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Abstract

Temporal Knowledge Graph Completion aims
to complete missing entities or relations un-
der temporal constraints. Previous tensor
decomposition-based models for TKGC only
independently consider the combination of one
single relation with one single timestamp, ig-
noring the global nature of the embedding. We
propose a Frequency Attention (FA) model to
capture the global temporal dependencies be-
tween one relation and the entire timestamp.
Specifically, we use Discrete Cosine Transform
(DCT) to capture the frequency of the times-
tamp embedding and further compute the fre-
quency attention weight to scale embedding.
Meanwhile, the previous temporal tucker de-
composition method uses a simple norm reg-
ularization to constrain the core tensor, which
limits the optimization performance. Thus, we
propose Orthogonal Regularization (OR) vari-
ants for the core tensor, which can limit the
non-superdiagonal elements of the 3-rd core
tensor. Experiments on three standard TKGC
datasets demonstrate that our method outper-
forms the state-of-the-art results on several met-
rics. The results suggest that the direct-current
component is not the best feature for TKG rep-
resentation learning. Additional analysis shows
the effectiveness of our FA and OR models,
even with smaller embedding dimensions.

1 Introduction

Knowledge graph (KG) contains a number of struc-
tured facts (h,r,t), where a fact expresses a di-
rected relation r from a head entity A to a tail entity
t. The complex KGs, such as FreeBase (Berant
et al., 2013), DBPedia (Auer et al., 2007), and
Wikidata (Vrandeci¢ and Krotzsch, 2014), are col-
lected manually or automatically from structured
or unstructured data on the web. Such KGs are
successfully applied to several downstream tasks,
e.g., Question Answering (Berant et al., 2013) and
Recommender System (Wang et al., 2018). How-
ever, those works ignore that many facts in the
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Figure 1: A toy example from the temporal knowledge
graph shows an athlete’s career. This example illustrates
the temporal dependencies of facts that Tom Adeyemi
plays for four teams from 2011 to 2017. Toy example
scores calculated by TuckER-FA are in the appendix C.

KGs change over time. Temporal facts can be ex-
pressed as a quadruplet (h,r,¢,7), with 7 being
the timestamp. The temporal Knowledge graphs
(TKGs), such as ICEWS (Lautenschlager et al.,
2015), GDELT (Leetaru and Schrodt, 2013) and
YAGO (Mahdisoltani et al., 2015), are then built to
handle these facts coupled with timestamps.

One problem that hinders the application of
TKGs in downstream tasks is the inevitable incom-
pleteness or knowledge scarcity problem caused
by missing entities or relations. Thus, Temporal
Knowledge Graph Completion (TKGC) aiming
to complete the missing entities or relations over
time has become an essential task in the research
community. The previous methods for TKGC
can be divided into four branches, in which the
critical challenge is how to integrate timestamps
into KGC modeling. Time-dependent Embedding
method (Trivedi et al., 2017; Goel et al., 2020; Das-
gupta et al., 2018) considers the temporal informa-
tion as a transformation or an activation function
for entities or relations. Timestamp Embedding
method (Han et al., 2021b; Lacroix et al., 2020;
Shao et al., 2022) treats timestamps as additional
learnable embeddings of the score function. Ex-
perimental experience (Han et al., 2021b) suggests
that timestamp embeddings generally perform bet-
ter than time-dependent embeddings. Knowledge
Graph Snapshots method (Liao et al., 2021; Liet al.,
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2021) aggregates multi-relational interactions of
cropped subgraph to achieve more precise repre-
sentations. Historical Context method (Jung et al.,
2021; Zhu et al., 2021) model n-hop facts chain or
repeat facts to increase the interpretability.

The previous timestamp embedding methods
model each quadruplet independently, which only
captures the local temporal dependencies, ignoring
the global temporal dependencies between one re-
lation and entire timestamp. As shown in Figure 1,
an athlete plays for different teams in different pe-
riods. We treat such events as a continuous line of
events rather than as separate events. We propose
a Frequency Attention (FA) model to address this
issue. Specifically, we treat each dimension in the
timestamp embedding as a long-term signal and
use Discrete Cosine Transform (DCT) to capture
the frequency of the signal. Furthermore, we take
the frequency and part of the relation embedding as
input to calculate attention weights for each times-
tamp. The proposed frequency attention model can
easily apply to exist tensor decomposition methods.

The previous tucker decomposition method is in-
terpreted as a high-dimensional linear classifier to
distinguish facts. TuckERTNT (Shao et al., 2022),
uses a simple L2 norm as the core tensor regular-
ization. However, this regularization may be over-
strict, leading the embedding to change sharply
and risk vanishing or explosion. Inspired by or-
thogonal regularization in (Brock et al., 2019), we
propose two variants of orthogonal regularization
(OR) for the core tensor, i.e., excluding superdiag-
onal elements or diagonal elements of each slice
matrix of the core tensor. This way, we achieve a
balanced core tensor regularization, preventing the
embedding norm from vanishing or exploding.

In summary, our work makes the following con-
tributions:

(1) we propose a frequency attention model us-
ing DCT to capture the global temporal depen-
dency between relations and entire timestamp.

(2) we introduce two variants of core tensor or-
thogonal regularization for the tucker decom-
position, which can prevent the embedding
norm from vanishing or explosion.

(3) Experiment results on three standard
datasets show that our model outperforms the
SOTA models on several metrics. The addi-
tional analysis demonstrates the effectiveness
of our frequency attention model and orthogo-
nal regularization.

2 Related Works
2.1 Static KG Embedding

There has been ample research on static knowl-
edge graph embedding. We grouped all main-
stream models into four main categories. Ten-
sor decomposition-based models RESCAL (Nickel
et al., 2011), Distmult(Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), and TuckER (Balaze-
vic et al., 2019) compute triplet score in real or
complex domain. Distance-based models are built
upon euclidean or hyperbolic distance as shown in
TransE (Bordes et al., 2013), mainfoldE (Xiao et al.,
2016) and RotatE (Sun et al., 2019). DURA (Zhang
et al., 2020) figure out that distance-based method
can be viewed as decomposition method with a Lo
regularization. Neural-based models use a convo-
lutional network to capture the KG structure in-
formation, as shown in ConvE (Dettmers et al.,
2018). Other models learn from a variety of ex-
periences from fields. Inspired by reinforcement
learning, MultiHopKG (Lin et al., 2018) sample n-
hop triplets chain to compute the fact triplet scores
and re-rank candidates.

2.2 Temporal KG Embedding

There are two scenarios for integrating temporal
information into existing static embedding models,
timestamp embedding and time-dependent entity
embedding. Time-dependent entity embedding can
explicitly model dynamic changes of entities, such
as periodicity and trending. A well-known time-
dependent entity embedding is diachronic embed-
ding (Goel et al., 2020), which uses the sine func-
tion to represent the frequency of entity evolution
over different time granularity. (Han et al., 2021b)
compares six KG embedding models, and figures
out that timestamp embedding can achieve similar
or even better performance with significantly fewer
parameters. Although timestamp embedding might
suffer from the growing number of timestamps, the
time granularity can also be controlled within an
appropriate range by enlarging. Further analysis
in TNTComplEx (Lacroix et al., 2020) points out
that time-dependent relation embedding can ob-
tain comparable results to time-dependent entity
embedding with smaller computational costs.
From the viewpoint of the subgraph, there are
a series of knowledge graph snapshots/subgraphs
over time, which contain potential multi-relational
interactions. (Liao et al., 2021) adopt proba-
bilistic entity representations based on variational
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Bayesian inference to jointly model the entity fea-
tures and the uncertainty. (Li et al., 2021) employs
a multi-layer graph convolutional network on each
subgraph to capture the dependencies of adjacent
facts. From another contextual perspective, the rel-
evance between the query and its historical context
can be used as evidence for reasoning. (Jung et al.,
2021) proposes a multi-hop reasoning model using
a graph attention layer and finds that temporal dis-
placements are more indicative for inference than
timestamps. (Zhu et al., 2021) notice more than
80% of events from 1995 to 2019 in the ICEWS
repository are repeated events. In this case, they
introduce a copy mechanism to re-rank the candi-
dates.

3 Preliminaries

3.1 Problem Definition

To formally define the problem and describe the
solution, we use consistent notations in the rest of
the paper. We represent scalars with the lower case
letters, e.g., d,, represent sets with the flower let-
ters, e.g., £, represent vectors with the bold lower
case letters, e.g., h;, denoting the i*" entity em-
bedding. We use bold upper letters H to denote
the embedding matrix and represent the high order
tensor with bold flower letters W.

We use a ©® b to denote Hadamard (element-
wise) product of two vectors or matrix, @ ® b to
denote the tensor outer product, [A|B] to denote
the vector or matrix concatenation operator, || - ||,
to denote the p-norm of a vector or tensor.

A temporal knowledge graph G consists of a
set of facts {(hi,Tj,tk,Tl)} CEXRXEXT,
where £ is a finite entity set, R is a finite relation
set and 7 is a finite timestamp set. Each quadru-
plet (h;,r;,t;, 1) respectively denotes a relation
r; from the head entity h; to tail entity ¢ at a spe-
cific time 7;. A temporal knowledge graph uses
a binary tensor X = {0, 1}EXIRIXIEIXIT] to indi-
cate whether the corresponding quadruplets occurs
in the KG data set. |£|, |R| and |7 | denote the
number of entities, relations, and timestamps, re-
spectively.

Although knowledge graphs contain large num-
bers of facts, they are still incomplete due to the
complex nature of the real world. TKGC aims to
predict the missing entity. We focus on the link
prediction problem, aiming to predict the tail entity
or head entity through the query (h;,r;,7,7) or
(?,7rj,tg, 7). The problem reduces to ranking a set

of candidate entities to select the most likely entity
that makes the partial quadruplet factual. The prob-
lem can be formulated as a ranking problem to learn
a quadruplet score function X(£,R,£,T) € R to
sort all candidate entities.

3.2 Tucker Decomposition for TKG
Embedding

Many tensor decomposition methods apply to the
KG embeddings, such as bilinear decomposition,
canonical decomposition, and tucker decomposi-
tion. Among these methods, tucker decomposition,
a kind of principal component analysis approach
for high-order tensors, is viewed as the general one.
In particular, when the super-diagonal elements
in the core tensor of Tucker equal 1 and other el-
ements equal 0, tucker decomposition degrades
into canonical decomposition. TuckER (Balazevic
et al., 2019) has proved that Dismult (Yang et al.,
2015) and ComplEx (Trouillon et al., 2016) can be
included into the framework of TuckER. In KGC
task, An 3-order tensor X can be decomposed into
a core tensor W € RPexDrxDe an( entity/relation
embedding matrix E /R as factor matrix. The for-
mula of the tucker decomposition is as follows.

X=WXx1ExoRx3sE=<W;E,R E>
D. D, D.

=D D> Wadsdghed, @70, @t.gy

di1=1d2=1d3z=1

X, denotes the n-mode product of the tensor,
which can be explained as the core tensor expand-
ing into a matrix along the n-th dimension.

To obtain proper timestamp embedding 7", Tuck-
ERTNT (Shao et al., 2022) use two relation embed-
dings R and R’ to separately capture time-variant
information and time-invariant information as fol-
lows.

X=<W;E,RROT+R,E >

Although previous works have achieved good
results in the TKGC task, they may still encounter
many problems. First, the learnable parameters rep-
resenting the frequency of DE-SimplE may be clus-
tered around 0, affecting the model performance
(as shown in Appendix D). Second, TuckERTNT
constrains the core tensor with the fourth power of
L4 norm. However, it is not guaranteed that the
n-mode product of the core tensor is well-perform.
Therefore, there is still space to improve the tem-
poral tucker decomposition for the TKGC task.

255



4 Model

We propose a new framework, TuckER-FA, com-
bining the FA and OR with the temporal tucker
decomposition method. We input the timestamp
embedding and relation embedding to the FA
model to compute frequency attention weights,
then weighted-sum the timestamp embedding and
combine it with the relation embedding. The
timestamp-enhanced relation feature and head/tail
entity embedding compose the factor matrix of
tucker decomposition. In learning progress, we
include several regularization losses and the or-
thogonal regularization of the core tensor into the
overall objective.

I Quadruplet Score ‘
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O :
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Figure 2: The score function of TuckER-FA, which can
measure how likely the quadruplet is to be true. The
gray part contains the learnable parameters.

4.1 Score Function

We propose a score function for TKGC based on
tucker decomposition shown in Figure 2. Specifi-
cally, the formula of the score function is.

Xijkl =< W;hi,rjl ® [’l"jg ’FA(’f'jl,tl)],tk >

We use p = fTT to control the embedding di-
mension ratio between timestamps and relations.
ri1 € R% and rjo € R4 ~4r respectively denote
two relation embeddings. 7, € R% is the times-
tamp embedding. FA represents the Frequency
Attention model. The input 7;; denote the part of
relation embedding which aligns with 7;. The main
amount of computation is concentrated on tucker
decomposition rather than the FA model.

4.2 Frequency Attention

To capture the crucial temporal features of TKG,
we propose a Frequency Attention (FA) model
shown in Figure 3. We treat the evolution of times-
tamp embedding over time as a combination of
periodic functions with different frequencies. In-
spired by FcaNet (Qin et al., 2021), we use Discrete
Cosine Transform (DCT) to capture the different
frequency components of timestamp embeddings.
In this way, we can capture the global temporal de-
pendency of one relation and the entire timestamp.
The chronologically arranged timestamp embed-
ding T € RN~*4" is viewed as d, different tempo-
ral signals. The direct-current (DC) component f
and frequency component f; of DCT are respec-
tively formulated as follows.
N1
fo=>_ T; = GAP(T)N-
i=0

Nl k 1
=" Tieos(2r (i + = e N1
fr 2 COS(NT(H_Q)) ke{0 }

GAP represents the global average pooling op-
eration, which always use to calculate the channel
attention weight in the computer vision domain. In
the TKGC task, the main calculation procedure of
direct-current component frequency attention is as
follows.

FA(T)) =o(FC(GAP(T.q)N;)) ® T.q

The FC block represents a fully-connected layer,
and o denotes sigmoid function. It is natural to
include more frequency components to calculate
attention weight. Considering the limitation of
computing resources, we optionally select part of
the frequency components. We divide the time
embedding dimension d into n parts and assign
a set of selected frequencies fy, ... f,, to each part.
We also introduce 71, part of relation embedding
aligned with 77, into the FA model.

FA(r;,7)=0(FC(7j1 © [folf1]---|fa]) © T

In addition, the computation complexity of the
operation with finite orthogonal function bases is
linear. The cost of computation of the frequency
attention model is negligible compared to the cost
of computation in tucker decomposition. The fre-
quency attention weight determines how much
timestamp embedding information for the corre-
sponding dimension is retained. The FA model
considers the evolution of a single relation over the
entire timestamp.
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Figure 3: The framework of the Frequency Attention model, which can capture the global temporal dependency of
one relation and entire timestamp. Here g is a simple two-layer MLP plus sigmoid function.

4.3 Orthogonal Regularization for Core
Tensor

There have been many research results on orthogo-
nal regularization of the matrix, such as (Miyato
et al., 2018). In summary, the orthogonal regular-
ization allows the parameter matrix to be closer to
the diagonal-dominant non-singular matrix. A non-
singular matrix prevents abrupt truncation changes
of the feature map during matrix multiplication.
Furthermore, tucker decomposition can be viewed
as matrix multiplication for factor matrix with the
arbitrary slice of core tensor. In other words, or-
thogonal regularization could be applied to core
tensor multiplication.

Inspired by BigGAN (Brock et al., 2019), we
heuristically propose two variants of core tensor
orthogonal regularization ®; and . The base-
line is the simple norm regularization ® used in
TuckERTNT.

®o(0) = [[WI[;
®1(0) = [IWo 1 -T);
®2(0) = W © (1 - Proj(D))|li

1,Z, Proj(Z) is tensors with the same shape as
W. All the elements of 1 are 1. The superdiag-
onal elements of Z are 1, and the other elements
are 0. The diagonal elements of the arbitrary slice

matrix of Proj(Z) are 1, and the other elements
are 0. The tucker decomposition degenerates to
the CP decomposition when the super-diagonal el-
ements of the core tensor are 1, and the rest are
0. ®; regularization can restrict the result of the
tucker decomposition to the neighborhood of the
weighted CP decomposition. (the super-diagonal
elements of the core tensor are weights, and the rest
elements indicate a slight difference from weighted
CP decomposition.

4.4 Other Regularization

Researchers have investigated many different kinds
of embedding regularization to alleviate the overfit-
ting problem. TNTComplex uses the third power of
Nuclear-3 norm twice for temporal or non-temporal
quadruplets. TIMEPLEX (Jain et al., 2020) use
sampled weighted L2 regularization to avoid the
overfitting problem. In our model, we use embed-
ding regularization as ChronoR (Sadeghian et al.,
2021) does, using the fourth power of L4 norm as
embedding regularization.

Q(0) =Rl + [[£]]3 + [ 1][3 + [|[r2] FAC)]II

Because of the real-world time continuity, it is
natural to guarantee adjacent timestamp embed-
dings or repeat timestamp embeddings closer in the
embedding space. TuckERTNT (Shao et al., 2022)
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proposes several temporal regularization to smooth
the timestamp embedding. Notice that YAGO15K
has many quadruplets without any timestamp, in
which we artificially add a unique timestamp. This
unique timestamp is excluded when computing
temporal regularization terms. To be consistent
with the embedding regularization, the adjacent
timestamp differential regularization is as follow.

T
- , |4
MO = =g X I =il

4.5 Loss Function

For each training data, we use instantaneous multi-
class loss.

L(Xijrr) = —Xigia +1og(d_ exp(X;jp0))
k/

Considering instantaneous multi-class loss and
the above three regularization term jointly, we train
our model by minimizing the following loss func-
tion.

L0 = = S [£(X:0) + AB.(X;0)

1] (5,,k,0
Jk,DES

+/\194(X; 9) + )\2A4<X; 9))} n=1,2,3

where A1, A2 and A is importance hyperparameter
for tuning.

5 Experiments

5.1 Datasets and Evaluation Metrics

We choose three of the most commonly-
used datasets to evaluate our model, including
ICEWS14, GDELT, and YAGO15K. The detailed
statistics of each dataset are shown in Table 1.
ICEWS14 is extracted from the Integrated Cri-
sis Early Warning System (Lautenschlager et al.,
2015) repository, which contains political events

Table 1: The statistics of the benchmark datasets.

ICEWS14  GDELT YAGOI15K
#Entity 7128 500 15403
#Relation 230 20 34
#Timestamp 365 366 198
#Facts 90730 3419607 138056
Timespan 2014 2015-2016 1513-2017
Granularity Daily Daily  Annually
Type Point Point Interval

with daily timestamp points. This dataset, for the
most part, is time-sensitive and accurate in descrip-
tions.

GDELT is extracted from the Global Database
of Events, Language, and Tone (Leetaru and
Schrodt, 2013), which covers news data from 1979
to the present by automatically crawling. GDELT is
a complicated dataset because of its abstract entity,
such as government and organization.

YAGO15K (Friedland and Lim, 2018) aug-
mented events of FB15K (Bordes et al., 2013)
with time interval. YAGO15K is worst-perform in
TKGC tasks because it requires the model to handle
both temporal and non-temporal knowledge.

We follow the standard evaluation set in previ-
ous work, and report two standard metrics, Hit@k
(k € {1, 3,10}) and filtered Mean Reciprocal Rank
(MRR). They can evaluate the rank of the correct
entity in the filtered candidate set. Hit@Qk reflects
the percentage of the query whose correct tail enti-
ties are ranked within the top k£ candidates. Mean
Reciprocal Rank, which computes the average of
the reciprocal of mean rank, reflects the correct fact
rank of the model. We follow the time-aware filter-
ing (Han et al., 2021a), which means entities that
cause ambiguity are removed from the candidate
list for a query. We using reciprocal setting to add
(tk, r;l, hi,7;) into train set for each quadruplet
(hi,7j,tk, 7). The detailed hyperparameters of our
model are shown in Appendix B.

5.2 Main Results

Table 2 shows the main temporal knowledge graph
completion results. The results of other models
come from the original paper. We use the bold
number to indicate the existing best results. Our
model slightly outperforms or ties with previous
SOTA results on several metrics of ICEWS14 and
YAGO3-10. On GDELT, our model achieves sig-
nificant improvement results on all metrics. Com-
pared with TuckERTNT, our model TuckER-FA
has d[(1 — p)|T| + (2 + p)|R|] fewer parameters
and 1.1% higher MRR performance when using
the same embedding dimensionality. Compared
with 2500+ dimensions of entity and relation of
TNTComplex and ChronoR, our model gets better
results using only 400 dimensions of entity and
relation.

Increasing the number of model parameters
substantially improves MRR performance on the
GDELT, but the improvement on the other two
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Table 2: The evaluation results on ICEWS14, GDELT, and YAGO15K. For the other works, we report the best

results reported in their original paper.

Model ICEWS14 GDELT YAGO15K
Metric MRR|[H@1|H@3|[H@10|MRR |H@I |H@3 |H@10|MRR |H@1 |[H@3|H@10
TransE 280 | 94 | - | 637 |155] 60 | 17.8 | 335 | 296 | 228 | - | 468
SimplE 458 | 34.1 | 51.6 | 68.7 | 206 | 124|220 366 | - - - -

ComplEx 47.0 | 350 | 54.0 | 71.0 | 213|133 | 22.5| 36.6 | 36.0 | 29.0 | 36.0 | 45.0
TTransE 255 | 74 | - | 601 |115] 00 | 160 31.8 | 32.1 [ 23.0| - | 51.0
TA-DistMult | 47.7 | 36.3 | - | 68.6 | 20.6 | 12.4 | 219 | 365 | 29.1 | 21.6 | - | 476
DE-SimplE | 52.6 | 41.8 | 59.2 | 72.5 | 23.0 | 14.1 | 24.8 | 403 | - ; - ;

TeMP 60.7 | 545|673 | 774 | - - - - 1275(19.1 (297 | 437
TNTComplex | 62.0 | 52.0 | 66.0 | 76.0 | 22.4 | 14.4 | 23.9 | 38.1 | 36.0 | 28.4 | 37.0 | 53.7
ChronoR 625|547 669 | 773 | - - - - 1366291379 538
BoxTE 615532667 | 764 | 352269 (377 51.1 | - _ . ;

TuckBRTNT | 62.5 | 544 | 673 | 773 | 44.8 | 352|492 | 63.0 | - - - -

TuckER-FA | 62.7 | 54.4 | 67.7 | 78.0 | 48.6 | 39.3 | 53.2 | 66.0 | 36.5 | 28.2 | 39.2 | 54.3
Table 3: Ablation study of FA and OR TuckER-FA. of facts without timestamps.

MRR | ICEWS14 | GDELT | YAGOI5K

ALL | 627 | 486 365 = - - - -
w/oFA | 62.0(-0.7) | 47.3(-1.3) | 34.8 (-1.7) frequency low - high

w/o OR | 60.6(-2.1) | 46.1(-2.5) | 33.4 (-3.1) T
w/o Both | 58.4(-4.3) | 44.9(-3.7) | 32.6 (-3.9)

models is slight. Compared with ICEWS14, the
GDELT dataset has nearly 38 times the number of
facts, and fewer entities/relations, within the same
time span. The corresponding graph of GDELT is
spatially denser, with many more recurring facts.
As a result, GDELT greatly enhances the global
temporal dependency of relations, which is exactly
our FA model focus on. Complex global temporal
dependency explains TuckER-FA outstanding ad-
vantage on GDELT compared with its counterparts.

5.3 Ablation Study

Table 3 shows the ablation study of the Frequency
Attention(FA) model and core tensor Orthogonal
Regularization(OR) model. It can be observed that
both models are valuable when working individu-
ally, and the combination of them performs even
better. We can point out that the OR model is more
effective than the FA model.

The single FA model increases the accuracy sig-
nificantly in ICEWS 14 compared with the vanilla
model, which is probably because this dataset has
the shortest time span and the minimal data. The
improvement of the single OR model is slight in
YAGO15K, and it may be attributed to the presence

(a) ICEWS14

35.62 3523 35.64 3563 35.48.35.55 35.49.35.55 35.73 3544 35.56

frequency low — high

35.3 35.4 35.5 35.6 35.7

(b) YAGO15K

Figure 4: The MRR performance using different single
frequency in the FA model. The darker colors indicate
better results. Knowledge graph has inherent frequen-
cies based on its own data distribution.

5.4 Frequency of Temporal Knowledge Graph

From the result of FcaNet (Qin et al., 2021) in
the Appendix E, we can notice frequency atten-
tion model with a single direct-current component
always reach the best result in the Image Classi-

Table 4: MRR Results for different test set divisions on
ICEWS14 and YAGO15k.

Dataset Total | DC HF
ICEWS14 | 625 | 61.3 | 64.2
YAGO15k | 36.5 | 35.1 | 394
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Figure 5: The MRR performance of norm regularization
and two variants of orthogonal regularization. The &4
regularization without the superdiagonal elements of the
core tensor performs best.

fication task. The low-frequency component is
more critical than the high-frequency component
because the low-frequency signal of the images pro-
vides information such as shape or size, while the
high-frequency signal provides information such
as edge details. However, this phenomenon does
not occur in the TKGC task. Usually, it is diffi-
cult to have many repeated details in a naturally
captured image. In contrast, many facts, such as
the toy example, continuously change over time in
TKGC. These facts determine that there exist some
inherent frequencies in timestamp embedding.

Figure 4 shows the results of the frequency at-
tention model with different single DCT bases. We
use a combination of frequencies from the top six
results to achieve our best results. The difference
between the frequencies was insignificant, mean-
ing the global temporal dependency spread over
all frequencies. In detail, the direct-current compo-
nent is the second-high result in ICEWS14 but the
sixth-high in YAGO15K. The reason may be that
the facts without a timestamp in YAGO15K dis-
turb the estimation of the intrinsic frequency. The
above results show that finding a suitable frequency
feature with FA is helpful for the TKGC task.

To study why TuckER-FA performs differently
on different datasets compared to other baselines,
we count the number of the query (h,r, 7, ?) occur-
rences over the entire timestamp. The average num-
ber of occurrences per query in GDELT is 284.7,
and queries that occur more than once account for
98.8% of the training set. The statistics are 7.33,
40.8% in ICEWS14, and 4.51, 54.9% in YAGO15k,
respectively. Thus, TuckER-FA gains better results
on GDELT because the FA module is good at cap-
turing the global temporal dependencies between
one relation over the entire timestamp.

Table 4 show the MRR Results for two test set
divisions on ICEWS14 and YAGO15k. We split
the test set into two subsets, one consisting of
queries that occur only once (direct-currency com-
ponent, DC) and the other consisting of queries
that appear multiple times (high-frequency compo-
nent, HF). In conclusion, our model works much
better on the high-frequency component test set.
Because the GDELT dataset is almost exclusively
high-frequency components, it boosts most signifi-
cantly.

5.5 Orthogonal Regularization

Figure 5 shows the detailed comparison of three
regularizations for the core tensor. In this exper-
iment, we fix the A; and A2 and only use the
direct-current component for the frequency atten-
tion model. The &, regularization without the di-
agonal elements of the arbitrary slice matrix of the
core tensor performs slightly better than the &
norm regularization. The ®; regularization with-
out the superdiagonal elements of the core tensor
performs best.

The ®; regularization increase MRR by 0.7
points on ICEWS14 and 1.8 points on YAGO15K.
Top Performing ®; can increase MRR to 2.1 points
on ICEWS14 and 3.1 points on YAGO15K. We
can point out that the relaxation of the core tensor
constraint is effective.

5.6 Effect of Parameter Complexity

To compare model results more fairly, we add two
experiments controlling the number of parameters
or entity dimensionality between TNTcomplEXx,
TeLLM, and TuckER-FA. A complete parameter
comparison between baseline models and TuckER-
FA is in Appendix A.

0 100 200 390 40(? 500 '600 ‘700 800
Embedding Dimensionality

(a) ICEWS14

o 100 200 30,0 40(? 500 '600 ‘700 800
Embedding Dimensionality

(b) YAGO15K

Figure 6: The MRR performance of different models
with different embedding dimensionality. With the same
embedding dimensionality, our model consistently out-
performs TeLM.
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Figure 6 shows our TuckER-FA consistently out-
performs the baseline TNTComplEx and TeLM
with the same dimensionality on ICEWS14. TNT-
ComplEx uses a specialized matrix to represent
non-timestamp embedding, which allows it to per-
form best in low dimensionality on YAGO15K.
Our TuckER-FA can overtake in high dimension-
ality. The upper limit of TeLM is not as high as
TuckER-FA. In summary, our model has the high-
est performance ceiling for TKGC.

Table 5 shows the comparison with the same pa-
rameters and 50 epochs training on ICEWS14. We
limit the size of the learnable parameters to approx-
imately 67M, which means 2110 embedding di-
mensions for TeLM, 4000 for TNTComplEX, and
400 for our TuckER-FA. We can point out that our
TuckER-FA model achieves a significant improve-
ment in MRR and Hit@3 and a weak improvement
in the other two metrics.

Table 5: Results with approximately 67M parameters of
TNTComplEx, TeLM, and TuckER-FA on ICEWS14.

Model MRR | Hit@1 | Hit@3 | Hit@10
TuckER-FA 62.5 | 543 | 675 77.2
TNTComplEx | 61.2 | 52.4 | 66.3 77.4
TeLM 62.1 | 542 | 66.7 77.0

6 Conclusion

In our work, we propose a DCT-based Frequency
Attention model and two variants of Orthogonal
Regularization for the core tensor of tucker decom-
position. The FA model considers the global tempo-
ral dependency between one relation and the entire
timestamp. Each KG has its unique inherent fre-
quency. The OR term relaxes the constraint on the
superdiagonal of the core tensor and improves the
performance of tucker decomposition. TuckER-FA
achieves SOTA results on three standard datasets of
temporal knowledge graph completion task. There
might be further discussions on an efficient fre-
quency selection strategy or a theoretical assump-
tion for tensor regularization.

7 Limitation

Although our method has been shown effective, it
has two limitations that may be improved in the
future. First, the FA model has advantages in com-
putation but relies on an effective frequency se-
lection strategy, which is difficult to design. We

just simply select some manual frequencies for dif-
ferent datasets by experience. The more effective
frequency selection strategy needs further explo-
ration. Second, there is no theoretical guarantee
that the orthogonal regularization can generalize to
a 3-order tensor. Our OR terms are only formally
consistent with matrix orthogonal regularization,
which has been empirically shown effective.
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A Parameter Complexity

Table 6: Parameter complexity of different models. Here
d denotes the embedding dimensionality.

DE-SimplE  d((1+2p)|E] + |R])
TNTComplEx 2d(|€| + |T|+ 4|R])

TeLM 4d(|El+ T+ |R| + 1)
TuckERTNT  d(|€| + |T| + 4|R]) + a3
TuckER-FA  d(|€] + p|T|+ (2 — p)|R|) + d°

When d is smaller the number of en-
tity/relation/timestamp collection, tucker decompo-
sition has considerable parameter advantage. Com-
pared with TuckERTNT of the same type, our
TuckER-FA gets better results with parameter ad-
vantage in modeling relation embedding.

B Hyperparameters

Table 7: Obtained best hyperparameters.

ICEWS14 GDELT YAGOI5K
p 0.75 0.90 0.75
A1 le-2 le-1 le-4
Ao 1e0 1e0 le-2
A le-2 le-4 le-3

We implement our model based on two previous
models, TuckER and TNTcomplex. Other base-
line models mentioned above have yet to provide
publicly available code. During the pre-processing
data phase, we convert all time intervals into two
different time points and consider them indepen-
dent. The time intervals in YAGO15K look like
"OccursUntil/OccurSince 1994". The time interval
is split into two parts, "OccursSince" or "OccursUn-
til" merged into a relation, and the time point trans-
forms the timestamp. Note that quadruplet without
timestamps in YAGO15K also own a unique times-
tamp.

Although the dimensionality of entity and rela-
tion can be different, we use the same dimension-
ality in our experiments. For general learning set-
tings, we set the dimensionality of entity and rela-
tion to 800, batch size to 1000, learning rate to 0.1,
and dropout probability to 0.3. Each embedding
initializes from 0.01 times the Standard Gaussian
distribution. Moreover, the learnable parameters of
the core tensor initialize from the uniform distribu-
tion from -1 to 1. The frequency attention model
uses a single frequency component from fjy to fio

Leeds United F.C.
A == Rotherham United FC.

Score

Figure 7: Scores for a set of facts (Tom Adeyemi,
playsFor, {Oldham Athletic F.C.|IBrentford F.C.[Leeds
United F.C.IRotherham United F.C.}, [2011-2017]) sam-
pled from YAGOI15K. The red star indicates that the
tail entity is the ground truth at the corresponding times-
tamps.

input. We choose ratio p form {0.45, 0.6, 0.75,
0.9}, embedding regularization balance term \;
from {le-1, le-2, le-3, le-4}, temporal regulariza-
tion balance term Ao from {1e0, le-1, le-2, le-3},
and core tensor regularization balance term A from
{1le-2, 1e-3, le-4, 1e-5}. Note that the timestamp
embedding dimensionality should be divisible by 7,
the number of the selected frequency components.
We repeats the experiment three times and reported
the average results.

C Visualization of Toy Example

To illustrate whether our frequency attention model
captures the temporal dependencies between a re-
lation and the entire timestamp, we visualize the
scores of a selected set of facts. Figure 7 show the
scores change of the toy example. The factual tail
entity can consistently score high by TuckER-FA.
The gray entity’s score changes very little because
its ground truth belongs to the test set. The ground
truth of the other three color entities belongs to
the train set. The facts in the same category (Tom
Adeyemi, playsFor,?) change quickly, which re-
flects a high intrinsic frequency of global temporal
dependency. The scores of ground truth are very
high on timestamps where facts exist, while all
entities achieve a low score on timestamps where
facts do not exist. Our model can capture the fast-
changing temporal dependency of facts in the same
category.
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Figure 8: Histogram of frequency parameters in DE-SimplE. These learnable parameters are concentrated around O,
which means that only low-frequency information about entities over time is captured.

D The Frequency of DE-SimplE

DE-SimplE divides the timestamp 2014-01-31 into
three numbers representing the year, month, and
day. Then, these time numbers are fed into the sine
function along with the frequency and phase param-
eters. Figure 8 shows the histogram of learned fre-
quency parameters of DE-SimplE on the ICEWS14
dataset. These learned parameters concentrate
around 0, meaning only low-frequency informa-
tion about entities over time is captured.

In previous work (Xu et al., 2020), the evolution
process is divided into four different components:
static component, periodicity component, trend
component, and randomness component. In our
opinion, the random component focuses on model
robustness, and the static component focuses on the
static entity or relation rather than the timestamp.
The periodicity and trend components mean the
temporal dependency of relations and timestamps,
which can be captured by a periodic function such
as cosine. If the period of the function is greater
than the entire time span, then the cosine function
captures the trend component. Similarly, if the
period of the function is less than the entire time
span, the cosine function captures the periodicity
component.

E Frequency Attention for Image

The image uses 2-dimensional DCT as Figure 9,
while the KG uses only one-dimensional DCT. Fre-
quency is an essential characteristic of DCT and
indicates how many repetitive structures there are
in the data. The main body of the image is com-
posed of low-frequency features, while the TKG
body has high-frequency features due to repeated
quadruplets.

Low Frequency — High Frequency
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Figure 9: Top-1 accuracies of FcaNet (Qin et al., 2021)
in Image Classification Results. The low-pass filtering
of the spectrum has strong applicability to images. The
DC component performs best.
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