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Abstract

Speech language pathologists rely on information
spanning the layers of language, often drawing
from multiple layers (e.g. phonology & semantics)
at once. Recent innovations in large language mod-
els (LLMs) have been shown to build powerful rep-
resentations for many complex language structures,
especially syntax and semantics, unlocking the po-
tential of large datasets through self-supervised
learning techniques. However, these datasets are
overwhelmingly orthographic, favoring writing sys-
tems like the English alphabet, a natural but phonet-
ically imprecise choice. Meanwhile, LLM support
for the international phonetic alphabet (IPA) ranges
from poor to absent. Further, LLMs encode text at
a word- or near-word level, and pre-training tasks
have little to gain from phonetic/phonemic repre-
sentations. In this paper, we introduce BORT, an
LLM for mixed orthography/IPA meant to over-
come these limitations. To this end, we extend
the pre-training of an existing LLM with our own
self-supervised pronunciation tasks. We then fine-
tune for a clinical task that requires simultaneous
phonological and semantic analysis. For an “easy”
and “hard” version of these tasks, we show that
fine-tuning from our models is more accurate by a
relative 24% and 29%, and improves on character
error rates by a relative 75% and 31%, respectively,
than those starting from the original model.

1 Introduction
Recently, large language models (LLMs) have shown
notable success in capturing information across several
linguistic layers, developing rich representations of
syntactic and semantic structures within their hidden
layers (Rogers et al., 2020). This is accomplished
through the use of self-supervised techniques, in which
LLMs are pre-trained on large corpora to perform
generic, contrived tasks. With a well-designed task, the
model can make the most of vast quantities of unlabeled
text, gleaning the structural patterns of the language(s).
For example, in masked language modeling (MLM),
a model is trained to restore partially obscured text
to its original form. Following this relatively generic
pre-training task, the resulting model can then be used
as a starting point, and its weights fine-tuned (or its

architecture augmented with additional output layers) in
a task-specific manner. Crucially, the task-specific train-
ing can be accomplished using orders of magnitude less
data than is required for the original pre-training step.

This approach is well-suited to many linguistic tasks,
particularly those that rely on syntax and semantics.
However, tasks that also depend on explicit represen-
tation of phonology are under-served by the current
paradigm. Examples of such tasks include: analysis
of code-switched language; processing ambiguous
and noisy output from automated speech recognition
systems; handling of names and neologisms; and
analysis of clinical language samples in the context
of communication disorders.

There are two underlying reasons for this issue, the
first of which involves input representation. As with any
computational model, LLMs require language to be en-
coded into a numerical form, and a model’s choice of en-
coding technique has a profound impact on its function-
ality. Today’s LLMs typically rely on sub-word repre-
sentations such as WordPieces (Schuster and Nakajima,
2012) or Byte-Pair Encoding (BPE) (Gage, 1994; Sen-
nrich et al., 2016), which strike a balance between vo-
cabulary size and semantic precision while allowing un-
restricted input and avoiding the limitations arising from
a fixed word vocabulary. Such tokenization schemes are
generally optimized for representing textual input for
word-level processing, based on the distributional prop-
erties of a training corpus, and as such in practice the
most prevalent segments in a tokenized input sentence
represent entire words or large word fragments, with
sub-word token fragment boundaries only incidentally
co-occurring with morphological boundaries.

While it has long been known that neural language
models are able to capture implicit information about
phonology from orthography (Elman, 1990; Prince
and Smolensky, 1997), the extent to which this occurs
will depend on the degree to which the model’s unit of
representation maps to the writing system in question’s
representation of phonology. Furthermore, the self-
supervised pre-training techniques at the foundation
of LLM tend to work (roughly) at a word-level or
word-fragment scope; a task like MLM has little to gain
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from learning the sound relationships between words,
so we have no reason to expect these models to adapt
to phonetic tasks as well as they do semantic ones.1

The second underlying reason for LLMs’ phono-
logical naïveté is data-related. Phonology is typically
expressed in written form using a writing system such
as the International Phonetic Alphabet (IPA) or ARPA-
bet. One advantage of the tokenization schemes used by
LLMs is that they are, at a technical level, able to repre-
sent arbitrary character input sequences: sequences of
previously-unseen characters (e.g., a sequence of IPA
glyphs representing a phonemically-transcribed utter-
ance) simply resolve to a sequence of single-character
tokens (rather than lumping together into sub-word
units as do more commonly-seen sequences of charac-
ters). More recently, new techniques have emerged for
training "token-free" LLMs that operate at the character
level (e.g. CANINE (Clark et al., 2022)) yet retain many
of the semantic benefits of word-level models; however,
their pre-training remains exclusively orthographic in
nature, and thus will only learn phonology indirectly
(and in a way that is mediated by the specifics of
the writing system in question). Furthermore, and
most importantly, the data used to pre-train an LLM
incidentally contains little IPA content if any at all.
As such, regardless of the modeling strategy used, the
resulting embedding of these tokens is likely to be
uninformative from the a phonological perspective.

Previous attempts to augment LLMs with phonemic
information have focused on speech-centered applica-
tions, and have emphasized phonology at the expense
of orthography (Jia et al., 2021; Sundararaman et al.,
2021; Li et al., 2023; Zhang et al., 2022). For many
applications however, particularly including clinical
applications in speech-language pathology, both are
crucial, as expressive and receptive language depend
on both phonology and semantics. In this paper, we
introduce BORT, an LLM that accepts a mixture of
English pronunciations in IPA and English orthography,
and demonstrate its use on a task motivated by a
real-world clinical problem: analysis of speech errors
made by individuals with aphasia following a stroke.

In §3, we create the BORT models by extending the
pre-training of an existing LLM, BART (Lewis et al.,
2020). Our self-supervised task focuses on a novel
IPA-to-orthography translation task: given a document,
we transform some words into IPA, then train the model
to restore the orthography. Hypothesizing that we could
bolster the pre-trained models with two additional
transforms, we experiment with configurations that

1Though we note that Itzhak and Levy (2022) have demon-
strated that LLMs working at the word and sub-word level do
implicitly learn a certain amount about the character-level contents
of their tokens.

include spelling and noise transforms. In §4, we
evaluate the utility of BORT by fine-tuning to two
clinically-motivated tasks: a) an “easy” task, another
mixed IPA/orthography to orthography translation task,
but in the context of aphasic speech; and b) a “hard”
task, in which the model must predict the intended
word for several types of word errors, including
phonologically and semantically related errors. We
make our pre-trained models available for anyone to
download and fine-tune.2

2 Background
2.1 Speech Language Pathology
Speech language pathologists (SLPs) work to diagnose
and treat speech and language disorders. Language
disorders typically include breakdowns in the linguistic
system that supports the abilities to activate the
semantic representation of a concept; retrieve its
lexical/syntactical representation; and, encode its
phonological or orthographic form. Speech disorders
include deficits that may stem from underdeveloped
or faulty perceptual representations of speech sounds;
difficulties specifying a motor plan for the articulatory
gestures required for producing a word; and/or execut-
ing the motor plan. Such disorders often co-exist, and
may be developmental (affecting primarily pediatric
populations, as in the case of Specific Language
Impairment), or acquired and seen primarily in adult
populations (e.g., dementia, aphasia, dysarthria). In ad-
dition, they might affect different modalities including
spoken (e.g., anomia) or written output (e.g., agraphia).

The use case described in the present work focuses
on aphasia, a disorder in which an individual has
an impairment to one or both of their expressive or
receptive language abilities. In expressive language,
this may take the form of difficulties in word retrieval or
production; these difficulties may involve the inability
to produce a word, the production of an unintended
word, or the mispronunciation of a produced word.
Aphasia typically follows an injury to be brain (such
as a stroke or a traumatic brain injury), though it may
also be a sign of certain neurodegenerative conditions.

To arrive at a diagnosis, clinical professionals
typically elicit productions from patients, and then,
based on the relationship between the intended target
and the realized unexpected or atypical production, they
draw inferences regarding the nature of the cognitive-
linguistic or motoric deficits of the patient. Inherent
in this diagnostic process is identifying what was the
intended word of a speaker. That requires a clinician
to combine multiple sources of information including
semantic, phonemic, and/or orthographic information.

Consider for example the response /b@gæn@/ when

2https://github.com/rcgale/bort
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a stroke patient is asked to name the picture of an apple.
A clinician, naturally, will recognize the phonological
similarity of the production to the candidate intended
word /b@næn@/ (“banana”) and given the semantic sim-
ilarity of “banana” and “apple,” the clinician will arrive
at the conclusion that most likely the speaker’s intended
target was “banana.” This step is critical in the diag-
nostic process across clinical populations and disorders.
Therefore, the development of a robust computational
tool that can combine multiple sources of information
to predict a speaker’s intended words during a
paraphasic speech event is of great clinical significance.

There exist several settings in which tools such these
may find applications. There are a variety of highly
accurate and informative assessment techniques that
are regularly used in research settings but rarely used in
clinical practice due to the large amount of effort they
require for delivery and scoring (Edmonds and Kiran,
2006; Abel et al., 2007; Kendall et al., 2013; Minkina
et al., 2015; Walker and Hickok, 2016); automation has
the potential to streamline this process greatly, thereby
enabling their clinical use. Additionally, automation
of this sort would be a key part in many telemedicine
and remote assessment scenarios, which is an area
of great clinical interest (Van De Sandt-Koenderman,
2004; Kiran et al., 2014) as there exist major challenges
around access to care for many individuals in need of
speech and language services (Hou et al., 2023).

Use cases such as these currently are limited by two
categories of technical barrier. The first is the need for
robust automated speech recognition algorithms able to
accurately process the disordered speech characteristic
of individuals with speech and language disabilities, and
produce detailed phonemic transcriptions; this is needed
given the impracticality of detailed manual transcription
in a fast-paced clinical setting. The second category
is a lack of specialized algorithms designed to process
the resulting data to identify features of clinical interest,
for example in speech error classification (Casilio et al.,
2023). Both types of technology are necessary, and
neither on their own are sufficient, to leverage NLP in
this clinical domain. The present work, by design, only
addresses the second of these categories; however, it is
important to note that the first is an area of very active
research (Fraser et al., 2013; Le et al., 2017; Jacks et al.,
2019; Perez et al., 2020; Torre et al., 2021; Gale et al.,
2022), with major strides being made in recent years.

A second setting of use for automation in the analysis
of language produced by people with aphasia (PWA) is
that of aphasiological research. Standard research prac-
tice typically results in the creation of recorded sessions
with participants (for example, in a discourse elicitation
task), which are then transcribed to a very high degree
of accuracy by specially-trained research staff, for use

in analysis. Often, this transcription is done at a mixture
of orthographic and phonemic levels, with particular
phonemic attention paid to clinically-relevant phe-
nomena such as neologisms (non-word productions),
mis-pronunciations, etc. There exist large databases
of such transcripts, for example TalkBank and its many
sub-projects (see https://talkbank.org; MacWhinney,
2000), and automated analysis of these datasets is
extremely valuable from a scientific perspective.

Notably, in this scenario, one need not assume
the existence of an ASR system robust to disordered
speech in order for automation to be useful, as the
data are transcribed as part of their collection and data
management process. However, the specifics of this
transcription process tend to be very closely linked to
the scientific needs of the research team conducting
the study, and while the amounts of data generated tend
to be far more than humans can conveniently analyze
by hand, they tend to be relatively small in comparison
to the datasets commonly used in natural language
processing. As such, techniques such as transfer
learning have become crucial tools in this space.
2.2 Automating Clinical Language Evaluation
There exists a long history of use of NLP techniques
in clinical language evaluation, across a wide variety
of disorders including Alzheimer’s disease (Petti
et al., 2020), Autism Spectrum Disorder (Virnes
et al., 2015; MacFarlane et al., 2023), and various
forms of aphasia (Fraser et al., 2014; Azevedo et al.,
2023). From a computational perspective, this typically
takes the form of a pipeline accepting language
samples of some sort as input, and producing as output
some sort of relevant analysis, such as a score on a
validated assessment instrument. The language samples
used may consist of spontaneous speech, a patient’s
responses to a structured interaction of some kind, or a
mixture of the two, and may feature continuous speech,
or single-word productions. The input may be actual
audio recordings, or transcriptions thereof.

Recent work has taken advantage of LLMs for
automating clinical language evaluation tasks. Bal-
agopalan et al. (2020) fine-tuned BERT to detect
Alzheimer’s disease from transcribed spontaneous
speech, and found that BERT performed better than a
standard model based on hand-crafted features. Liu et al.
(2022) evaluated transformer models for use in identi-
fying relevant pragmatic features of transcribed speech
from adults with Autism Spectrum Disorder; their anal-
ysis identified both advantages and limitations of an
LLM-based approach over previous methods. Gale et al.
(2021) described a system that scored tests for Specific
Language Impairment in children, finding that the Dis-
tilBERT architecture was adaptable to clinical language
evaluation spanning several linguistic layers. Salem
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et al. (2022) fine-tuned DistilBERT for the automatic
determination of semantic similarity in an aphasia test
with accuracy 95.3%, improving over earlier methods
that relied on word2vec (Fergadiotis et al., 2016).

LLMs demonstrate improved performance at many
of these tasks, and bring two additional benefits over
earlier methods: they are much more flexible with
regard to their input representation, and they are
well-suited for transfer learning via fine-tuning. Both
attributes are crucial for work in clinical language
evaluation, given the heterogeneity and limited size of
the datasets used in this space. However, we note that
technical approaches in this space tend to “live” in either
the orthographic or phonemic space; this distinction is
logical from a technical standpoint, given the nature and
history of language technologies, but quite contrary to
the actual clinical manifestation of speech and language
disorders (and, of course, the way in which clinicians
make use of language sampleswhere). From this
perspective, we see BORT bridging the gap between
audio recordings of spoken language tests—transcribed
manually or by an automatic speech recognizer—and
downstream language evaluation tasks.

2.3 Considering alternative methods
Conceptually, BORT enhances BART with phoneme-
to-grapheme functionality. Existing English
grapheme-to-phoneme (G2P) systems are highly
accurate, with recent transformer models achieving a
5.23% character error rate and a 22.1% word error rate
on CMUDict (Yolchuyeva et al., 2019). These systems
are trained and evaluated on word-length samples, so
integration with a contextual language model would
require novel architectural adapters, lest translation
errors propagate through to downstream tasks. Explicit
phoneme-to-grapheme (P2G) systems are uncommon
by comparison; however, the hidden Markov model and
Gaussian mixture model (HMM-GMM) architecture
used in last-generation ASR systems (Mohri et al.,
2001) might be described as an n-gram language
model with a phoneme-to-grapheme component. This
architecture assumes predefined mappings between
words and its known pronunciations, and thus cannot
capture the open-ended variability of disordered
speech (in which a production might bear little or no
phonological relationship to a target word). Further,
considering the benefits of transfer learning for clinical
(see §2.2), HMM-GMM models lack the flexibility
and ergonomics of pre-trained transformer models.

3 BORT
3.1 Model Selection
Our models are a direct continuation of a pre-trained
BART model as described by Lewis et al. (2020). We
chose BART for several reasons. First, it uses a BPE

tokenizer, which is able to encode arbitrary Unicode
characters, including the entirety of the IPA. By contrast,
BERT models use WordPiece tokenizers with finite
token inventories. None of the pretrained BERT-like
models we considered covered the IPA symbols used
in English phonology, and expanding a WordPiece
inventory is a non-trivial task. We were also motivated
by the denoising task behind BART, since the synthesis
of word errors is at least tangentially relevant to speech
language pathology. Finally, unlike most models
derived from the BERT architecture, BART features
a left-to-right decoder ideal for generative tasks, and
its pre-training task allows a mask token to represent
one or more tokens, thus enabling us to overcome key
limitations we encountered while revisiting our earlier
work on analysis of connected speech from aphasic
speakers (Adams et al., 2017) using techniques and
models developed by Salem et al. (2022).
3.2 An IPA-to-Orthography Translation Task
Our self-supervised approach was formulated as a trans-
lation task, restoring partially-transformed documents
back to the originals. We experimented with three word
transforms: pronunciation, spelling, and noise. Ulti-
mately, we were aiming for a system that could convert
a mixture of IPA and orthography to its all-orthographic
equivalent. However, despite an abundance of ortho-
graphic text, our pronunciation dictionary (described in
more detail in §3.3) was limited to only 98K words dur-
ing training. In an effort to avoid overfitting, we exper-
imented with the other two less-constrained transforms.

Pronunciation transform. Our self-supervised
approach was formulated as an IPA-to-orthography
translation task. We used Wikipedia articles as a
resource for orthographic text. Similar to masked lan-
guage modeling, we randomly obscured words in each
article, but instead of a special mask token, we replaced
words with their pronunciations written in the IPA.
Since the IPA includes letters from the English alphabet,
which the tokenizer is likely to merge, we strategically
inserted bullet symbols to maintain separation between
phonemes (e.g. “shakedown” was transformed into
“Se·k·d·aUn”). We then trained the model to restore the
text to its original orthographic form.

Spelling transform. Considering how English
orthography is related to its phonology (however
difficult a relationship it may be), we experimented
with a spelling transform that could be formulated
around any word, even those outside our pronunciation
dictionary. For this task, for randomly selected words,
we inserted a bullet symbol before each letter, forcing
the tokenizer to treat each letter as a discrete token (e.g.
“pizza" becomes “·P·I·Z·Z·A"). Note that we also used
uppercase letters to avoid any overlap with the English
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IPA symbols.

Noise transform. We also include a denoising task
like the one used in pre-training the BART models
(Lewis et al., 2020), wherein input tokens are inserted,
deleted, and replaced at random. We used these same
kinds of transforms, except we only apply noise to
pronounced or spelled words. For these words, we
randomly replace, insert, and delete tokens in the word.
Insertions were limited to letters from the appropriate
alphabet (either English or IPA).

Experimental configurations. We experimented
with several variations of the above transforms,
replacing 10% of pronounceable words with IPA,
10% of words with spellings, as well as a combined
pronounced/spelled configuration (at 10% each). We
repeated these configurations with noise added at a
5% probability. Table 1 summarizes the pre-training
configurations used in this paper.
3.3 Data Preparation
Data sources. We based our pronunciation dictionary
on version 0.7b of CMUDict (Carnegie Mellon
University, 2014).3 We converted their ARPABet
entries to IPA using hard-coded rules, removing
stress symbols. As carrier text for our self-supervised
task, we used the 20220301.en version of Wikipedia
provided by Huggingface Datasets.4

Word/article associations. For most purposes, the
synthetic dataset was designed to be as open-ended as
resources allowed, applying the transforms according
to the word frequency distributions of Wikipedia.
However, considering how the pronunciation dictionary
was by far the data bottleneck (and thus the primary
focus of our validation strategies), we needed a way to
intentionally and efficiently find a high quality context
for a given word. To this end, we paired each word in
the pronunciation dictionary with a unique article based
on an algorithm based on word frequencies. Tallying
how many times our dictionary words appeared in each
article, we assigned each dictionary word a unique
article with a simple algorithm: beginning with the
rarest word, we chose the next available article with
the highest count for that word. We used a few simple
rules to avoid specific types of low-quality articles.5

Data splits. We split the final list of 122K words
and their associated Wikipedia articlesinto training,
validation, and test sets (80%, 10%, and 10%,

3https://github.com/Alexir/CMUdict/blob/7a37de7/
cmudict-0.7b

4https://huggingface.co/datasets/wikipedia/
5We noticed our algorithm favored articles like “List of

people with surname Carpenter” and “Mercury (disambiguation),”
which have high word frequencies for “carpenter” and “mercury,”
respectively. In Wikipedia, these articles function only as lists of
links to other articles, and we used them only as a last resort.

respectively). The remaining 6.5M Wikipedia articles
with no associated word were added to the training
set. Anticipating approximately 3100 target words that
we would use to evaluate fine-tuning in §4, we placed
these words in the test set. Three pairs of words were
found only in overlapping articles; we placed these
words in the training split.

Pronunciation transforms were only allowed for
words which could be found in the split’s dictionary. A
spelling transform was only allowed for words which
were not be found in another split’s dictionary.

Training and validation inputs. We iterated over
each Wikipedia article, transforming and noising pro-
nounceable/spellable words at the rates specified in
§3.2. Training inputs were limited 1000 BPE tokens to
fit within BART’s attention limit. If the article had an
associated word, the sample was trimmed so the median-
position occurrence of that word was at the center, other-
wise a trim window was chosen at random. To minimize
computation required for the validation set, each sample
was limited to 100 tokens, with the median-position
occurrence of that word at the center. If the experiment
included a pronunciation transform, the associated dic-
tionary word in the center was always pronounced.

Since the training set contained the most words,
and the test set contained a number of high frequency
words held out for fine-tuning evaluation, we found
that the validation set only transformed at a word rate
of 7–8% in practice, short of the 10% observed in the
training inputs.

Test data. For evaluation purposes, only a single
instance of the associated dictionary word was
pronounced. Inputs were limited to 100 tokens, with
the median-position occurrence of that word at the
center. Neither the spelling nor the noise transforms
were applied during testing.
3.4 Pre-training
Model weights were initialized from the 140M parame-
ter BART-BASE pre-trained model found on the Fairseq
website.6 We based our hyperparameters on (Lewis
et al., 2020), using the fairseq toolkit (Ott et al., 2019).
Training targeted a categorical cross-entropy loss, with
a learn rate of 10−5 and a maximum batch size of
12288 tokens, resulting in 317K batches per epoch. We
computed the validation loss every 1K batches, and
restored the best model after validation loss failed to
improve for 63K batches (20% of the Wikipedia data).
3.5 Evaluation
We evaluated our pre-trained models in terms of
accuracy and character error rate (CER) of the test set.

6https://github.com/facebookresearch/fairseq/tree/main/
examples/bart
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Pre-trained Model Pron. Spell. Noise Example of Transformed Text

BORT-PR 10% — — he retaliates by s·pôEdIN false rumours

BORT-SP — 10% — he ·R·E·T·A·L·I·A·T·E·S by spreading false rumours

BORT-PR-SP 10% 10% — he ·R·E·T·A·L·I·A·T·E·S by s·pôEdIN false rumours

BORT-PR-NOISY 10% — 5% he retaliates by OIs·pEdIN false rumours

BORT-SP-NOISY — 10% 5% he ·E·T·A·K·I·A·T·E·S by spreading false rumours

BORT-PR-SP-NOISY 10% 10% 5% he ·E·T·A·K·I·A·T·E·S by OIs·pEdIN false rumours

Table 1: The various self-supervised training configurations for our models, indicating the percentage of words replaced with
either pronunciations in the IPA or spelled, with or without noise added to the replacements. Example text from Wikipedia
is shown to demonstrate the transformations. Bullet characters are inserted to enforce separation between those letters which
would otherwise be merged during BPE text encoding.

Recall that in the test set we only applied the transform
we were most interested in for this work: pronunciation.
Considering how each correct output contains nearly a
hundred words of text also found in the input—a trivial
task to predict—we defined CER as the number of
character errors divided by the length of only the target
word. Text case and whitespace were ignored during
evaluation. Only the models applying the pronunciation
transform could be directly evaluated in this manner,
so we do not include a baseline for this evaluation, and
some models are only evaluated indirectly in §4.

3.6 Results
Configurations which included the noise transform
did better overall than those without. The one with
spelling (BORT-PR-SP-NOISY) was the overall best
with a 15.1% CER, compared to BORT-PR-NOISY at
19.5%. To a lesser extent, spelling improved CER in
the models without a noise transform: BORT-PR-SP
and BORT-PR had a CER of 23.4% and 22.4%,
respectively. Accuracy followed a similar pattern, with
BORT-PR-SP-NOISY, BORT-PR-NOISY, BORT-PR-SP,
BORT-PR showing accuracies of 64.5%, 61.8%, 51.6%,
and 55.0%, respectively.

As for our overfitting concerns, most of our models
showed an increase in validation loss (i.e. early
stopping was triggered) before completing a full
epoch of 6.5M Wikipedia articles. The pronunciation-
only model BORT-PR after about 1.0M articles.
Adding only the spelling transform for BORT-PR-SP
nearly tripled the training duration to about 2.8M
articles, while adding only the noise transform for
BORT-PR-NOISY actually shortened training to about
0.6M articles. The combination of spelling and noise
for BORT-PR-SP-NOISY trained for about 4.4M articles.
The only models which completed a full epoch were
those trained without the pronunciation transform, with
BORT-SP and BORT-SP-NOISY training for about 6.9M
and 7.9M articles, respectively.

Configuration CER Accuracy

BORT-PR 0.234 0.550
BORT-PR-SP 0.224 0.516
BORT-PR-NOISY 0.195 0.618
BORT-PR-SP-NOISY 0.151 0.645

Table 2: Character error rates (CER) and accuracies for the
pre-training task, Only those configurations which applied
the pronunciation transform are shown.

3.7 Discussion
Out of the pre-training configurations we evaluated
with CER, the best performance was seen with
BORT-PR-SP-NOISY, the model trained on all three
transforms (phonology, spelling, and noise). This
indicates that all three transforms were useful for
the task of restoring a word from its pronunciation.
Additionally, noise was clearly helpful for these models,
since the next best configuration also used the noise
transform (BORT-PR-NOISY).

The evaluation at this stage was lower than we
expected, but this can largely be explained in terms
of how the problem and its evaluation were formulated.
Our hold-out rules were unusually strict to ensure
the model could not memorize any of the words used
during fine-tuning, heavily biasing the test data toward
common English words. Second, CER is an imperfect
evaluation measure for a model which operates on
subword tokens, and one which isn’t strictly a P2G
translator. Additionally, as we emphasize in §4,
evaluation on 1-best is a poor measure of the usefulness
of a model intended for use in a complex pipeline.
4 Fine-tuning BORT
4.1 Data
Fine-tuning data consisted of 2,234 transcripts from
339 people with aphasia (PWA) from the English
AphasiaBank database (MacWhinney et al., 2011),
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a widely-used repository of recorded and transcribed
administrations of a standardized protocol consisting
of a variety of tasks including discourse tasks, meant
for use in studying language and cognitive sequelae
of post-stroke aphasia.7 Demographic characteristics
of the participants are included in Appendix A. The
transcripts used in this study were from one of nine
tasks designed to elicit discourse; the tasks themselves
are described in more detail in Appendix B. The tasks
were transcribed by human annotators according to
the CHAT transcription manual (Codes for the Human
Analysis of Transcripts; MacWhinney 2000).

In the AphasiaBank transcripts, non-word para-
phasias are transcribed in IPA, whereas lexical
paraphasias are written in their orthographic form. For
each paraphasia, whenever possible, the human anno-
tator also identified the target word for that production
(i.e., the word the person intended to say). Given the
paraphasia-target pair, the annotator also categorized
the paraphasia according to whether it was a real word,
whether it was phonologically related to the target, and
whether it was semantically related to the target.

We filtered the transcripts to just the PWA’s language,
and removed annotations irrelevant to the task (e.g.,
gestures). Then, we prepared the transcripts for training
in two ways: an “easy” way and a “hard” way. In
the “hard” task, the model learned the task that the
human annotators performed in AphasiaBank: to
predict the target word given the pronunciation of the
paraphasia (and the surrounding context). In the “easy”
task, we instead replaced the paraphasia pronunciation
with the correct pronunciation for its associated target
word. That is, in the “easy” task, we train the model
to fill in correct pronunciations for words with their
corresponding orthographic form, and in the “hard” task
we train the model to fill in paraphasias (i.e., incorrect
pronunciations) with the intended orthographic word.

For both the “easy” and “hard” tasks, we only consid-
ered paraphasias with a known target provided by the
human annotator. For the “easy” task, we additionally
removed paraphasias where there was not a known pro-
nunciation of the orthographic form of the target in our
pronunciation dictionary. This left us with 10,120 para-
phasias. With the “hard” task, for the real word para-
phasias, we instead removed paraphasias where there
was not a known pronunciation of the orthographic
form of the paraphasia in the pronunciation dictionary.
This left us with 9,781 paraphasias for the “hard” task.

Each usable production was prepared with the full
context of its transcript: all productions in the transcript
were prepared as phonemes separated by bullets (as

7Our snapshot of the transcripts was copied from AphasiaBank
on March 8th, 2023, and the corresponding demographic metadata
downloaded on April 23, 2023.

in §3.2), whether it be the target pronunciation or the
paraphasia itself, and the production for the model to
predict was marked with surrounding angle brackets.
Some of these prepared samples were too long when
tokenized, and thus trimmed to the maximum length
(1024 tokens) in such a way that the maximum possible
context on either side of the paraphasia was preserved.
Part of a prepared example with the target “screwed”
is shown below:

“Easy”: and it <s·kôu·d > up. but I went
to to the hAs·pIt@l. and my brain s·kæn·d.

“Hard”: and it <Skôu·d > up. but I went
to to the As·pIt@l. and my brain s·tæn·d.

For “easy,” we substituted the correct pronunciation
for screwed (“screwed”), while in “hard” we included
the paraphasia (“shcrewed”).
4.2 Training
Given either a correct (“easy”) or incorrect (“hard”)
pronunciation, we fine-tuned each pre-trained BORT
model to predict the intended word. As a baseline,
we fine-tuned from the unmodified source model,
BART-BASE. . As in pre-training, we adapted code
from the fairseq sequence modeling toolkit (Ott
et al., 2019). We used 10-fold cross validation with
participant as the grouping factor, sequentially holding
one fold out as valid set, a second fold as test set, and
the remaining eight folds as the training set. We trained
each model until early stopping occurred using loss on
the validation set after 20 epochs without improvement.
Training hyperparameters were the same as §3.4 but
with an effective batch size of 4000 tokens.
4.3 Evaluation
We evaluated performance for the “easy” and “hard”
tasks using CER and accuracy. As we did in §3.5, we
calculated CER between the top model prediction and
the human identified target for each paraphasia in the
test set. We also calculated top 1 accuracy (the top
model prediction matched the human identified target)
and top 5 accuracy (the human identified target was
within the top 5 model predictions) for each of the
fine-tuned models’ predictions on the test set. We deter-
mined whether disagreements between top 1 accuracy
of the different models were significant using McNe-
mar’s test with continuity correction (McNemar, 1947)
and Bonferroni correction (Haynes, 2013). We con-
ducted this test for all six models versus the baseline, as
well as the best performing model versus all other mod-
els, for both “easy” and “hard” tasks, leading to 24 com-
parisons in total. Accounting for multiple comparisons
and using an alpha of 0.05, a p-value of <0.00208 was
retained as the level of statistical significance . Finally,
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for the best configuration in the “hard” task, we also
calculated top 1 accuracy stratified by AphasiaBank
task and error type, presented in Appendix C.

4.4 Results
CER, top 1 accuracy, and top 5 accuracy on the test set
is shown for the “easy” and “hard” tasks in Tables 3a
and 3b respectively. For both “easy” and “hard” tasks,
all of the BORT models had significantly higher perfor-
mance than BART-BASE at top 1 accuracy according to
McNemar’s test with p<0.00208 for all comparisons.

In the “easy” task, the baseline configuration
(BART-BASE) led to top 1 accuracy 72.5%, and CER
22.8%. Out of the models trained with noise, best
performance was seen in BORT-PR-SP-NOISY with
top 1 accuracy 89.5%. However, BORT-PR-SP saw
the best performance out of all models, with a 90.1%
chance of correctly predicting the appropriate word
for a given correct pronunciation and a CER of just
5.7%, improving on the baseline by a relative 24%
and 75%, respectively. The accuracy was significantly
higher than all other models with p < 0.00208 for
all comparisons. Allowing for five chances to get the
correct prediction, this model achieved 94.7% accuracy.

For the “hard” task, the baseline achieved 36.3%
top 1 accuracy and 60.6% CER. Out of the config-
urations which did not apply noise, BORT-PR-SP
achieved the highest top 1 accuracy of 45.6% and
CER 44.7%. The best pre-training configuration
was BORT-PR-SP-NOISY, which applied all three
transforms. It achieved top 1 accuracy 46.7% and CER
42.0%, improving on the baseline by a relative 29% and
31%, respectively. The top 1 accuracy was significantly
higher than most models with p < 0.00208, except
for BORT-PR-SP (p = 0.020) and BORT-PR-NOISY
(p=0.023). BORT-PR-SP-NOISY also had 65.6% top 5
accuracy. Accuracy within top 1–20 predictions of
the baseline and best performing models for the “easy”
and “hard” tasks can be seen in Figure 1. Performance
increases for all models as we allow more chances to
find the correct target, but the order of performance
remains the same. Additional results—namely those
stratified by AphasiaBank task and error types—can
be found in Appendix C.

4.5 Discussion
The fine-tuning configurations without the pronunci-
ation transform (BORT-SP and BORT-SP-NOISY) were
the lowest performing of the BORT models, but they
still had significantly higher top 1 accuracy than the
fine-tuned BART-BASE model. Moreover, for both
“easy” and “hard” tasks, the best performing models
were trained with both the pronunciation and spelling
transforms, and either with or without noise. This
pattern implies that there is enough overlap between
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Figure 1: Accuracy within top 1-20 predictions of
baseline and best performing models for “easy” and “hard”
fine-tuning tasks.

orthography and phonology in the English language
that pre-training the LLM to spell helped the model
to perform the task at hand. Considering the G2P
frame of reference—though we note again that this
is a loose comparison (see §3.7)—a 5.7% CER is on
par with what could be expected from a model strictly
translating between phonemes and graphemes.

Aphasic speech is characterized by paraphasias,
which can be considered “noisy” productions, so it
stands to reason that learning to de-noise productions
would help the model with the “hard” fine-tuning
task. As we hypothesized, the “hard” task saw the
best performance from the pre-training configuration
with all three transforms (pronunciation, spelling, and
noise), although its performance was not significantly
different than the configuration without spelling
(BORT-PR-NOISY) or without noise (BORT-PR-SP).
Contrary to what we observed in §3.5, for the “easy”
task, noise did not seem to help the models, and the
best performing configuration was one that did not
include noise in pre-training (BORT-PR-SP).

Moreover, the top 1 accuracy performance of
this model was significantly different than all other
“easy” models. This is surprising since the evaluation
for pre-training and the “easy” task were quite
similar, being a phoneme-to-grapheme translation task
with and without context, respectively. This might
be explained by the stricter hold-out rules during
pre-training—we had no vocabulary restrictions during
fine-tuning—or by the shift in data domain (Wikipedia
vs. AphasiaBank). It is difficult to say with certainty
why this discrepancy occurred, but perhaps noise was
most helpful for language from a very diverse corpora
(Wikipedia), while in the more constrained tasks from
AphasiaBank, the more limited vocabulary did not
benefit from synthetic variability.
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Pre-training CER Accuracy
Configuration Top 1 Top 1 Top 5

BORT-PR 0.083 0.869 0.931
BORT-SP 0.106 0.843 0.906
BORT-PR-SP 0.057 0.901 0.947

BORT-PR-NOISY 0.089 0.863 0.925
BORT-SP-NOISY 0.096 0.848 0.911
BORT-PR-SP-NOISY 0.060 0.895 0.947

BART-BASE 0.228 0.725 0.820

(a) “Easy” Task

Pre-training CER Accuracy
Configuration Top 1 Top 1 Top 5

BORT-PR 0.462 0.451 0.634
BORT-SP 0.526 0.401 0.579
BORT-PR-SP 0.447 0.456 0.641

BORT-PR-NOISY 0.452 0.458 0.640
BORT-SP-NOISY 0.469 0.446 0.625
BORT-PR-SP-NOISY 0.420 0.467 0.656

BART-BASE 0.606 0.363 0.533

(b) “Hard” Task

Table 3: Accuracies for each pre-trained model after fine-tuning to our two tasks. Bold font indicates accuracy was
significantly different from all other models, with the exception of those italicized, according to McNemar’s test.

5 Conclusion
In §3, we pre-trained BORT to accept a mixture of
orthography and IPA. During training and validation,
we used one to three different transforms of words
(pronunciation, spelling, noise) and trained the model
to restore the words to their original form. We directly
evaluated the four models trained on pronunciation
using a test set of the Wikipedia data by testing the
CER of their performance at restoring a word from
its pronunciation. In §4, we evaluated all six models
(and the baseline) by further fine-tuning them to
restore words from productions in aphasic speech. This
allowed us to evaluate the applicability of our mixed
orthography/IPA LLM to a clinical task.

Our best BORT configurations achieved high
accuracy and low CER rates for the “easy” fine-tuning
task, with the fine-tuned accuracy as high as 90%.
This indicates we were able to successfully produce
a LLM that can accept both orthography and IPA.
Moreover, observing differences between accuracy and
CER revealed that even when our fine-tuned models
incorrectly predicted the target word, they still may
have found close-by words. For instance, considering
the “easy” task, the best performing model picked
the wrong target 10% of the time, but it achieved an
average CER of just 5.7%. This indicates that there
were likely instances where even though the LLM
predicted the wrong target, it picked a similar word
with overlapping letters with the target word.

Future work will improve on these pre-trained
models. In §3.1 we hypothesized BART’s generative
architecture and denoising task were advantages for our
use case. With model selection, though, we find certain
tradeoffs, and we would like to test whether these ad-
vantages outweigh unique functionalities found in other
models. In particular, models designed to operate at a
character level (e.g. CANINE, Clark et al., 2022) could
overcome other limitations of BORT (e.g. our explicit

demarcation of phonemic and orthographic regions),
and is perhaps generally well-suited for the task at hand.

An additional area of future work will consist of
exploring alternative training strategies. In the present
work, we were quite strict with regard to preparing the
test split, withholding the most frequent English words
because they appeared in our AphasiaBank evaluations.
As our focus turns more toward downstream tasks, we
will update our holdout methods to prioritize a stronger
pre-trained model, holding out only as much data as
needed for validation. Further, seeing how our models
did not train for an entire pass through the Wikipedia
data, we will adjust the training schedule (e.g. a
ramp-up in the learning rate) and task configuration
(e.g. word transform rates) to ensure we get the most
out of the pre-training stage.

For our aphasia-specific application, we see room
to improve the noise transform with more strategic
approaches. Phoneme errors could be made more
realistic with statistically or linguistically informed
approaches (e.g. replacing phonemes with similar
phonemes). To better prepare a model for semantic
errors, whole-word replacements could be made with
semantically similar words.
Limitations
The models presented here were trained with the basic
inventory of English phonemes found in CMUDict.
However, a more fine-grained phonetic analysis
would require a pronunciation dictionary with more
narrowly defined entries. Additionally, while this
paper focused on models trained with English-only
resources (pre-trained BART-BASE, English Wikipedia
text, CMUDict, and the English AphasiaBank), the
techniques should be applicable to non-English
language models as well. Finally, from a clinical
standpoint, the model we describe in this paper assumes
the existence of transcribed input (from either a manual
or automated source, discussed in detail in § 2.1); in its
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current form, this represents a limitation to its clinical
implementation, though not to its use in research
settings with archival or newly-transcribed datasets.
Ethics Statement
Our use of the AphasiaBank data was governed by the
TalkBank consortium’s data use agreement, and the
underlying recordings were collected and shared with
approval of the contributing sites’ institutional review
boards. Limitations exist regarding accents and dialect,
which in turn would affect the scenarios in which a sys-
tem based on our model could (and should) be used. It
should also be noted that these models and any derived
technology are not meant to be tools to diagnose med-
ical conditions, a task best left to qualified clinicians.
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Appendix
A AphasiaBank Demographics
Demographic characteristics from the 339 participants
are summarized in Table 4.
B Description of AphasiaBank Tasks
We used transcripts from nine tasks from AphasiaBank.
Descriptions of each task are provided in Table 5. More
information can be found on the AphasiaBank website.8

C Detailed Results
We calculated top 1 accuracy for our best performing
model in the “hard” task, BORT-PR-SP-NOISY,
stratified by AphasiaBank task type. These results are
shown in Table 6. Performance was lowest for Aphasia-
Bank’s “Free Speech Samples” section with accuracies
ranging from 33%–36%, followed by most of “Picture
Descriptions” at 41.1%–44.5%, with the exception of
Umbrella. The best performance was seen in the “Story
Narrative” and “Procedural Discourse” sections with
53.3% and 52.2%, respectively, as well as the Umbrella
picture description (61.8%). This pattern makes sense,
since the fine-tuned models can use exposure to the
task domain to learn what common vocabulary occurs
in the tasks. Topics that are very open-ended, like the
Free Speech Samples, instead could have a large range
of possible targets for paraphasias.

8https://aphasia.talkbank.org/protocol/english/
materials-aphasia
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Characteristic Value

Age
M (SD) 61.8 (12.3)

Min - Max 25.6–90.7
Missing (N) 3

Race
White (N) 284

African American (N) 37
Asian (N) 2

Hispanic/Latino (N) 9
Native Hawaiian

/ Pacific Islander (N) 2

American Indian
/ Alaska Native (N) 1

Mixed (N) 2
Other (N) 1

Unavailable (N) 1

Gender
M (N) 199
F (N) 140

Years of Education
M (SD) 15.4 (2.7)

Min - Max 8–25
Missing (N) 14

Characteristic Value

Aphasia Duration
M (SD) 5.4 (5.4)

Min - Max 0.08–44
Missing (N) 16

WAB-R AQ
M (SD) 71.0 (19.6)

Min - Max 10.8-99.6
Missing (N) 37

BNT-SF
M (SD) 7.1 (4.6)

Min - Max 0-15
Missing (N) 69

VNT
M (SD) 14.3 (6.6)

Min - Max 0-22
Missing (N) 56

Table 4: Demographic characteristics for the 339 participants at their first session, where available. WAB-R AQ is the
Western Aphasia Battery-Revised Aphasia Quotient, and captures overall aphasia severity with higher values indicating
lower severity (Kertesz, 2012). BNT-SF is the raw score from the Boston Naming Test-Short Form (Kaplan et al., 2001).
VNT is the raw score from the Verb Naming Test (Cho-Reyes and Thompson, 2012). The BNT-SF and VNT are both
confrontation picture naming tests, where the BNT-SF captures word retrieval deficits of object words and the VNT captures
word retrieval deficits of action words.

Section Task Description

I: Free Speech Samples Speech The participant describes how their speech is currently.

Stroke The participant’s story of his or her stroke.

Important Event A personal narrative with a wide range of possible topics.

II. Picture Descriptions Window A picture description task.

Umbrella A picture description task.

Cat A picture description task.

Flood A picture description task.

III. Story Narrative Cinderella The participant recounts a narrative of Cinderella, after
reviewing pictures of central events of it.

IV. Procedural Discourse Sandwich The participant is asked to describe how to make a peanut
butter & jelly sandwich.

Table 5: Descriptions of nine AphasiaBank tasks
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AphasiaBank Task N Accuracy

I. Free Speech Samples

Speech 265 0.340
Stroke 1620 0.357
Important Event 900 0.330

II. Picture Descriptions

Window 711 0.414
Umbrella 1103 0.618
Cat 1197 0.445
Flood 180 0.411

III. Story Narrative

Cinderella 3065 0.533

IV. Procedural Discourse

Sandwich 740 0.522

Table 6: Number of samples (N) and top 1 accuracy for
BORT-PR-SP-NOISY after fine-tuning to the “hard” task,
stratified by AphasiaBank task.

Error Type N Accuracy

Phonological 4557 0.473
Semantic 3137 0.485
Neologism 1570 0.445
Morphological 417 0.350
Dysfluency 11 0.455
Multiple Types 82 0.488
Unknown Type 7 0.286

Table 7: Number of samples (N) and top 1 accuracy for
BORT-PR-SP-NOISY after fine-tuning to the “hard” task,
stratified by AphasiaBank error type annotations.
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