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Abstract

We propose a novel task-agnostic in-domain
pre-training method that sits between generic
pre-training and fine-tuning. Our approach se-
lectively masks in-domain keywords, i.e., words
that provide a compact representation of the
target domain. We identify such keywords us-
ing KeyBERT (Grootendorst, 2020). We eval-
uate our approach using six different settings:
three datasets combined with two distinct pre-
trained language models (PLMs). Our results
reveal that the fine-tuned PLMs adapted using
our in-domain pre-training strategy outperform
PLMs that used in-domain pre-training with
random masking as well as those that followed
the common pre-train-then-fine-tune paradigm.
Further, the overhead of identifying in-domain
keywords is reasonable, e.g., 7–15% of the pre-
training time (for two epochs) for BERT Large
(Devlin et al., 2019).1

1 Introduction

Employing large pre-trained language models
(PLMs) is currently a common practice for most
natural language processing (NLP) tasks (Tunstall
et al., 2022). A two-stage pre-train-then-fine-tune
framework is usually used to adapt/fine-tune PLMs
to downstream tasks (Devlin et al., 2019). How-
ever, motivated by ULMFiT (Howard and Ruder,
2018) and ELMo (Peters et al., 2018), Gururangan
et al. (2020) showed that incorporating in-domain
pre-training (also known as domain-adaptive pre-
training) between generic pre-training and fine-
tuning stages can lead to further performance im-
provements in downstream tasks because it “pulls”
the PLM towards the target domain. At this in-
termediate stage, the domain adaptation for PLMs
is typically handled by continuing pre-training in
the same way, i.e., using randomly-masked to-
kens on unstructured in-domain data (Devlin et al.,

1The code for all of our experiments is avail-
able at https://github.com/shahriargolchin/
do-not-mask-randomly.

2019). Here, we argue that this intermediate pre-
training should be performed differently, i.e., mask-
ing should focus on words that are representative of
target domain to streamline the adaptation process.

We propose a novel task-independent in-domain
pre-training approach for adapting PLMs that in-
creases domain fit by focusing on keywords in the
target domain, where keywords are defined as “a
sequence of one or more words that offers a com-
pact representation of a document’s content” (Rose
et al., 2010). By applying token masking only to in-
domain keywords, the meaningful information in
the target domain is more directly captured by the
PLM. This is in contrast to the classic pre-training
strategy that randomly masks tokens (Devlin et al.,
2019), which may overlook domain-meaningful
information, or the in-domain pre-training meth-
ods that selectively mask tokens deemed important
given the downstream task (Gu et al., 2020, inter
alia), which require incorporating information from
the downstream task into the pre-training stage. We
empirically show that our method offers a better
transmission of high-quality information from the
target domain into PLMs, yielding better generaliz-
ability for the downstream tasks.

The key contributions of this paper are:

(1) We propose the first task-agnostic selective
masking technique for domain adaptation of PLMs
that relies solely on in-domain keywords. In par-
ticular, we first extract contextually-relevant key-
words from each available document in the target
domain using KeyBERT (Grootendorst, 2020) and
keep the most frequently occurring keywords to be
masked during the adaptation phase.

(2) We evaluate our proposed strategy by mea-
suring the performance of fine-tuned PLMs in
six different settings. We leverage three different
datasets for text classification from multiple do-
mains: IMDB movie reviews (Maas et al., 2011),
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Amazon pet product reviews from Kaggle,2 and
PUBHEALTH (Kotonya and Toni, 2020). Our
experiments show that the classifiers trained on
top of two PLMs—in our case, Bidirectional En-
coder Representations from Transformers (BERT)
Base and Large (Vaswani et al., 2017; Devlin et al.,
2019)—that are adapted based on our suggested
approach outperform all baselines, including the
fine-tuned BERT with no in-domain adaptation,
and fine-tuned BERT adapted by random masking.
Further, the overhead of identifying in-domain key-
words is reasonable, e.g., 7–15% of the pre-training
time (for two epochs of data) for BERT Large.

2 Related Work

Bidirectional Encoder Representations from Trans-
formers (BERT) brought pre-training to trans-
former networks (Vaswani et al., 2017) through
masked language modeling (MLM) (Devlin et al.,
2019). They showed that a simple two-step
paradigm of generic pre-training followed by fine-
tuning to the target domain can significantly im-
prove performance on a variety of tasks.

However, after showing that infusing an inter-
mediate pre-training stage (commonly known as
in-domain pre-training) can help pre-trained Long
Short-Term Memory models learn domain-specific
patterns better (Howard and Ruder, 2018; Peters
et al., 2018), Gururangan et al. (2020) found that
the same advantage applies to PLMs as well. Since
then, several efforts proposed different domain-
adaptive pre-training strategies.

Unsurprisingly, one of the most extensively uti-
lized in-domain pre-training methodologies has
been to employ classic random masking to adapt
PLMs into several domains (Lee et al., 2020; Belt-
agy et al., 2019; Alsentzer et al., 2019; Tavabi
et al., 2022b,a; Araci, 2019). Following this, Zheng
et al. (2020) introduced the fully-explored MLM in
which random masking is applied to specific non-
overlapping segments of the input sequence. The
limitation of random masking that we aim to ad-
dress is that it may put unnecessary focus on tokens
that are not representative of the target domain.

In contrast, task-specific selective masking meth-
ods mask tokens that are important to the down-
stream task. For each task, “importance“ is defined
differently: Gu et al. (2020) let an additional neu-
ral model learns important tokens given the task

2https://www.kaggle.com/datasets/kashnitsky/
exploring-transfer-learning-for-nlp

at hand; Ziyadi et al. (2020) defined importance
by masking entities for the named entity recogni-
tion task, and Feng et al. (2018) found important
tokens by input reduction—maintaining model’s
confidence in the original prediction by reducing
input—and they were left with a few (potentially
nonsensical) tokens that were treated as important
to model. Similarly, Li et al. (2020) designed a
task-dependent objective for dialogue adaptation,
and Ke et al. (2019) proposed label-aware MLM
for a sentiment analysis task. In the same vein, to-
ken selection in certain domains, e.g., biomedical
and clinical domains, was performed based on the
entities relevant to the domain (Lin et al., 2021;
Zhang et al., 2020b; Pergola et al., 2021).

Note that other MLM-based pre-training strate-
gies focused on training a language model from
scratch (Zhang et al., 2020a; Joshi et al., 2020; Sun
et al., 2019, inter alia). However, since our work
focuses on in-domain pre-training, we skip this part
for brevity.

In this study, we propose an information-based
domain-adaptive pre-training that, without being
aware of the downstream task, selectively masks
words that are information-dense with respect to
the target domain. As a result, PLMs adapted us-
ing our mechanism outperform baselines adapted
with random masking or fine-tuned directly. In
the following sections, we refer to our approach as
“keyword masking pre-training.“

3 Approach

3.1 Extracting In-domain Keywords

In order to extract keywords relevant to the do-
main of interest, we use KeyBERT (Grootendorst,
2020). In a nutshell, KeyBERT uses BERT’s (De-
vlin et al., 2019) contextualized embeddings to find
the n-grams–in our scenario, unigrams–that con-
cisely describe a given document. In particular,
word embeddings with the highest cosine similar-
ity to the overall document-level representation are
identified as keywords that best represent the entire
document. We configure KeyBERT to extract up
to 10 keywords from each input document. Note
that we do not pre-train or fine-tune BERT as the
underlying model for KeyBERT.

3.2 Removing Noisy Keywords

After extracting domain-specific keywords, we
compute the frequency of each specific word that
has been recognized as a keyword in all in-domain
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documents. Subsequently, we sort them in descend-
ing order of their frequency and keep only the most
frequent ones. This simple strategy allows us to
remove keywords that are likely to be noisy or ir-
relevant to the target domain.

Figure 1 summarizes the noisy keyword removal
process for PUBHEALTH dataset (see Appendix B
for other domains). Note that the actual figure has a
very long tail on the right, indicating that the actual
in-domain keywords (or parts where information is
condensed in the target domain) are frequently re-
peated. The graph displays the frequency of terms
along with the number of times they are identified
as keywords. In the PUBHEALTH dataset, for
example, more than 10,000 words were detected
as keywords only once. Thus, we select the cut-
off point where the curve is intended to leap up,
signaling that keywords with repetition below the
threshold were excluded from the list of domain-
relevant keywords.3 Namely, in the PUBHEALTH
dataset, all words detected fewer than eight times as
a keyword were removed from the list of in-domain
keywords, and consequently, for performing key-
word masking pre-training. The provided examples
on the graph in Figure 1 indicate a qualitative indi-
cation that KeyBERT, coupled with our frequency-
based heuristic, selects meaningful domain-specific
keywords. For example, our approach identifies rel-
evant keywords (e.g., health, coronavirus), while
skipping other less relevant ones (e.g., gym, gift).

3.3 Keyword Masking Pre-training

We pair the list of retrieved candidate keywords
with all target domain documents to perform key-
word masking pre-training. If any of the keywords
from the list appear in the input documents, the to-
kens corresponding to those keywords get masked
given the masking probability. In our pre-training
strategy, we use a constant learning rate scheduler
with a high masking probability rather than a lin-
ear one to force the majority of tokens associated
with keywords to be masked while continuously
learning from surrounding tokens. As our approach
inherits from MLM (Devlin et al., 2019), the tokens
related to keywords are masked 80% of the time,
replaced 10% of the time with other tokens, and
left unchanged 10% of the time. Note that during

3The threshold is adjusted via three points: an empirically
chosen point from the graph, a point before, and a point after
it. Following keyword masking based on each of these three
thresholds, we choose the one that resulted in the highest F1
score on the validation split as the final threshold.

pre-training masking only applies to the tokens that
match the candidate keywords. Therefore, there is
no pre-training for unmasked tokens.

3.4 Fine-tuning and Baselines

We compare the performance of all fine-tuned
PLMs adapted using our technique with two other
baselines: fine-tuned PLMs adapted using random
masking, and fine-tuned PLMs with no in-domain
adaptation. For all these settings we employ both
BERT Base and BERT Large (Devlin et al., 2019).

4 Experimental Setup

Data: In our experiments, we chose tasks and
datasets with sufficient amounts of unlabeled data
for the domain adaptation stage in order to observe
the effects of keyword selection.4 In particular,
we evaluate our method on three text classifica-
tion datasets: PUBHEALTH (Kotonya and Toni,
2020), which contains public health claims asso-
ciated with veracity labels, IMDB movie reviews
dataset (Maas et al., 2011), and Amazon pet prod-
uct reviews dataset (from a Kaggle competition).5

Based on the thresholds we studied for filter-
ing out the noisy keywords (see Section 3.2), we
gathered 2,116, 7,274, and 6,881 domain-specific
keywords from the PUBHEALTH dataset, IMDB
dataset, and Amazon dataset, respectively.

Settings: We use KeyBERT (Grootendorst, 2020)
to extract up to 10 unigram keywords per input doc-
ument utilizing contextualized word embeddings of
BERT Base (Devlin et al., 2019), stratified by the
Maximal Marginal Relevance (MMR) (Carbonell
and Goldstein, 1998) with a threshold of 0.8.

To perform keyword masking pre-training, we
set the masking probability to 0.75 with a constant
learning scheduler. The other hyperparameters are
left at their default values from the Hugging Face
data collator for whole word masking (Wolf et al.,
2020). For random masking pre-training, we set
the masking probability to 0.15, which is a standard
value for continual MLM pre-training, and left the
remaining hyperparameters at the values provided
by the Hugging Face data collator for language
modeling (Wolf et al., 2020). Note that the default
learning rate scheduler is linear. Further, in all
settings, pre-training is limited to two epochs, and

4For example, we did not use the GLUE dataset (Wang
et al., 2018) because the included texts are short.

5https://www.kaggle.com/datasets/kashnitsky/
exploring-transfer-learning-for-nlp
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Figure 1: The graph shows the frequency of the last 50 most frequent keywords in the PUBHEALTH domain and
the cut-off line for removing noisy keywords.

PUBHEALTH Dataset

Adaptation Method Accuracy (%) F1 Score (%)

No Adaptation 64.80 63.23
Random Masking 65.77 64.94
Our Keyword Masking *66.09 *65.40

IMDB Movie Reviews Dataset

Adaptation Method Accuracy (%) F1 Score (%)

No Adaptation 94.44 94.43
Random Masking 94.96 94.95
Our Keyword Masking *95.36 *95.35

Amazon Pet Product Reviews Dataset

Adaptation Method Accuracy (%) F1 Score (%)

No Adaptation 85.89 85.73
Random Masking 86.33 86.31
Our Keyword Masking *87.14 *86.98

Table 1: A comparison between the performance of fine-
tuning adapted PLMs using our keyword masking and
other baselines when BERT Base is used as the PLM.
The best results are shown bold and the obtained statis-
tically significant results compared to random masking
are indicated by an asterisk (*) (see Appendix E).

the batch size of 16 is adopted during both the
adaptation and fine-tuning stages.

With the learning rate set to 2e-5 and the weight
decay set to 0.01 (Devlin et al., 2019), we fine-tune
the whole network for all of our adapted models
and baselines for up to four epochs in all datasets,
while keeping the other hyperparameters at the de-
fault value of Hugging Face (Wolf et al., 2020).
The models that obtained the highest F1 score in
the validation partition are then chosen and evalu-
ated on the test split of the datasets.

PUBHEALTH Dataset

Adaptation Method Accuracy (%) F1 Score (%)

No Adaptation 66.42 65.08
Random Masking 63.90 64.74
Our Keyword Masking *66.66 64.74

IMDB Movie Reviews Dataset

Adaptation Method Accuracy (%) F1 Score (%)

No Adaptation 95.38 95.37
Random Masking 95.50 95.49
Our Keyword Masking 95.52 95.51

Amazon Pet Product Reviews Dataset

Adaptation Method Accuracy (%) F1 Score (%)

No Adaptation 85.69 85.71
Random Masking 86.84 86.72
Our Keyword Masking *87.58 *87.51

Table 2: A comparison between the performance of fine-
tuning adapted PLMs using our keyword masking and
other baselines when BERT Large is used as the PLM.
The best results are shown bold and the obtained statis-
tically significant results compared to random masking
are indicated by an asterisk (*) (see Appendix E).

5 Results and Discussion

Table 1 and 2 report the performance of fine-tuned
models that used multiple domain-adaptive pre-
training methods for each of our settings: three
different datasets and two distinct PLMs. Table 1
contains the results for BERT Base as underlying
PLM; Table 2 uses BERT Large.

In particular, each table contrasts the perfor-
mance of two fine-tuned baselines—one without
adaptation/in-domain pre-training and one with ran-
dom masking in-domain pre-training—to a fine-
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tuned model adapted using our keyword masking.
Both tables show that our approach outperforms

all other baselines in all six settings. The improve-
ments are statistically significant in four out of six
settings (Appendix E). This highlights the impor-
tance of selecting information-carrying keywords
for masking during the in-domain pre-training.

The results reveal that our suggested in-domain
pre-training technique outperforms alternative set-
tings with or without standard in-domain pre-
training on target domain unlabeled data. Although
the benefits of continual pre-training vary depend-
ing on the domain and the task at hand (Gururan-
gan et al., 2020), our adaptation strategy always
has a greater impact on PLMs in capturing domain-
specific patterns compared to typical random mask-
ing when in-domain adaptation has a positive im-
pact on downstream tasks. This indicates that our
pre-training method indeed exposes the PLMs to
relevant in-domain representations.

Given the superior outcomes seen in our six dif-
ferent experiments, we can argue that our selective
masking strategy, which is task-agnostic as ran-
dom masking yet more effective, could potentially
widely replace random masking in the intermediate
pre-training stage for a variety of NLP tasks. Other
than performance, our method is simple and has no
“pathological behavior“ (Feng et al., 2018) (see Ap-
pendix C). Additionally, our method takes 2 to 10
minutes of computational overhead to extract key-
words. This accounts for 7% to 39% of pre-training
time of only two epochs (Appendix A).

6 Conclusion

We proposed the first task-agnostic selective mask-
ing pre-training approach, dubbed “keyword mask-
ing,“ to adapt PLMs to the target domains. For key-
word masking, we first extract in-domain keywords
from the target domain using KeyBERT (Grooten-
dorst, 2020), and after excluding the noisy ones, we
only mask the selected keywords during adaptation.

We evaluated our methodology using six dif-
ferent settings. The results revealed that when
in-domain pre-training is conducted using our ap-
proach, all fine-tuned PLMs outperform those with
no adaptation or adapted using random masking.
Further, we observed that our pre-training approach
was superior for difficult tasks, i.e., datasets with
many labels and more complexity. Lastly, key-
word masking pre-training can be widely substi-
tuted with random masking during shift domain in

NLP tasks since it is task-independent, as simple
to use as random masking, and more effective.

7 Limitations

Although all pre-training approaches require a suf-
ficient amount of data, given how we defined key-
words, longer sequences suit our approach better
than short ones for studying the effects of key-
word selection. Further, as shown in this study,
our findings strongly imply that the strategy we
suggested for adapting PLMs can effectively en-
hance their performance on text classification as
the downstream task. To determine whether these
findings can translate to other NLP applications,
however, further experiments are required.

8 Ethics Statement

Although keyword extraction may amplify bias de-
pending on the input documents and the way it
extracts keywords, KeyBERT (Grootendorst, 2020)
has not been reported to exhibit this behavior. Fur-
ther work may be necessary to thoroughly explore
the potential of introducing undesired bias.
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A Cost of In-domain Keyword Extraction

For all of our settings, we leverage a single
NVIDIA RTX A6000 GPU. Depending on the
size of the datasets and the length of input doc-
uments, running KeyBERT (Grootendorst, 2020)
for extracting in-domain keywords adds additional
computation that can be different between 2 and
10 minutes in our settings. The overhead time for
keyword extraction and the in-domain pre-training
time for each of the settings are compared in Table
3. As can be noticed, the time ratio for keyword
extraction to pre-training time ranges from 7% to
15% in settings using BERT Large, and 19% to
39% for settings with BERT Base, which is reason-
able. Note that when pre-training is performed for
more epochs, this ratio noticeably decreases. The
reported ratios are based on only two epochs of
in-domain pre-training in our settings.

B Removing Noisy Keywords (Graphs)

Similar to Figure 1, which illustrates the removal of
noisy keywords for the PUBHEALTH dataset, Fig-
ure 2 displays this procedure for the IMDB dataset
and the Amazon dataset.

C Pathological-free Behavior

It is possible that tokens to be selected for masking
are not associated with the domain according to
human experts, but they nevertheless yield better
downstream classifiers. For instance, Feng et al.
(2018) demonstrated that even when the model
is left with a small number of tokens after input
reduction, it can still be confident in its predic-
tions even though the left tokens are meaningless.
A similar phenomenon was reported for prompt-
ing (Shin et al., 2020). To show our masking
method’s non-pathological behavior, we asked two
human annotators to annotate the domain relevance
of 50 randomly-chosen words that were selected
for masking by the respective method.6 The anno-
tations were performed using a three-point Likert
scale: irrelevant, moderately relevant, and relevant.

Table 4 reports the results of this experiment
as well as the Kappa inter-annotator agreement
score (Galton, 1892; Cohen, 1960; Smeeton, 1985;
McHugh, 2012). We draw two observations from
this table. First, the agreement between the two

6The annotators were two of the authors. The annotations
were independent, i.e., no annotator saw the decisions of the
other. The names of the methods used to generate the 50
words to annotate were hidden during annotation.
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Dataset Name BERT Base
Pre-train Time

BERT Large
Pre-train Time

Keyword
Extraction Time

Time Ratio to
BERT Base (%)

Time Ratio to
BERT Large (%)

PUBHEALTH 4.35 11.22 1.71 39 15
IMDB 29.98 79.97 9.14 30 11
Amazon 38.21 100.01 7.47 19 7

Table 3: The pre-training time for two epochs, and inference time for KeyBERT in minutes.

Figure 2: The graphs show the frequency of the last 50 most frequent keywords in IMDB and Amazon datasets
along with the cut-off line for removing noisy keywords. For keyword masking, keywords are selected from the
subset to the right of the cut-off line (due to space constraints, we do not show the actual lengthy right tail of the
charts). A few examples of words that were and were not selected as in-domain keywords given this heuristic are
shown on the graphs as well.

annotators is high—substantial or near perfect—
which indicates that this task is well-defined. Sec-
ond, the annotators agreed that the number of
moderately- or fully-relevant words is much higher
in the keyword-based strategy than in the random
masking method. This result further highlights
that our masking strategy is indeed relying on the
identification of domain-relevant keywords to mask
rather than picking up artifacts of the entangle-
ment present in neural architectures (Sculley et al.,
2015).

D Implementation of Keyword Masking

To implement our keyword masking strategy, we
develop a new data collator by subclassing the Hug-
ging Face data collator for whole word masking
(Wolf et al., 2020). Our data collator masks only
the tokens according to a certain list of keywords
given a probability of masking. Note that our data
collator inherits from MLM (Devlin et al., 2019),
and no other words or tokens are masked during
pre-training except keywords provided by the list.

E Statistical Analysis

We analyze the statistical significance of the ob-
tained improvements using a bootstrap resampling
technique with 1,000 samples in the resampling
process (Efron, 1979; Efron and Tibshirani, 1993;
Efron, 2003). The hypothesis that we investigate
is if the results achieved by keyword masking are
better than the random masking pre-training strat-
egy. We implement two variants of this hypothesis:
one compares F1 scores, and the other compares
accuracies.

Table 5 lists the results of this analysis. Over-
all, the table exhibits that in situations when PLM
benefits well from in-domain pre-training, the dif-
ference between keyword masking and random
masking is statistically significant for both F1 and
accuracy scores with p-values ≤ 0.05. The dif-
ferences are not statistically significant in the two
scenarios: the IMDB dataset with BERT Large
and PUBHEALTH dataset with BERT Large (only
for F1 score). This validates our findings since
when BERT Large was employed, the results from
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Dataset Name / Masking Method No. Irrelevant
Words

No. Moderately
Related Words

No. Related
Words

Kappa
Value

Level of
Agreement

PUBHEALTH / Random Masking 32 6 8 0.84 Near Perfect
PUBHEALTH / Keyword Masking 14 10 16 0.70 Substantial
Amazon / Random Masking 40 5 3 0.87 Near Perfect
Amazon / Keyword Masking 11 17 14 0.72 Substantial
IMDB / Random Masking 42 0 4 0.65 Substantial
IMDB / Keyword Masking 11 7 24 0.73 Substantial

Table 4: The results of measuring inter-rater reliability using Cohen’s kappa coefficient for 50 randomly selected
words/tokens for masking during in-domain pre-training.

Dataset Name / PLM Name F1 Score
p-value

Accuracy
p-value

PUBHEALTH / BERT Base 0.015 0.018
PUBHEALTH / BERT Large 0.505 0.010
IMDB / BERT Base 0.046 0.050
IMDB / BERT Large 0.468 0.454
Amazon / BERT Base 0.000 0.000
Amazon / BERT Large 0.002 0.002

Table 5: The computed p-values for F1 score and accu-
racy for each of our settings using bootstrap resampling
with 1,000 samples.

keyword masking and random masking for the
IMDB dataset are quite similar and close to the fine-
tuned vanilla PLM. Similarly, in the PUBHEALTH
dataset with BERT Large, keyword masking and
random masking tie in the F1 score, making the dif-
ference in the F1 score not statistically significant.
These results further confirm that the benefits of
in-domain pre-training vary depending on the do-
main and the task at hand (Gururangan et al., 2020);
however, when in-domain pre-training has a posi-
tive impact on performance and causes significant
improvement compared to non-adapted setting, our
approach outperforms random masking and yields
statistically significant gains.

F Detailed Description of Datasets

PUBHEALTH Dataset The PUBHEALTH
dataset is divided into three sections: train, test,
and validation. Samples in each partition are pub-
lic health claims with one of four veracity labels
including false, unproven, true, or mixture. The
labels were assigned by domain experts based on
an explanation that they provided for every claim,
available in a separate column. These explanations
serve as in-domain unstructured data for our use.
9,832 samples in the train split, 1,225 samples in
the validation split, and 1,235 samples in the test
split form our dataset after a few unlabeled samples
were removed.7

IMDB Movie Reviews Dataset The two portions
7This dataset contains a small number of claims that did

not fall under any of the four aforementioned veracity labels.

of the IMDB dataset are labeled and unlabeled
reviews, each having 50,000 reviews. The train,
validation, and test splits are generated by dividing
the labeled portion by 80%, 10%, and 10%, respec-
tively. That is, 40,000 reviews are allotted to the
train split and 5,000 each to the validation and test
splits. The unlabeled 50,000 reviews are used for
pre-training.

Amazon Pet Product Reviews Dataset There
are six different labels for reviews in the Amazon
pet product dataset used in the Kaggle competition:
dogs, fish aquatic pets, cats, birds, bunny rabbit cen-
tral, and small animals. The dataset contains four
splits: train, test, validation, and unlabeled. How-
ever, since the test split does not include labels,
we create our own test split by randomly choos-
ing a portion of the train split that is equal in size
to the validation split. As a result, in our setting
the validation and test splits each includes 17,353
samples; the train split contains 34,704 samples.
In addition, there are 100,000 reviews without la-
bels in the dataset’s unlabeled portion that serve as
pre-training data.
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