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Abstract

Sequence-to-sequence (seq2seq) models have
been widely used for natural language process-
ing, computer vision, and other deep learning
tasks. We find that seq2seq models trained
with early-stopping suffer from issues at the
token level. In particular, while some tokens
in the vocabulary demonstrate overfitting, oth-
ers underfit when training is stopped. Experi-
ments show that the phenomena are pervasive
in different models, even in fine-tuned large
pretrained-models. We identify three major
factors that influence token-level fitting, which
include token frequency, parts-of-speech, and
prediction discrepancy. Further, we find that
external factors such as language, model size,
domain, data scale, and pretraining can also
influence the fitting of tokens.

1 Introduction

Deep learning models tend to overfit on relatively
small datasets because of their strong capacity and
a massive number of parameters (Brownlee, 2018;
Li et al., 2019; Rice et al., 2020; Bejani and Ghatee,
2021). Studies suggest regularization and early
stopping to control the generalization error caused
by overfitting (Hastie et al., 2009; Zhang et al.,
2017; Chatterjee and Zielinski, 2022). Previous
studies mainly analyze the generalization issue on
image classification task (Arpit et al., 2017; Zhang
et al., 2021), where the learning target is relatively
simple. In contrast, NLP task such as machine
translation (Zhang et al., 2015; Singh et al., 2017)
is more complex with regard to the learning targets,
which involve a sequence of tokens.

Natural languages exhibit a long-tailed distri-
bution of tokens (Powers, 1998). The long-tail
phenomena have been associated with performance
degradation of NLP tasks (Gong et al., 2018; Rau-
nak et al., 2020; Yu et al., 2022), where the rare
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(low frequency) tokens are ascribed as hard learn-
ing targets and popular (high frequency) tokens as
easy learning targets. These criteria of easiness
of learning targets are intuitive but coarse-grained,
which are not associated with the training dynam-
ics. In this paper, we study the easiness of tokens as
learning targets from the perspective of overfitting
and underfitting. Intuitively, the learning on hard to-
kens will be slower than that on easy tokens, which
may result in underfitting on hard tokens and over-
fitting on easy tokens, as illustrated by Figure 1. We
propose two measures to quantify fitting – fitting-
offset and potential-gain. Fitting-offset measures
the offset of the best fit from the early-stopping
point, which reflects the degree of overfitting or
underfitting. Potential-gain measures the accuracy
gap between the early-stopping checkpoint and the
best fit, which also estimates the accuracy decrease
caused by overfitting or underfitting.

We use machine translation as our test bed,
training models on English-German benchmark
datasets, including News and Europarl domains.
Our extensive experiments reveal novel findings: 1)
Both overfitting and underfitting occur in a trained
seq2seq model. 2) High-frequency tokens are ex-
pected to overfit, but some are found underfitted,
and low-frequency tokens are expected to underfit,
but some are found overfitted. 3) Large pretrained
models reduce underfitting effectively during fine-
tuning but are less effective on overfitting. Besides,
we propose a direct indicator of easiness – predic-
tion discrepancy, using the probability difference of
predictions made by full context and local context
as a criterion to group tokens.

In addition to tokens, sentences have also been
considered as learning targets, where curriculum
learning methods distinguish sentences as easy or
hard (Kocmi and Bojar, 2017; Platanios et al., 2019;
Xu et al., 2020). For example, the length of a sen-
tence is used as a criterion to identify easy sen-
tences from hard ones, where the easy (short) sen-
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(b) Easy tokens overfit at the early-
stopping point, while hard tokens under-
fit.

Figure 1: Seq2seq models trained with early stopping may suffer from
overfitting or underfitting.
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Figure 2: Fitting-offset measures the
relative distance of the best fit from
the early-stopping point, which is
negative for the left side and posi-
tive for the right side.

tences are first learned and then the hard (long) sen-
tences. Using our metrics, we find that the length
of a sentence is not a good indicator of easy or hard
sentences from the perspective of overfitting and
underfitting.

2 Related Work

Previous studies compare the fitting of real data
and noise data, demonstrating that real data is eas-
ier to learn and has a faster convergence speed than
noise data (Zhang et al., 2017; Arpit et al., 2017;
Chatterjee and Zielinski, 2022). The different con-
vergence speeds also provide an explanation of how
early stopping prevents the memorization of noise
data. However, these works do not compare the
fitting among different learning targets inside the
real data, neither between different samples nor
between different parts of each sample. In this
paper, we conduct experiments on a more com-
plex seq2seq task instead of simple classification.
We study the fitting of token-level learning targets,
demonstrating that both overfitting and underfitting
occur when training seq2seq models.

There are few works studying overfitting and
underfitting in NLP. Sun et al. (2017) report that
complex structure leads to overfitting in structured
prediction. Wolfe and Caliskan (2021) demonstrate
that low-frequency names exhibit bias and overfit-
ting in the language model. Varis and Bojar (2021)
illustrate that machine translation models gener-
alize poorly on the test set with unseen sentence
length. These works discuss overfitting issues on
specific conditions, such as complex structure, fre-
quent names, and unseen length. In comparison,
we conduct a systematic analysis of the general
phenomena of overfitting and underfitting in lan-
guage. Specifically, we propose quantitative mea-
sures, identify major factors, and conduct statistical

hypothesis testing on the phenomena.

3 Experimental Settings

3.1 Datasets

We use the News corpus as a major dataset for our
experiments and analysis, and we further use the
Europarl corpus for the comparison of different
domains and data scales.

News We use News Commentary v11 for train-
ing, newstest2015 for validation, and newstest2016
for testing. The English-German machine transla-
tion dataset contains 236, 287 sentence pairs for
training, 2, 169 pairs for validation, and 2, 999
pairs for testing.

Europarl We use English-German Europarl v7,
following Maruf et al. (2019) to split the train,
validation, and test sets. The dataset contains
1, 666, 904 sentence pairs for training, 3, 587 pairs
for validation, and 5, 134 pairs for testing.

We tokenize the sentences using MOSES (Koehn
et al., 2007), followed by truecase and a BPE (Sen-
nrich et al., 2015) with 30, 000 merging operations.
We use separate embedding tables for source and
target languages in the model.

3.2 Model Configurations

We study the overfitting and underfitting issues on
three model configurations. We use the base model
in section 4 and 5, the pre-trained model in section
6, and the big model for the model-size evaluation
in section 7.

Base Model We use the standard Transformer
base model (Vaswani et al., 2017), which has 6
layers, 8 heads, 512 output dimensions, and 2048
hidden dimensions. We train the model with a
learning rate of 5× 10−4, a dropout of 0.3, a label
smoothing of 0.1, and an Adam optimizer (Kingma
and Ba, 2014).



Big Model Following the standard Transformer
big model (Vaswani et al., 2017), we use 6 layers,
16 heads, 1024 output dimensions, and 4096 hidden
dimensions. We train the model with a learning rate
of 3× 10−4, a dropout of 0.3, a label smoothing of
0.1, and an Adam optimizer.

Pretrained Large Model We use mBART25
(Liu et al., 2020), which has the similar setting
as BART large model (Lewis et al., 2020), using
12 layers, 16 heads, 1024 output dimensions, and
4096 hidden dimensions. We fine-tune the model
with a learning rate of 3× 10−5, a dropout of 0.3,
an attention-dropout of 0.1, a label smoothing of
0.2, and an Adam optimizer.

For each experiment, we train 40 models using
random seeds from 1 to 40, obtaining 40 samples
for the significance test. During the training of
the base or big model, we keep the last 20 check-
points for analysis, where the checkpoint of early-
stopping is the 10-th of the 20 checkpoints. For
mBART25, we keep the last 10 checkpoints, and
the early-stopping checkpoint is at the 5-th of the
checkpoints.

3.3 Evaluation Metric

Measures We propose two measures: fitting-offset
and potential-gain.

Fitting-offset represents how far (i.e., number of
epochs) the best fit of a group of tokens diverges
from the point of early stopping. In this paper, we
use epoch as its unit because we evaluate the model
using the validation set at the end of each training
epoch. As Figure 2 shows, for the easy tokens,
the fitting-offset is negative, denoting overfitting,
where the best fit is before the early-stopping epoch.
For the hard tokens, the fitting-offset is positive, de-
noting an underfitting, where the best fit is after the
early-stopping epoch. Using fitting-offset, we can
quantify the degree of overfitting and underfitting.

Potential-gain represents the potential accuracy
increase if we move the best fit to the early-
stopping epoch. We calculate the measure by sub-
tracting the accuracy of the early-stopping check-
point from the accuracy of the best fit. Using this
measure, we can quantitatively estimate the poten-
tial benefits by fixing the overfitting or underfitting
issue.

Significance Test Since the distribution of
fitting-offset is unknown, we use a non-parametric
sign-test (Dixon and Mood, 1946; Hodges, 1955)
to test our hypothesis. We train the model N times
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Figure 3: Fitting-offset of tokens grouped by token
frequency.

to obtain N observations on the fitting-offset. The
hypothesis about the overfitting and underfitting
can be expressed by

{
H0 : fitting-offset = 0, no fitting issue,
H1 : fitting-offset ̸= 0, has fitting issue.

(1)
If H0 is true, the N observations are expected to

be half positive and half negative. The total number
of positive observations N+ follows a binomial
distribution, through which we decide the rejection
region according to a significance level α.

Grouping Ideally, we can calculate the two mea-
sures on each token to tell which tokens are over-
fitted and which tokens are underfitted at the early-
stopping epoch. However, direct observation of
each token is noisy and does not show obvious pat-
terns. We group the tokens and average the valid
losses to reduce the noise, through which the pat-
tern emerges, and we obtain stable measures.

4 Token-level Results

4.1 Fitting of Rare Tokens in Seq2seq Model
Training

Previous studies suggest that long-tail token distri-
bution affects the performance of NLP tasks (Gong
et al., 2018; Raunak et al., 2020; Yu et al., 2022).
We hypothesize that the low-frequency tokens un-
derfit during training and conduct verification ex-
periments as follows.

Settings We experiment on the News dataset,
using a Transformer base model (Vaswani et al.,
2017). We categorize the target tokens into
high/medium/low-frequency according to their dis-
tribution in the training set, with balanced probabil-
ity mass on the three buckets.

Hypothesis Testing For each group of
high/medium/low-frequency tokens, we measure



Group Parts-of-speech (POS)
Noun NOUN, PRON, PROPN
Verb VERB, AUX
Adj ADJ, ADV
Num NUM
Func ADP, CONJ, CCONJ, DET, PART, SCONJ
Symb PUNCT, SYM
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Figure 4: Fitting-offset of tokens grouped by parts-of-
speech.

the fitting-offset using the checkpoints of each
model, obtaining 40 samples for each group. We
test our hypothesis on each group using a sign-test
(Eq. 1). As a result, we obtain a p-value of
1.9 × 10−5 for high-frequency and 7.5 × 10−11

for low-frequency, which strongly supports the
hypothesis that the high/low-frequency tokens
either overfit or underfit.

Further as Figure 3 shows, the average fitting-
offset for high-frequency tokens is −3.7 with a
standard deviation of 3.4. The negative value of
the fitting-offset indicates that the high-frequency
tokens overfit, where the best fit happens at an aver-
age of 3.7 epochs, before the early-stopping point.
The average fitting-offset for low-frequency tokens
is 5.8 with a standard deviation of 3.3. The posi-
tive value of the fitting-offset indicates underfitting,
where the best fit happens at 5.8 epochs, after the
early-stopping point on average. Based on this
evidence, we conclude that Both overfitting and
underfitting at the token level occur when training
seq2seq models.

Analysis The significant divergence of fitting-
offset between the high/low-frequency tokens sug-
gests that the frequency of tokens has a significant
influence on their fitting. We quantify the influence
using the potential-gain. In particular, take the low-
frequency tokens as an example. The potential-gain
is 0.73, which means that the average accuracy is
expected to be increased from 45.61 to 46.34 if
we move the best fit to the early-stopping epoch.
The potential-gain of the high-frequency tokens is
0.05, and that of the medium-frequency tokens is
0.23, which is relatively smaller than that of the
low-frequency tokens, suggesting underfitting of
the low-frequency tokens is the major issue.

4.2 Linguistic Factors to Token-level Fitting

In section 4.1, we find that the high-frequency to-
kens tend to overfit and the low-frequency tokens
tend to underfit in the seq2seq model as a group.
In order to further understand a fine-grained cor-
relation between the frequency and the fitting of a
token, we further split the high/low-frequency to-
kens into smaller groups and conduct experiments
on the specific categories. Linguistic factors are
considered in the detailed experiments.

Parts-of-speech (POS) We speculate that parts-
of-speech, as an important linguistic feature, may
provide a different perspective to study the over-
fitting and underfitting issues. We group tokens
according to their parts-of-speech as listed in Ta-
ble 1. Specifically, we first obtain POS tagging on
each word using spaCy 1. Then we map the POS
of words to tokens by labeling all the tokens of a
word with the same POS. Last, we group these to-
kens according to their POS. Take the group Noun
as an example. We group tokens with the POS
of NOUN, PRON, and PROPN into one category,
naming Noun. We aggregate the major parts of
speech into six groups according to their functional
similarity, as shown in the Table.

As Figure 4 shows, parts-of-speech has a signifi-
cant influence on the fitting of tokens. The function
words are most likely to overfit, which is likely
because they are close-set and easier to learn from
the linguistic perspective. On the contrary, nouns
are most likely to underfit, which can be due to
the openness of the set and the challenging context
dependencies.

The potential-gain of nouns is 0.69, increasing
the accuracy from 52.38 to 53.07. The potential-

1https://spacy.io/
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Figure 5: Fitting-offset of tokens grouped by frequency and parts-of-speech.

Frequency Function Symbol Number Verb Adj/Adv Noun
High 56.82 +0.15 84.77 +0.59 nan +nan 59.13 +1.09 71.02 +1.67 60.87 +0.89
Med 49.59 +0.16 69.63 +3.41 73.47 +1.50 47.64 +0.12 44.56 +0.24 59.21 +0.76
Low 43.76 +1.38 72.24 +3.55 74.84 +1.20 36.25 +0.51 41.18 +0.43 48.03 +0.88

Table 2: Potential-gain for each category grouped by frequency and parts-of-speech. The column is in a format of
“averaged-accuracy potential-gain”, where the “+” in the potential-gain indicates an increase in the accuracy and the
“-” indicates a decrease in the accuracy. We mark potential-gains bigger than 0.5 with the bold font to indicate their
significance.

gains of numbers, symbols, verbs, and adj/adv
words are 1.09, 0.58, 0.26, and 0.22, respectively.
Surprisingly, the potential-gain of function words is
negligible, even though they obviously overfit. We
attribute it to the overall high frequency of function
words because sufficient training samples reduce
the negative impact of overfitting. It is confirmed
by the detailed potential-gains shown in Table 2,
where the function words with low frequency have
a much higher potential-gain of 1.38.

It is worth noting that we use sub-word tokens
in the experiments, where we assign the POS of a
word to all its sub-words. We also tried words as
tokens, which give a similar distribution of fitting
offset, and the conclusions hold.

Frequency and Parts-of-speech We combine
frequency and POS to make a detailed analysis
of the high/low-frequency tokens. As Figure 5
shows, frequency and POS work independently.
Among the high-frequency tokens, the function
words tend to overfit, while adjectives and nouns
tend to underfit. Among the low-frequency tokens,
the symbols tend to overfit, while the adjectives
and nouns tend to underfit. Based on this evidence,
we arrive at a counter-intuitive conclusion that in a
seq2seq model, the high-frequency tokens (popular
tokens) mostly overfit but can also underfit, and the
low-frequency tokens (rare tokens) mostly underfit
but can also overfit.

When we look into the potential-gains, as shown
in Table 2, we see higher potential-gains than
in the previous section. The potential-gain of
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Figure 6: Fitting-offset of tokens grouped by prediction
discrepancy.

low-frequency function words, symbols, and num-
bers are 1.38, 3.55, and 1.20, respectively. The
potential-gains on med-frequency symbols and
numbers are 3.41 and 1.50, respectively. Overall
the high-frequency tokens have low potential-gains,
and the verbs and adjectives have potential-gains of
1.09 and 1.67, respectively. These results demon-
strate that combining the frequency and linguistic
factors reveals stronger overfitting and underfitting,
forecasting higher potential-gains in specific cate-
gories.

4.3 Prediction Discrepancy as A Factor to
Token-level Fitting

Given that neither frequency nor parts of speech
are decisive factors, we propose a new factor – pre-
diction discrepancy, which measures the degree of
dependence on long context for predicting each to-
ken in a text sequence. The intuition behind this
factor is that some tokens may require more infor-
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Figure 7: Fitting-offset of tokens grouped by dis-
crepancy and frequency.

Discrepancy Frequency
High Med Low

Big 63.91 +0.09 26.88 -0.22 10.57 +0.11
Med 66.96 +0.09 47.77 +0.31 20.22 +0.86
Small 72.49 +0.09 80.95 +0.62 73.19 +0.85

Table 3: Potential-gain for each category grouped by discrep-
ancy and frequency.

mation from the surrounding context to be correctly
predicted, while others may be more independent
and rely more on their local context. Specifically,
consider a sentence, “I was quoted about 12 months
.” the word “months” could most likely be told ac-
cording to its local context “12”. In comparison, in
a German sentence “es war schwer , ihn zu kennen
.”, where the word-by-word translation is “it was
hard , him to know .” the word “kennen” requires
much longer context to predict.

The prediction discrepancy is calculated as

Dj = |P (Yj |Y<j , X)− P (Yj |Yj−1, X)|, (2)

where X is the source sequence, and Y is the tar-
get. For each token Yj , we predict it using its full
context Y<j and its local context Yj . We use the
discrepancy between these two predictions to in-
dicate its dependence on long context. We train
an altered Transformer model to do the predictions
using two decoders, where one decoder uses the
full context of a target while another decoder uses
the local context. The two decoders share the same
token embedding table and encoder. According to
the value of discrepancy, we categorize the tokens
into three groups, with big, medium, and small
discrepancy, respectively.

Results As Figure 6 shows, the big-discrepancy
tokens have an average fitting-offset of −2.7
with a standard deviation of 3.0. The medium-
discrepancy tokens have an average fitting-offset
of 1.0 with a standard deviation of 2.1. The small-
discrepancy tokens have an average fitting-offset
of 8.2 with a standard deviation of 1.8, showing a
trend to exceed the boundary of 10. In compari-
son with frequency, the bigger range of the average
fitting-offsets and the smaller standard deviations
suggest that discrepancy is a better indicator than
frequency. This indicates that the discrepancy is a
good indicator of overfitting and underfitting.

The potential-gain of the small-discrepancy to-
kens is 0.63, increasing the average accuracy of the
tokens from 75.85 to 76.48. In comparison with the

potential-gain of 0.75 for the low-frequency tokens,
which increases the average accuracy from 45.61 to
46.34, the baseline accuracy of small-discrepancy
is much higher, suggesting the effectiveness of dis-
crepancy in discovering fitting issues among high
accuracy predictions.

Discrepancy and Frequency Intuitively, dis-
crepancy and frequency are two independent fac-
tors, given that discrepancy relies on context and
frequency relies on the token itself. As Figure
7 shows, the most significant difference between
high-frequency and med/low-frequency tokens is
that med/small discrepancy tokens with high fre-
quencies tend to overfit, while the med/small dis-
crepancy tokens with med/low frequencies tend to
underfit. In addition, as shown in Table 3, when
frequency and discrepancy are combined to pre-
dict the overfitting and underfitting, the biggest
potential-gain of low-frequency tokens increases
from 0.73 to 0.86, suggesting that frequency and
discrepancy are two independent factors.

Discrepancy and Parts-of-speech (POS) As
Figure 8 shows, discrepancy and POS also work or-
thogonally. Overall, tokens with a smaller discrep-
ancy have a larger fitting-offset, which consistently
appears on numbers, verbs, adjectives, and nouns.
Function words and symbols show a different pat-
tern that the med-discrepancy tokens tend to have
smaller fitting-offset than high-discrepancy.

As shown in Table 4, small-discrepancy tokens
have potential gains of 1.63 and 1.15 on symbols
and numbers, respectively. The potential gain on
numbers with big/med-discrepancy are 2.72 and
2.02, respectively, suggesting the effectiveness of
combining the two factors.

Summary We have identified three independent
factors that affect token-level fitting in seq2seq
model training, including frequency, parts-of-
speech, and discrepancy. While the former two
are internal to the token, the third is external and
context-dependent. These indicate that the fitting of
tokens results from interestingly complex factors.
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Figure 8: Fitting-offset of tokens grouped by discrepancy and parts-of-speech.

Discrepancy Function Symbol Number Verb Adj/Adv Noun
Big 45.43 -0.07 83.38 +0.51 31.58 +2.72 20.31 +0.12 13.38 -0.10 20.58 -0.06
Med 58.33 +0.08 78.79 +0.96 36.49 +2.02 39.69 +0.25 29.51 +0.14 33.30 +0.93
Small 77.06 +0.44 77.98 +1.63 89.20 +1.15 69.90 +0.84 71.93 +0.75 77.08 +0.85

Table 4: Potential-gain for each category grouped by discrepancy and parts-of-speech.
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Figure 9: Fitting-offset of tokens grouped by length-of-
sentence.

5 Easy Sentences vs Hard Sentences

Curriculum learning starts with easy sentences and
then with hard sentences (Kocmi and Bojar, 2017;
Zhang et al., 2018; Platanios et al., 2019; Xu et al.,
2020; Zhou et al., 2020), whereas different crite-
ria are used to measure the difficulty of sentences.
Among these criteria, the length-of-sentence is the
simplest and most popular one, which hypothesizes
that short sentences will be easy to learn and long
sentences will be hard to learn. We test the hypoth-
esis by evaluating whether short sentences overfit
and long sentences underfit in a trained seq2seq
model.

Length-of-sentence We categorize sentences
into short/medium/long sentences according to the
sentence length that each bucket is allocated with
almost the same number of sentences. On the News
dataset, the length of short sentences is between 1
and 18 tokens, the length of medium sentences be-
tween 19 and 31, and the length of long sentences
between 32 and 792.

Hypothesis Testing. We test our hypothesis us-

ing sign-test on News English-German dataset, ob-
taining a p-value of 3.6× 10−5 for short-sentence,
2.1× 10−5 for medium-sentence, and 2.6× 10−3

for long-sentence, which indicates overfitting or un-
derfitting. The fitting-offset has an average of 1.95,
2.0, and 1.38 for short/medium/long-sentences, re-
spectively. The positive fitting-offsets suggest that
they overfit in the trained models. However, as
Figure 9 shows, the degree of overfitting and un-
derfitting is less than that of frequency (Figure 3)
and discrepancy (Figure 6).

Summary The above experiments suggest that
although the length-of-sentence can differentiate
easy sentences from hard sentences, its effective-
ness may not be as significant as other factors such
as frequency, discrepancy, and parts-of-speech.
More surprisingly, short sentences are more likely
to underfit than long sentences, which is also
confirmed by experiments on pretraining settings
in section 6, suggesting that we could not sim-
ply judge the short-sentences as easy and long-
sentences as hard.

6 Fine-tuning of Pretrained Language
Models

Fine-tuning on a large pretrained model has be-
come the dominant setting for NLP tasks (Kenton
and Toutanova, 2019; Lewis et al., 2020; Brown
et al., 2020; Liu et al., 2020). We investigate the
overfitting and underfitting issues, particularly in
the pretraining setting.

Hypothesis Testing We first test whether the
overfitting and underfitting issues exist under the
pretraining setting. We experiment by fine-tuning
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(a) Fitting-offset of tokens grouped by fre-
quency.
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(b) Fitting-offset of tokens grouped by
length-of-sentence.
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(c) Fitting-offset of tokens grouped by
parts-of-speech.

Figure 10: The distribution of fitting-offset on pretraining setting.

mBART25 on the News English-German dataset.
First, we evaluate frequency as an indicator of

overfitting and underfitting. As Figure 10a shows,
we obtain a p-value of 1.2 × 10−3 and an aver-
age fitting-offset of −1.48 on high-frequency to-
kens, suggesting the tendency of overfitting on
high-frequency tokens. Results on medium/low-
frequency tokens do not show significance, al-
though the average fitting-offsets of 0.08 on
medium-frequency tokens suggest slight underfit-
ting.

Next, we consider length-of-sentence. As Figure
10b shows, the fine-tuning tends to overfit for long-
sentence and we obtain a p-value of 1.1×10−2 and
an average fitting-offset of −1.2 on long-sentences.
It suggests obvious overfitting of long sentences,
which is counter-intuitive because it is widely as-
sumed that long-sentence is harder to learn than
short-sentence.

Last, we examine parts of speech. As Figure 10c
shows, fine-tuning on function words tends to over-
fit and that on nouns underfit, which is consistent
with the result on non-pretraining setting (Figure
4). A difference is that the fine-tuning of verbs
shows underfitting, which is not significantly ob-
served in the non-pretraining settings. We obtain a
p-value of 5.8× 10−2 and an average fitting-offset
of 0.8 on verbs, suggesting an observable underfit-
ting on verbs. The issue on function words is more
significant than on verbs, on which we obtain a p-
value of 4.3× 10−6 and an average fitting-offset of
−2.3, suggesting significant overfitting on function
words.

The experiments above confirm that the overfit-
ting and underfitting issues exist in the pretraining
setting, although it is not as significant as that in the
non-pretraining settings. In addition, it shows that
overfitting is the major issue in comparison with

underfitting. We attribute it to the effectiveness of
large pretraining to prevent underfitting.

It is worth noting that the vocabulary used by
the pre-trained model is different from other non-
pretraining settings, which may affect the statistical
figures but the conclusions hold.

7 Additional Factors to the Fitting Issue

Most of the figures and tables for this section are
placed in Appendix A.

The Language As a comparison of languages,
we study the issues on the News dataset but with a
reversed direction of languages, translating German
to English instead of English to German. As Figure
11 shows, our observations on target English tokens
are consistent with previous observations on target
German tokens. First, the high-frequency tokens
tend to overfit, while the low-frequency tokens tend
to underfit. Second, the big-discrepancy tokens
tend to overfit, while the small-discrepancy tokens
tend to underfit. Third, the function words tend
to overfit, while the nouns tend to underfit. Last,
we also obtain bigger potential-gains by combining
the factors and the most significant potential-gains
happen on the consistent categories, such as low-
frequency symbols, high-frequency adj/advs, and
big/med-discrepancy numbers, as the bold numbers
in Table 5, 6, and 7 show.

The Model Size To evaluate the influence of
model size, we conduct experiments with a big
model on the News English-German dataset. As
Figure 15 shows, the distribution of fitting-offset
on each category is very close to that of the base
model but with a smaller range. We attribute it to
the faster convergence of bigger model (Li et al.,
2020). One significant difference between the big
model and the base model is that the fitting-offset
of symbols moves toward the negative region, sug-



gesting overfitting for symbols in the big model.
We attribute it to the stronger memorization ability
of the bigger model.

The Domain Previous experiments are done on
the News dataset. To justify that the phenomena
are not domain specific, we conduct the same ex-
periments on the Europarl English-German dataset,
which is from the Europarl domain. We randomly
sample 250, 000 sentence pairs from the Europarl
training set for a fair comparison with the News
dataset, which contains 236, 287 samples.

As Figure 16 shows, the observations described
in “The Language” block hold but with slight differ-
ences in the distribution of fitting-offset of tokens
grouped by parts-of-speech, in comparison with
Figure 4 evaluated on News dataset. The major
difference happens in verbs, adjectives, and nouns,
reflecting a different distribution of topics of Eu-
roparl in comparison with News.

The Data Scale Intuitively, overfitting and un-
derfitting should be more severe on small datasets.
For comparison, we test on a bigger dataset from
Europarl. We sample 500, 000 sentence pairs from
the Europarl training set in comparison with the
model trained using 250, 000 samples.

As Figure 17 shows, the observations described
in “The Language” block still hold but the range
of the distribution increases. Looking into the
potential-gains, we see that they decrease by about
1/4 compared to that of the experiments with
250, 000 samples. The results suggest that the
fitting-offset is more challenging to measure, and
the potential-gain decreases when the model is
trained on a larger dataset, which is expected due
to the larger dataset reducing overfitting and under-
fitting.

8 Discussion on Possible Solutions

Our observation and insights are based on general
language phenomena: long-tail distribution, un-
even context dependencies, and different parts of
speech, which are general among different NLP
tasks, and may deserve further study on possible
solutions.

Intuitively, the model training or fine-tuning pro-
cess could be improved by reducing learning on
overfitting tokens and increasing learning on under-
fitting tokens. One example is the previous work
on abstractive summarization (Shi et al., 2018),
which uses focal loss to give high-freq tokens
smaller weights and low-freq tokens larger weights,

achieved 1.5 points improvement on ROUGE-2 on
the abstractive summarization task. Such dynamic
token-specific weights can partially address the un-
derfitting and overfitting from the perspective of
the frequency factor. However, the issue is far from
being solved, given that a combination of the fre-
quency and discrepancy factors (Figure 7) reveals
more severe fitting issues than the frequency only
(Figure 3). We could expect more gains by de-
signing more appropriate methods to consider the
combined factors.

9 Conclusion

We study overfitting and underfitting issues of
learning targets in the context of neural machine
translation. Our experiments demonstrate that over-
all rare tokens tend to underfit and frequent tokens
overfit. We explored detailed factors related to
the overfitting and underfitting issues and identi-
fied three major influencing factors, which include
frequency, parts-of-speech, and discrepancy. This
shows that fitting is the result of a complex inter-
action between multiple factors. Further experi-
ments demonstrate that the issues exist as a general
problem for both non-pretraining and pretraining
settings. Future work includes the investigation of
strategies to alleviate the overfitting and underfit-
ting issues.

Limitations

This paper hypothesizes that seq2seq models have
token-level overfitting and underfitting issues, and
provides direct evidence to support the hypothe-
sis in various settings, raising a valuable problem
for NLP modeling. However, this paper does not
provide a solution to the problem due to the theo-
retical and practical challenges of measuring the
convergence speed of each token. We leave the
exploration of this topic to future work.
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(b) Fitting-offset of tokens grouped by dis-
crepancy.
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(c) Fitting-offset of tokens grouped by
parts-of-speech.

Figure 11: The Language: Fitting-offset of English tokens evaluated on News German-English dataset.
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Figure 12: The Language: Fitting-offset of tokens
grouped by discrepancy and frequency.

Discrepancy Frequency
High Med Low

Big 67.14 +0.21 27.14 -0.27 9.90 +0.20
Med 69.91 +0.07 47.08 -0.08 14.67 +0.78
Small 62.99 +0.33 81.85 +0.33 66.38 +1.35

Table 5: The Language: Potential-gain for each category
grouped by frequency and discrepancy.
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Figure 13: The Language: Fitting-offset of tokens grouped by frequency and POS.

Frequency Function Symbol Number Verb Adj/Adv Noun
High 64.8 +0.15 80.08 +0.86 nan +nan 64.51 +1.20 38.24 +1.93 49.15 +4.01
Med 49.82 +0.13 66.23 +1.67 69.43 +1.29 47.03 +0.38 55.78 +0.34 61.54 +0.21
Low 11.12 +1.75 36.09 +5.98 72.28 +1.29 30.92 +0.57 37.76 +0.78 42.13 +1.20

Table 6: The Language: Potential-gain for tokens grouped by frequency and POS.
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Figure 14: The Language: Fitting-offset of tokens grouped by discrepancy and POS.

Discrepancy Function Symbol Number Verb Adj/Adv Noun
Big 55.19 +0.10 77.67 +0.58 28.34 +1.78 20.76 +0.04 15.50 -0.20 16.61 +0.19
Med 63.84 +0.03 75.72 +1.05 38.57 +2.92 32.44 -0.10 29.21 +0.35 26.49 +0.92
Small 71.99 +0.20 75.22 +1.32 86.89 +1.08 65.93 +1.14 72.88 +0.81 72.12 +1.20

Table 7: The Language: Potential-gain for tokens grouped by discrepancy and POS.
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(a) Fitting-offset of tokens grouped by fre-
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(b) Fitting-offset of tokens grouped by dis-
crepancy.
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(c) Fitting-offset of tokens grouped by
parts-of-speech.

Figure 15: The Model Size: Fitting-offset of German tokens evaluated on News English-German with big model.
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(b) Fitting-offset of tokens grouped by dis-
crepancy.
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(c) Fitting-offset of tokens grouped by
parts-of-speech.

Figure 16: The Domain: Fitting-offset of tokens evaluated on Europarl English-German (250, 000 samples).
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(a) Fitting-offset of tokens grouped by fre-
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(b) Fitting-offset of tokens grouped by dis-
crepancy.
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(c) Fitting-offset of tokens grouped by
parts-of-speech.

Figure 17: The Data Scale: Fitting-offset of tokens evaluated on Europarl English-German (500, 000 samples)..


