Text Embedding: Q

Vision Backbone: f
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Image Sequence: s Object Bounding Boxes
OD

Language Decoder: Pη

E

w1 w2 wt−1

w2 w3 wt

Figure 3: Architecture of visual story generation model with visual coherence loss. Our contributions are in the
blue box. Components in dash lines are frozen during training. OD is the pre-trained object detector.

Model LF CM std
Lower bound - 32.04 -
Seq2Seq 68.03 1.27
Seq2Seq obj 67.41 0.88
TAPM 67.33 1.13
TAPM obj 67.99 0.97
Human - 73.65 -
Upper bound - 100 -

Table 1: Comparison of baseline models using different
local features (LF) on the test set of VWP using charac-
ter matching metric (CM). All numbers of models are
an average of three runs with different random seeds.

seq2seq model with an encoder-decoder architec-
ture. Visual features are first projected with an
encoder which is a feed-forward neural network,
then fed to the decoder which is a pre-trained GPT-
2 model.

TAPM. (TAPM; Yu et al., 2021) is a Transformer-
based model which adapts the visual features with
pre-trained GPT-2. This is the current state-of-the-
art model for visual story generation.

For generated text, we run a coreference resolu-
tion model (Lee et al., 2018) to capture all referring
expressions. We compute the CM metric for the
generated stories of two baseline models as well
as the human-written stories. We compute the CM
upper bound (100) by treating gold annotations of
characters in image sequences as referring expres-
sions in texts, i.e., using V as the textual appear-
ance matrix. We also estimate the lower bound

(32.04) by randomly shuffling the appearance ma-
trices and then calculating the CM metric using the
shuffled matrices.

Results in Table 1 show that humans outper-
form the baselines significantly, which indicates
that human-written stories match better with input
image sequences in terms of characters. We believe
that the gap between current SOTA models and the
human stories stems from the models’ lack of rep-
resentations for the recurrence of characters in the
image sequence.

4 Visually Grounded Story Generation

In this section, we describe the visually grounded
story generation model with a new loss function
for self-supervised learning of image sequences. In
the visual story generation task, given a sequence
of images s = (img1, img2, ..., imgm), s ∈
Dm, the model needs to generate a story wo =
(w1, w2, ..., wt−1, wt),wo ∈ Dt.

Encoder-decoder architecture Figure 3 repre-
sents our whole architecture, which is based on an
encoder-decoder architecture that is also used in
most previous work; our architectural changes are
represented in the dashed blue box.

The first input to the model is the image se-
quence s. For the image imgi ∈ s, we extract
global features f(imgi) ∈ Rd from the output of
the last fully-connected layer of a pre-trained vision
backbone model f . We then obtain ni bounding
boxes of object eij , j ∈ [1, ni] predicted by an
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object detector using the image encoder f as the
backbone. We crop each detected object eij and
feed the cropped image region to f to get the local
features f(eij) ∈ Rd.

The global and local features are first fed to the
global encoder fθ and the local encoder fζ corre-
spondingly in order to project them to the same hid-
den dimensions as the transformer-based language
decoder Pη, to which the hidden representations
are fed. To generate tokens auto-regressively, the
context w consisting of previously generated to-
kens (w1, w2, ..., wt−1) are fed into a pre-trained
text embedding layer Q and then to Pη. Given the
input sequence (s,w), the model represents the
probability distribution of the next token wt as:

P (wt|s,w) = Pη(fθ(f(imgi)), fζ(f(eij)), Q(w))

The major limitation of the encoder-decoder ar-
chitecture is that there are no representations in
both global and local encoders for recurring char-
acters in the input image sequence which we be-
lieve are essential to visual coherence in image
sequences. The parameters η in the language
generator Pη are not sufficient to capture charac-
ter re-occurrence among the local representations
Lij = fζ(f(eij)). So the visual coherence present
in the image sequence is not reflected in textual co-
herence. We hypothesize that a model that captures
and represents the visual coherence better would
lead to more coherent stories.

4.1 Visual Coherence Loss

We propose Visual Coherence Loss (VCL, in the
blue box of Figure 3) as an auxiliary loss to enable
the model to capture the visual coherence of image
sequences. Our goal is to measure visual coherence
in terms of the recurrence of characters.

Centering theory (Grosz et al., 1995) is one way
to explain the relationship between character recur-
rence and narrative coherence. This theory holds
that if a pair of adjacent sentences contain the same
discourse entities (here: characters), readers are
more likely to find the transition between this sen-
tence pair to be coherent. Character recurrence is
very common in visual as well as textual narratives.
In addition, images in visual narratives can be con-
sidered sentences in textual narratives. Inspired
by these, we apply centering theory on measuring
coherence in visual narratives.
Character instance similarities. To apply center-
ing theory, we first need to find the same-character

recurrences, but we do not have labels for charac-
ters at test time. Instead, we can take advantage
of the similarities between character instances (as
bounding boxes of person objects) of the same
character across different images. We use the simi-
larities as soft labels to capture different instances
of that one character without any manual labels.

To compute similarities between character in-
stances, the first step is to obtain their represen-
tations. We identify the objects depicting people
automatically and use their local representations
L = fζ(f(e)). The representations must be in the
latent space of the language decoder Pη. So we
pass the local representations through the language
decoder to get the contextualized local representa-
tions as E = Pη(L). The next step is to compute
similarities of character instances across all images.
We calculate an instance similarity matrix, consist-
ing of dot products of contextualized local repre-
sentations, as: S′ = (sijkl) = (ET

ikEjl), where
k ∈ [1, ni], l ∈ [1, nj ].

Character re-occurrence. Another condition of
applying centering theory is to be able to identify
where the characters actually recur or not in two
adjacent images. We first need to identify occur-
rences of each character instance in each image.
We, therefore, compute a matrix of image-instance
similarity. We group elements by image along one
dimension indexed by k in S′ and compute the av-
erage as: S = meank=ni

k=1 (sijkl) = (sijl) where
i ∈ [1,m], j ∈ [1,m], l ∈ [1, nj ]. Each element
sijl is the similarity between image i and character
instance ejl in image j.

We measure visual coherence in terms of the
squared difference between similarities of charac-
ter instances in the two adjacent images. For an
illustration of this idea, consider the following three
cases: 1) if the similarity between a character in
the present and the previous image is high and the
similarity between a character in the present and
the next image is low, it implies a sharp transition,
the difference is high; 2) if both of them are high,
it implies a smooth transition, the difference is low;
3) if both of them are low, it suggests that this char-
acter does not appear in either of the two images,
the difference is also low. We can thus use the
squared difference to measure the level of recur-
rence of characters across images. Finally, we can
compute the average squared difference for all char-
acter instances in all pairs of adjacent images as the
visual coherence coefficient. We let Sa...b be the
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Model LF CM B-1 B-2 B-3 B-4 M R-L C
Baseline
Seq2Seq 68.03 38.65 20.28 9.78 4.68 31.64 24.24 1.66
Seq2Seq obj 67.41 40.65 21.35 10.20 4.87 31.69 24.05 1.85
TAPM 67.33 39.85 21.70 10.72 5.19 32.38 25.09 1.48
TAPM obj 67.99 40.86 22.13 10.83 5.25 32.34 24.91 1.82
ObjGrid obj 70.65 47.66 25.26 11.95 5.42 32.83 24.42 4.68
Ours
VCL obj 71.18 46.50 24.71 11.85 5.60 33.12 24.58 3.67
Oracle
CharGrid oracle 69.33 47.72 25.34 11.94 5.43 33.03 25.02 4.82
Seq2Seq oracle 74.00 48.23 26.26 12.69 6.01 33.23 24.94 4.26

Table 2: Comparison of all models using different local features (LF) on the test set of VWP using reference-based
metrics including BLEU (B), METEOR (M), ROUGE-L (R-L), and CIDEr (C) and our character matching metric
(CM). All numbers are an average of three runs with different random seeds.

rows from a to b indexed by i of S. We can define
the coefficient as LC = ∥S2...m − S1...(m−1)∥2.

Loss function. The lack of local coherence in
the visual embeddings is detrimental to the abil-
ity of the latent representations in the language
to produce coherent stories. We address this by
defining a visual coherence loss to encourage the
latent representations to be coherent and maintain
the coherence structures in the visual narratives.

We design a ranking loss function to punish
stand-alone instances and reward instances that
appear consecutively in image visual narratives.
To do so, we first construct negative samples by
randomly shuffling images in the visual narratives
which breaks existing coherent groups of recurrent
characters. Then we compute the visual coherence
coefficient for negative samples as L−C . Lastly, we
define the visual coherence loss as a ranking loss:
LR = max{0, 1 − L+C + L−C} where L+C is the
visual coherence coefficient for positive samples.
The final loss function is L = LL + αLR where
LL is the cross-entropy loss for language modeling
and α is the weight of ranking loss.

Model training. To better adapt the latent space of
model parameters to fit the image sequence, we pre-
train our model to optimize the visual coherence
loss with image sequences only. We can do so be-
cause both terms in the visual coherence loss can be
computed with images only. After pre-training, we
fine-tune our model with paired image sequences
and stories to optimize the final loss.

5 Experiment and Evaluation

In this section, we experiment with the Visual Writ-
ing Prompt (VWP; Hong et al., 2023) dataset to
demonstrate the effectiveness of our loss function
(see Section 3.1). We follow their settings to sepa-
rate the data into train, validation and test split. We
extract global features for all images using the Swin
Transformer (Liu et al., 2021), a state-of-the-art su-
pervised vision backbone model. We use the base
model pre-trained on the ImageNet-21K dataset
released on Hugging Face Models. For local fea-
tures, object features are obtained using a Cascade
Mask R-CNN object detector (Cai and Vasconcelos,
2019) with the same Swin Transformer backbone.
We crop the bounding boxes of the top 20 objects
that the detector predicts for each image. Then we
extract the object features (obj) similarly as how
we extract the global features. We also construct
the oracle (oracle) features by passing the IDs of
the characters to the language decoder. We encode
the character IDs via the positions of the feature
vectors. For example, character #1 takes the 1st
position of the character feature matrix. Because
the positional encodings in the language decoder
are sensitive to the positions, the character IDs are
also encoded in the input.

We use GPT-2 (Radford et al., 2019), a
Transformer-based language model pre-trained on
large-scale text as the language decoder. We use
the small version which is widely used in previous
works of story generation. We compare baseline
models using the visual coherence loss combined
with different character features against the two
baseline models defined in Section 3.1.
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Model LF F M W Sum
TAPM obj 9 26 40 75
VCL (ours) obj 5 24 31 60
Seq2Seq oracle 5 19 28 52

Table 3: Number of the three types of character errors
in the 50 annotated stories. F, M and W denote Too Few
REs, Too Many REs and Wrong REs respectively, as
defined in Section 5.2.

5.1 Automatic Metrics

To check whether referring expressions of human
characters in stories are generated correctly, we ap-
ply our character-matching (CM) metric defined in
Section 3. To compare with previous baselines, we
also evaluate our models with reference-based met-
rics including unigram (B-1), bigram (B-2), trigram
(B-3), and 4-gram (B-4) BLEU scores (B; Papineni
et al., 2002), METEOR (M; Banerjee and Lavie,
2005), ROUGE-L (R; Lin, 2004), and CIDEr (C;
Vedantam et al., 2015), which were used in the vi-
sual storytelling shared task (Mitchell et al., 2018).

Results in Table 2 show that our model trained
with visual coherence loss (VCL) substantially
outperforms previous baselines like Seq2Seq and
TAPM on the CM metric. This supports the hypoth-
esis that the visual coherence loss is an effective
means to make the texts better reflect the visual
coherence of recurrent characters in the image se-
quence. We also observe that the model outper-
forms the baseline on most reference-based metrics
except ROUGE-L. The Seq2Seq model with ora-
cle features performs best which again shows the
importance of character information.

5.2 Human Evaluation

As we mention in Section 1, we find that most er-
rors are related to lack of local coherence (60%
of stories). To get a better understanding of how
model fails, we subdivide these errors into three
types based on character consistency between im-
ages and stories:
Wrong Referring Expressions (REs): Consistent
number of characters in the images and stories, but
incorrect reference.
Too Few REs: The number of characters in the
stories is smaller than the number in the images.
Too Many REs: The number of characters in the
stories is more than the number in the images.

We ask three graduate students with a sufficient
level of English to annotate these three types of

Feature Diff↓ Same↑ ∆↑
Swin Transformer
body 16.41 79 62.59
head← body 15.41 74.95 59.54
upper body← body 16.44 78.24 61.8
face 17.85 79.47 61.63
body← face 15.44 77.66 62.22
upper body← face 16.44 78.29 61.84
head← face 15.84 77.71 61.87
insightface 1.07 67.73 66.65
ID 0 100 100

Table 4: Comparison of different vision models for
character representations. Diff is the average cosine
similarities (%) of different instances of the same char-
acter. Same is the average similarities between different
characters. Underlined numbers are the best using the
same backbone and bold numbers are the best over all.

errors. The annotation was preceded by a training
phase, during which annotators were instructed to
familiarize themselves with the error types and to
perform trial annotations. Then, we collected their
annotations and gave them feedback to correct for
misunderstandings and biases. Formal annotations
started after the completion of the training phase,
and was blind to condition, i.e., annotators did not
know which story was generated by which model.
We collected 50 annotated stories for each model.

For each generated story, we counted the occur-
rence of the three types of character errors and
then calculated the mean inter-annotator agreement
(IAA) using Pearson’s r and Cohen’s κ. IAA on
this task is moderate r(48) = 0.45, p < 0.01 and
Cohen’s kappa coefficient κ = 0.42.

Results in Table 3 show that compared with the
state-of-the-art models, our model makes much
fewer character errors. On the other hand, there is
still a large gap between our model and one with
oracle features, both in Table 2 and Table 3. The
global/obj features are not sufficient to represent
characters. We thus explore different character
features in the next section.

6 Character Representation

Another possible cause of local incoherence is that
previous models mostly consider only the global
or local visual features without a specific focus on
human characters. The only local features that are
related to human characters are object features, i.e.,
the bounding boxes or masks around the person
objects from the object detector. Object features
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LF CM B M R-L C
obj 70.12 22.66 32.90 24.88 4.19
obj, body 70.11 22.16 32.92 24.64 3.65
obj, insightface 71.52 21.34 32.86 24.36 2.48

Table 5: Results of VCL model with different local fea-
tures (LF) on the test set of VWP using reference-based
metrics including BLEU (B), METEOR (M), ROUGE-
L (R-L), and CIDEr (C) and our character matching
metric (CM).

are effective and widely used in visual story gener-
ation. However, these features are either extracted
using a general vision backbone model trained on
the ImageNet dataset or directly from the output of
the last hidden layer of the object detector. These
features do not represent human age, gender, face,
or body shape. These features can thus not dis-
tinguish between different instances of the same
human character, which introduces wrong mentions
of characters in generated stories.

To improve character representations, we need
the following: 1. distinguishing different charac-
ters; 2. identifying different instances of the same
characters. We claim that with these two proper-
ties, the visual encoder can represent the characters
effectively, and the language decoder can capture
these characteristics and generate more coherent
and visually-grounded stories.

6.1 Types of Features

To identify characters, the use of facial features
seems most promising, as face detectors have been
shown to achieve highly accurate results (Deng
et al., 2020). To avoid problems due to covered
or invisible faces, we also consider features from
other body parts. For visual narratives, it is often
safe to assume that clothing over other body parts
doesn’t change between the images of a narrative.
Joon Oh et al. (2015) employs the full body fea-
tures and also inferred upper body features and
head features to help person re-identification in
photo albums. Body features have been proven to
be effective on other similar tasks like character
re-identification (Yu et al., 2020), social relation
recognition (Sun et al., 2017), and movie descrip-
tion (Rohrbach et al., 2017).

Inferred Features. In our case, we cannot guaran-
tee that our gold labels of human characters cover
full bodies, because our annotations are based on
the movie shots which often only contain half bod-
ies or heads of the characters.

For each person bounding box, we first pass it to
the face detector to get the face bounding box. We
propose to use the top boundary of the character
bounding box and the other three boundaries of the
detected face from face detection to infer a head
bounding box. Then we crop the images to get the
head features (head←face). We follow Joon Oh
et al. (2015) to compute body (body←face) and
upper body (upper body←face) features using the
inferred head features.

6.2 Analysis of Properties

After obtaining the face and body features, the
first question that we would like to investigate is
whether these features can distinguish different in-
stances of the same character and also can distin-
guish different characters. Therefore, we compute
the average similarities of different instances of the
same character (Same) and the average similari-
ties between different characters (Diff). We further
compute differences between these two similarities
(∆) to show their ability on representing characters.

The results in Table 4 show that general vision
backbone models like Swin Transformer are insuf-
ficient for differentiating different characters be-
cause the Diff scores of Swin-based features are
much higher than the insightface features. The
most effective method is to use the hidden repre-
sentations directly extracted from the insightface
Face detection system3.

6.3 Ablation Study

To further compare the best-performing features ex-
tracted with Swin Transformer (body) and features
based on insightface, we conduct experiments on
VWP dataset. We apply different character features
one-by-one together with object features to VCL
model in visual story generation. We evaluate the
models with the same metric as Section 5.1 except
we report the BLEU score (B) as the average of
BLEU-1 to BLEU-4 scores.

The results in Table 5 show that the model with
body features performs on par with the model that
only uses obj on all metrics. However, insightface
features improve the character matching score sig-
nificantly (t-test, p < 0.05), proving face features
to be effective.

3https://insightface.ai/
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6.4 Case Studies
To better illustrate the effectiveness of our CM met-
ric, we present a case study in Figure 1. According
to the error types defined in Section 5.2, we can
see that the Oracle, TAPM and VCL model all
make the Too Few REs error and additionally the
TAPM model makes an Wrong REs error, while our
proposed VCL model with the insightface feature
avoids these problems. Furthermore, comparing
the results of METEOR and our proposed CM, we
find that METEOR does not reflect the errors in
referring expressions: although the VCL model
makes one reference error, its METEOR score is
higher than the VCL model with the insightface
feature, even though it does not make any error in
referring expressions. In contrast, our proposed
CM can faithfully reflect such errors.

7 Conclusions

We identified a major important problem of cur-
rent vision-based story generation models, lack of
local coherence (characters are not mentioned cor-
rectly). We dissect this problem into two aspects:
1) whether the latent visual representations fed to
the language decoder are sensitive to the coherent
structure in the visual narratives; 2) whether the
visual features can distinguish different characters
or identify instances of the same character. We
then propose a visual coherence loss to constrain
the latent visual representations together with the
parameters in the language decoder such that they
can represent recurrences of characters. Our model
trained with visual coherence loss generates more
coherent stories and obtains superior performance
on both automatic metrics and human judgments.
We also find that using the visual features of char-
acters allows us to produce stories with better iden-
tification of recurring characters, which are as a
result more locally coherent.

8 Limitations

One limitation is that the importance and visual
salience of character instances are not measured
directly. We plan to settle these in future work.

9 Ethics Statement

The VWP dataset we used is publicly accessible. It
is described in a paper (Hong et al., 2023) that is
published in TACL under the CC-BY license.

The potential risk of this work is that it can be
used to generate harmful content. There could be

potentially offensive images in VWP dataset be-
cause it is based on movies. Our model might
suffer from the risk of learning unwanted correla-
tions between these images and offensive words in
the underlying language model GPT-2 because it
has been found that there is a significant amount of
unreliable or toxic content in the training data of
GPT-2 (Gehman et al., 2020). Although we have
not seen any generated in our human evaluations,
our proposed model and code are for research pur-
poses only.
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A Settings of Human Evaluation

For the self-assessment in Section 1, we first adopt
the list of common errors from Modi and Parde
(2019). Then we add additional errors that we
identified. We also merge errors that are too similar
for simplicity. Finally, we define nine error types
which are described in Table 6. After that, one
author annotated 50 stories generated by the SOTA
model TAPM.

For the human evaluation in Section 5.2, the
annotation guideline is in Figure 4. We process all
the data we collect to delete the unique identities
of annotators. One annotator is paid by the funding
source under a student assistant contract. The other
two are student volunteers. One annotator is a
native speaker of English and the other two are
graduate school students of Saarland University
who speak proficient English.

B Settings of Experiments

For the analysis in Section 3.1, We use this imple-
mentation of a coreference resolution system4 from
AllenNLP. We use this version5 of Scipy.

4https://demo.allennlp.org/
coreference-resolution

5https://docs.scipy.org/doc/scipy/
reference/generated/scipy.sparse.csgraph.
maximum_bipartite_matching.html

For the experiments in Section 5.2, We build
our system based on the code6 by Yu et al. (2021).
We follow their settings for hyper-parameters as
the initial setting. Then we tune our hyper-
parameters based on evaluation results on the vali-
dation split. We use the Huggingface transformer
for Transformer-based models: Swin Transform-
ers7 and GPT-28. Due to our limited computing
resources, we use the base versions of both Swin
Transformers and GPT-2. E.g. our maximum batch
size is 6 on a GPU with 32GB memory. The total
computation time is about 6 hours for 20 training
epochs on one Nvidia V100 32GB GPU. Our code
is in the Supplemental, which is unlicensed and
for review only. All hyperparameters are in con-
fig.py. We will publish our code on GitHub after
the review process of this submission.

C Experiments on VIST and
VIST-Character

We also evaluate our visual coherence loss on the
VIST dataset (Huang et al., 2016) and the VIST-
Character dataset (Liu and Keller, 2023). We
first train all the models on VIST. Then we eval-
uate them on the test split of VIST and the VIST-
Character dataset. We use the same set of metrics
described in Section 5.1 but we only report BLEU-1
and BLEU-4 for BLEU scores here for a better for-
mat. The results in Figure 7 show that model with
our VCL only outperforms the Seq2Seq baseline
significantly on BLEU-1 scores. The differences
between VCL and all other models in all metrics
are not significant. The reason is that the VIST
dataset is collected in a way to exhibit less visual
coherence (lower rates of recurring characters). It
contains fewer human characters per story than
VWP. Also, some of the features we are using for
character re-identification may not be suitable to
other datasets to the same extent (for instance, if the
clothing of characters changes more often between
album photos). We also show that the results on
VIST-Character are much lower than the results on
the VIST test set, which indicates that modelling
character in visual stories is still very challenging.

6https://github.com/JiwanChung/tapm/
7https://huggingface.co/microsoft/

swin-base-patch4-window12-384-in22k
8https://huggingface.co/gpt2
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Error Type Description
Too generic Lack of semantic variations.

E.g. too many “good/great time”, “happy”.There are biases in the dataset.
Wrong event Incorrect recognition of the event: due to the context
Wrong object Incorrect recognition of the event participant
Grammatical error Syntactic error: using noun phrases (NPs), missing function words, and others...
Repetition Duplicated: a later utterance has almost the same meaning with an earlier utterance
Semantically inconsistent Semantically inconsistent: 1) Violation of selectional preferences

2) Missing entity
Wrong character Discourse coherence: incorrect use of anaphora
Lack of script knowledge The connections between events contradict commonsense knowledge
Lack of narrativity The text doesn’t not contain a plot

Table 6: Error types of human evaluation and results of a SOTA model.

Please read the stories carefully and focus on the referring expressions of all characters in the images.
If there is an error, please choose an error type from the following table:

label description annotations
1 too few REs Model doesn't generate RE for a character in the images ???

2 too many REs Model generates extra RE but no such character in the images !!!

3 wrong RE Model generates wrong RE for a character Hightlight

After deciding the error type, please annotate the error on the referring expressions directly.
For example:

Figure 4: Survey instructions.

VIST VIST-Character
Model LF B-1 B-4 M R-L C B-1 B-4 M R-L C CM
Baseline
Seq2Seq 58.82** 10.45+ 33.71+ 29.84 7.39+ 25.24 2.48 26.97+ 21.58+ 3.99 74.05
Seq2Seq obj 60.23 10.84 34.08 29.91 8.24 26.47 2.67 27.52 21.83 5.21 73.66
TAPM 61.65 11.67 34.59 30.53 8.84 27.13 3.04 27.98 22.37 5.45 72.39
TAPM obj 60.99 11.73 34.79 30.49 8.37 26.32 2.77 27.67 22.05 5.05 72.23
Ours
VCL obj 60.46 10.69 33.99 29.64 7.73 26.45 2.66 27.39 21.71 4.65 73.96

Table 7: Comparison of all models on the VIST test set using BLEU (B), METEOR (M), ROUGE-L (R-L), and
CIDEr (C). All numbers are an average of three runs with different random seeds. +, * and ** represent that the
number is one, two or three standard deviations away from the mean of the VCL model.
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