arXiv:2302.12441v2 [cs.LG] 22 May 2023

MUX-PLMs: Data Multiplexing for High-throughput Language Models

Vishvak Murahari'
Izhak Shafran? Mingqiu Wang>

'Princeton University

Ameet Deshpande!

Carlos E. Jimenez!

Yuan Cao? Karthik Narasimhan'

2 Google Brain

murahari@cs.princeton.edu

Abstract

The widespread adoption of large language
models such as ChatGPT and Bard has led
to unprecedented demand for these technolo-
gies. The burgeoning cost of inference for ever-
increasing model sizes coupled with hardware
shortages has limited affordable access and
poses a pressing need for efficiency approaches
geared towards high throughput and perfor-
mance. Multi-input multi-output (MIMO) al-
gorithms such as data multiplexing, offer a
promising solution with a many-fold increase
in throughput by performing inference for mul-
tiple inputs at the cost of a single input. Yet
these approaches are not currently performant
enough to be deployed in modern systems. We
change that by developing MUX-PLMs, a class
of high throughput pre-trained language models
(PLMs) trained with data multiplexing, that can
be fine-tuned for any downstream task to yield
high-throughput high-performance. Our novel
multiplexing and demultiplexing modules profi-
ciently entangle and disentangle inputs, and en-
able high-performance high throughput MUX-
PLMs that are competitive with vanilla PLMs
while achieving 2x/5x inference speedup with
only a 1 — 4% drop on a broad suite of tasks. !

1 Introduction

Language models like ChatGPT (OpenAl, 2023),
PalLM (Chowdhery et al., 2022), T5 (Raffel et al.,
2020), and CM3 (Aghajanyan et al., 2022), have
seen unprecedented adoption in diverse sectors
ranging from education and healthcare to manu-
facturing and marketing. The proficiency of these
tools has led to unprecedented demand for these
models, with users facing frequent outages and ca-
pacity limits. Additionally, ever-increasing model
sizes and hardware shortages have constrained
models’ ability to handle a very high load of re-
quests, thus limiting large-scale affordable access

!Code + Models: https://github.com/
princeton-nlp/datamux—-pretraining/.

to these models. These trends bring into focus the
need for high-throughput, high-performance, ef-
ficient, and environmentally responsible models
that can be deployed at scale to meet the quickly
growing demand.

Multi-input Multi-output architectures (MIMO)
(Havasi et al., 2021; Ramé et al., 2021; Murahari
et al., 2022) are a promising hardware-agnostic
and architecture-agnostic paradigm that perform
inference for multiple inputs simultaneously at the
cost of a single input. This efficiency paradigm is
natively geared towards yielding high-throughput
models, in addition to being complementary in ap-
proach and motivation to current efficiency meth-
ods such as pruning, quantization, and distilla-
tion. Interestingly, MIMO approaches are partly
inspired by the human brain’s extraordinary abil-
ity to process multiple inputs and propagate in-
formation at a high bandwidth with a few neural
codes (Blumhagen et al., 2011; Akam and Kull-
mann, 2014; Pirschel and Kretzberg, 2016; Hong
et al., 2016; Friedrich et al., 2004).

Murahari et al. (2022) introduced data multiplex-
ing, a MIMO technique that can enable a many-fold
increase in throughput. The method compresses
N different instances into a single “multiplexed”
hidden representation before decompressing it into
N independent predictions. While they show the
plausibility of MIMO training, their method leads
to a significant drop in performance (20 — 30%
points) compared to state-of-the-art models.

In this work, we introduce MUX-PLMs, a class
of high-throughput pre-trained language models
trained in a MIMO fashion with data multiplex-
ing to process multiple inputs (2-10) simultane-
ously with a forward pass over a single instance.
MUX-PLMs offer up to 400% improvement in
throughput over baseline pre-trained models while
only being ~ 4 points and ~ 2 points worse than
baseline pre-trained language models for text clas-
sification and token classification tasks, respec-

196

Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023), pages 196-211
July 13, 2023 ©2023 Association for Computational Linguistics

https://github.com/princeton-nlp/datamux-pretraining/
https://github.com/princeton-nlp/datamux-pretraining/

the | chef K walk 4 the | meal the | chef /| ate the - meal
s 4+
(DEMUX Y | C DEMUX

W T 01 0 01 010

C

)

v O 010 000 010 01O

C MUX Y | C MUX D
r's +
Yoy
the - chef -cooks- the - meal Cth the |4 meal
1 2

D)

W O 0 0O 0 01O

C

)

< 10 01 010 01 01

B-LOC 0 0
*
C DEMUX D)
w0 (0 OO0 000 00

C)

X [0 0 010 01 01

C MUX D)

1+

B-MISC 0

Benin- won the - first- leg

3 C)

Figure 1: Illustrating the training process for MUX-PLMs. MUX-PLM:s are first primed for MIMO style training
with a token-retrieval auto-encoding task, where the model is trained to output the tokens in the N inputs. MUX-
PLMs are then pre-trained by adapting standard pre-training objectives (BERT in this example), to MIMO style
training with data multiplexing. The resulting MUX-BERT model, similar to standard PLMs, provides a general
model initialization that can be fine-tuned on any downstream task (NER in this example). Output predictions are
shown above the system head with highlighted predictions contributing to the gradient update; violet indicates a
correct prediction while orange indicates an incorrect prediction. Red highlighted tokens in the input indicate a

position that has been masked.

tively. MUX-PLMs, like other pre-trained lan-
guage models, provide general model initializa-
tion that can be fine-tuned for any downstream
task. We demonstrate the effectiveness and gener-
ality of our MUX-PLMs class of pre-trained mod-
els by training MUX-BERT and MUX-ELECTRA
models, which are trained with pre-trained objec-
tives adapted from BERT (Devlin et al., 2019) and
ELECTRA (Clark et al., 2020) respectively, al-
though in a MIMO fashion with data multiplexing.

Our work is the first to introduce MIMO archi-
tectures to PLMs. To enable this, we first develop
a new demultiplexing module, RSA-demux (Fig-
ure 2), that randomly initializes and learns private
key vectors to recover the multiple outputs from
a multiplexed representation. Secondly, we intro-
duce a new Contextual Multiplexer module (Fig-
ure 3) that uses a cross-instance attention-based
mechanism to aggregate context across the set of
multiplexed instances, which seems to be particu-
larly effective for token-level tasks. Thirdly, our
three-stage training algorithm (Figure 1) enables
stable and efficient training of MUX-PLMs.

Importantly, MUX-PLMs are complementary to
existing state-of-the-art model compression tech-
niques. We hope our work validates MIMO archi-
tectures as a promising complementary direction
to existing efficiency techniques. Consequently,
we hope future research develops MIMO architec-
tures in tandem with other efficiency approaches,

leveraging the best of both paradigms. We pub-
licly release our models and code to promote open-
source research on the next generation of MIMO
architectures for large language models.

2 Related Work

Efficient Inference with Transformers Recent
methods in NLP rely heavily on transfer learning
through Transformer-based (Vaswani et al., 2017)
language models trained on large text corpora us-
ing self-supervised objectives, such as autoregres-
sive (Radford and Narasimhan, 2018) or masked
language modeling (Devlin et al., 2019). Prior
analysis on pre-training language models has ob-
served power-law scaling of model performance
with respect to model size (Kaplan et al., 2020),
leading the community to develop ever-larger lan-
guage models. It is also generally recognized that
pre-trained language models are significantly over-
parameterized; effectively learning a subnetwork
that utilizes only a relatively small number of their
total parameters (Voita et al., 2019; Michel et al.,
2019; Gordon et al., 2020; Prasanna et al., 2020).
The ubiquity of pre-trained language models,
their growing size, and over-parameterization has
inspired extensive research on improving inference
efficiency. This includes methods such as struc-
tured pruning (Liu et al., 2019; Wang et al., 2020;
Lagunas et al., 2021; Xia et al., 2022; Yang et al.,
2022), knowledge distillation (Hinton et al., 2015;

197

Sanh et al., 2019; Sun et al., 2020; Jiao et al., 2020;
Yin et al., 2021), quantization (Zafrir et al., 2019;
Shen et al., 2020), and data multiplexing (Mura-
hari et al., 2022). These approaches assume that
PLMs are highly over-parametrized and attempt to
approximate a large function by learning a smaller,
compressed, version of the original model. Past
work has also focused on unstructured pruning for
both task finetuning (Chen et al., 2020; Sanh et al.,
2020) and pre-trained (Zafrir et al., 2021; Jiang
et al., 2022) language model settings, but don’t
increase model throughput due to hardware limits.

Multi-input Multi-output Models While prun-
ing, quantization, and distillation seek to reduce
overparameterization by reducing models’ repre-
sentational capacity, other lines of work seek to
exploit overparameterization in other ways. Multi-
input Multi-output (MIMO) architectures (Havasi
et al., 2021; Ramé et al., 2021; Murahari et al.,
2022) train models using mixed-instance represen-
tations, i.e. Zhang et al. (2018), in order to obtain
predictions for multiple instances simultaneously.
Unlike efficiency methods, Havasi et al. (2021) and
Ramé et al. (2021) try to obtain better performance
by inducing multiple subnetworks in a single con-
volutional model to perform “ensembling for free”
during inference. Data multiplexing, introduced in
DataMUX (Murahari et al., 2022), aims to improve
model efficiency by training Transformer models
with mixed-instance representations to perform si-
multaneous inference for language tasks, thereby
improving inference throughput many-fold. Cur-
rently, MIMO architectures have only been used in
a limited setting, achieving middling performance.
Our work training PLMs with data multiplexing,
dramatically improves inference throughput while
preserving high accuracy for downstream tasks.

3 Methodology

We briefly introduce readers to the data multiplex-
ing MIMO architecture (Murahari et al., 2022),
which we denote T-MUX. We then detail our
novel approach to train MUX-PLMs to yield high-
throughput and performant language models.

3.1 T-MUX: Data multiplexing with
Transformer

Data multiplexing allows parallel processing of
multiple sequences with a single forward or back-
ward pass through the model (M) and requires

two crucial components, multiplexer, and demulti-
plexer.

Multiplexer The multiplexer module (MUX)
combines an ordered set of multiple inputs —
XEN — (xl, . ,XN) into a single superimposed
representation (x"U%). If x* € R, the multiplexer
is a transformation (MUX : RV*? — R%) such that
xMU% = MUX (X)),

To ensure MUX is an order-preserving
transformation, T-MUX samples a vector (v € R%)
from a standard multivariate Gaussian and applies
the Hadamard product (element-wise multiplica-
tion) with the corresponding input representation
(x*) before summing up vectors for all positions.

N
MUX _ LNy _ L i i
x"U% = MUX (X)_N;x oV

vieRY~ N (0,1)

The model processes the multiplexed representa-
tion and emits a multiplexed hidden state — h!V% =
M (XMUX). To multiplex Transformers’ sequenced
inputs (Xi = (xil, . ,xiL)) of length L, T"TMUX
applies the same v* to all L positions of instance 7.

XMUX = MUX (X].:N) —

1 M . 1M .
(NZXZIQVZ,...,NZXZL@VZ>
i=1 i=1
2

Demultiplexer A prediction needs to be made
for each instance in X"V, and T-MUX’s demul-
tiplexer module (DeMUX) achieves this by sep-
arating the superimposed output (h"Y%*) into N
output representations corresponding to the input
(h',...,h").

h' = DeMUX (h""%, p)

. : 3
h! = DeMUX (h"*; p) ©

The vector p* € R? is dynamically generated
for each instance (z) with the help of a prefix that is
added to the input and re-used for all positions in
the instance. They add a prefix; to x’, represented
by the following pattern, where € is a special token,
and p' is set to be the output corresponding to token

198

ht
h
h W
Ll
4

C

)

DEMUX
oEoO

hMUXI I I

Figure 2: Illustrating our novel RSA-inspired demultiplexing module. The module is initialized with N key vectors
which are used to demultiplex the transformed multiplexed representations (hVX). The keys are concatenated
with AMUX and are processed with an MLP to generate the demultiplexed output representations (hy - - - hy).

<o [0 [0 00 00 0
*
C)
*
C)
>
5 *
-)
*
C)
*

x4

X

xlx the chef - cooks- the meal

Figure 3: Illustrating our attention-based multiplexing
module. The module generates contextual representa-
tions for instances x; - - - x4 with a Transformer layer
and then applies a hadamard product between the con-
textual representations and the corresponding multivari-
ate gaussian to generate instance-conditioned represen-
tations. The final multiplexed representations are gener-
ated by first applying another Transformer layer, which
attends across the instances for all the positions in the
sequence, and then averaging across the instances.

¢ in the prefix.

1
prefix! = [e!, M P
prefix? = [P 2 P P

prefix¥ = [P2d | Pad (N

3.2 MUX-PLMs: Data multiplexing for
high-throughput language models

We propose MUX-PLMs, a class of high-
throughput pre-trained Transformer-based lan-
guage models trained in a MIMO fashion with
data multiplexing. To demonstrate the viability

and the generality of this class of models, we pre-
train Transformer models with objectives based
on BERT and ELECTRA, to get MUX-BERT and
MUX-ELECTRA respectively. MUX-PLMs are
trained with our three stage training algorithm (Fig-
ure 1). Firstly, MUX-PLMs are trained with the
token retrieval task in T-MUX, which is an auto-
encoding setup to decode all the tokens in the mul-
tiplexed input. This simple auto-encoding task is
critical to prime the model for MIMO-style data
multiplexing. The MUX-PLMs are then pre-trained
with standard pre-training objectives but adapted
to MIMO-fashioned training with data multiplex-
ing. MUX-PLMs show significant throughput im-
provement over standard pre-trained LMs while
matching their downstream task accuracies. Fi-
nally, MUX-PLMs, like other pre-trained language
models, provide general model initialization that
can be fine-tuned for any downstream task.

Contextual multiplexer T-MUX’s multiplexer
multiplexes tokens independent of 1) tokens in the
same position in other instances and 2) other to-
kens in the instance, which could lead to subop-
timal representations. We, therefore, explore a
contextual multiplexing scheme that aggregates
context both from tokens in the same instance
and tokens in the same position of other instances
(Figure 3). We first use a single transformer
layer TRANS .« to get contextual representations
h!, = TRANS. (x},...,x%)) of length L. We
apply a hadamard product with a multivariate gaus-
sian v* to all L positions.

gix =hi, OV 4)

We generate multiplexed representations, x"V%,

by applying another transformer layer TRAN S,
across encoded representations from N instances

199

at each position from 1 to L. This is done by trans-
posing g. and applying TRANS;,g;.

x"U% = TRANS o (8,) 5)

RSA demultiplexer The demultiplexer in T-
MUX requires a prefix whose length scales lin-
early with the number of instances (/V), thus reduc-
ing the effective context length during pre-training,
which degrades performance (Ainslie et al., 2020;
Zaheer et al., 2020; Beltagy et al., 2020). Further-
more, it decreases throughput during inference for
large N because the model must process an ex-
tra prefix of length IV for each of the N instances.
To address these issues, we draw inspiration from
the RSA cryptosystem (Rivest et al., 1978) to ran-
domly initialize and learn /V (private) key vectors
(ki,...,kn, k; € RY) which are keys that can
be used to demultiplex the output representation
(Figure 2).

h' = DeMUX (h""*, k')

. 4 6
h’ = DeMUX (h""*; k') ©

Akin to RSA, v; and k; can be treated as the
keys for multiplexing (encryption) and demulti-
plexing (decryption) while ensuring that, unlike
T-MUX, the input sequence length does not change
and thereby leading to an improvement in through-
put. Importantly, this architecture ensures that the
keys better transfer across the different stages of
training as they are no longer conditioned on the
input instances.

4 Experimental Setup

Datasets We pre-train all models on
Wikipedia (Foundation) and Bookscorpus (Zhu
et al., 2015). We evaluate on all datasets from
the GLUE benchmark (Wang et al., 2018), which
are CoLA (Warstadt et al., 2019), SST-2 (Socher
et al.,, 2013), MRPC (Dolan and Brockett,
2005), QQP (qqp), STS-B (Cer et al., 2017),
MNLI (Williams et al.,, 2018), QNLI (Wang
et al.,, 2018), RTE (Wang et al., 2018), and
WNLI (Levesque et al., 2012). We also evaluate
on token classification tasks — named entity
recognition (Sang and Meulder, 2003) and POS
tagging (Griinewald et al., 2021). We don’t report
average over the two smallest tasks in GLUE,
WNLI and CoL A, as we observe high variance
across seeds. All numbers are reported on the dev
split. We report scores for all tasks in Appendix E.

Model N GLUE Token ~

Mean (std) Max Mean (std) Max

BERT 1 854(0.0) 854 958(0.0) 958 1.0x
ELECTRA 82.1(0.0) 821 953(0.0) 953 1.0x
T-MUX 60.4 (0.6) 61.8 81.4(0.1) 815 19x
MUX-BERT! 2 825(0.6) 834 952(0.1) 954 2.0x
MUX-ELEC* 82.5(0.4) 83.1 950(0.0) 951 2.0x
T-MUX 59.7(0.6) 60.6 81.3(0.2) 815 44x
MUX-BERT! 5 80.3(0.4) 809 93.6(0.1) 93.6 4.9x
MUX-ELEC? 79.8(0.6) 80.5 93.4(0.0) 935 49x
T-MUX 58.1(0.5) 59.1 79.7(0.2) 80.0 8.4x
MUX-BERT! 10 77.8(0.6) 788 91.6(0.1) 91.8 9.8x
MUX-ELEC? 782(0.6) 79.0 91.7(0.1) 91.8 9.7x

Table 1: Average GLUE and token-level classifica-
tion scores for the BASE (L=12, H=768) configura-
tion, across ELECTRA, BERT, and MUX-PLMs for
N € {1,2,5,10}. { indicates our models and * indi-
cates throughput increase w.r.t. to a vanilla BERT sz
model. All models are evaluated on 5 seeds with mean
and max scores reported.

Models We experiment with ELECTRA and
BERT pre-training objectives and present the
pre-trained multiplexed models MUX-BERT and
MUX-ELECTRA for N = 2,5 and 10. To sim-
plify training, we use a random generator to train
MUX-ELECTRA models, presented as an ablation
in Clark et al. (2020), instead of using a smaller
masked LM. Except where otherwise noted, we
do not use the contextual MUX module, but in-
stead, use the RSA demultiplexing module. Refer
to Appendix B and C for implementation details.

Baselines We run experiments to compare our
models against T-MUX, from Murahari et al.
(2022) and baseline PLMs - ELECTRA and
BERT, across three different model configurations
(SMALL, BASE, and LARGE). We also provide a
comparison to results reported in recent PLM prun-
ing and distillation papers in Table 2.

Multi-run evaluation We evaluate all models
across 5 random seeds to reduce variance for
smaller datasets which is caused by the random-
ized order in which we multiplex instances in the
batch. We report both the average and maximum
scores across seeds in Table 1 to understand the
importance of ordering the multiplexed instances
and report average across seeds for all other results.

200

5 Results

5.1 Comparing MUX-PLMs with PLLMs and
T-MUX

Table 1 shows that both MUX-BERT and MUX-
ELECTRA outperform T-MUX at all levels of
multiplexing (V), with improvements between 12
and 20 points on GLUE and token-classification
tasks respectively. Furthermore, MUX-PLMs’ effi-
cient RSA-inspired demultiplexing method allows
it to achieve faster throughput than T-MUX, in-
creasing it by over 16% for N = 10.

Moreover, MUX-PLMs provide a significant
boost in throughput (/N times faster) when com-
pared to PLMs, without a significant loss in
performance. For example, MUX-ELECTRA
(N = 2) is 0.4 points better and only 0.3 points
worse than ELECTRA for GLUE and TOKEN
tasks respectively, while being 2 x faster. Similarly,
MUX-BERT (N = 2) is within 3 and 0.6 points of
BERT for GLUE and TOKEN tasks respectively,
while being significantly faster. We also observe
that as IV increases, MUX-PLMs’ throughput is
significantly better, though performance compared
to PLMs can degrade. This is because a large N
implies that MUX-PLMs must parallelly process
more instances, thus having to share network pa-
rameters and activations with a larger number of
instances, thus improving throughput and degrad-
ing performance. For example, the gap between
ELECTRA and MUX-ELECTRA on TOKEN for
N = 21is 0.2 points and increases to 3.5 points for
N = 10, which shows that NV serves as a parame-
ter to control the performance-throughput trade-off.
We explore this further in Section 5.3 and Figure 4.

5.2 Comparing MUX-PLMs with recent
model compression methods

We compare our MUX-PLM models with other
efficient learning methods, such as pruning and dis-
tillation, in Table 2. Contrary to other methods,
our vanilla MUX-PLMs achieve competitive per-
formance and significant throughput improvement
without additional unlabeled and task-specific data,
and can be easily fine-tuned to any downstream
task without any architectural modifications. For
instance, when compared to DistilBERT, MUX-
BERT (/N = 2) does 1 point worse on QNLI and 2
points better on QQP while being equally fast and
not requiring any additional unlabeled data.

More broadly, methods like CoFi, AutoTiny-
BERT, and MobileBERT show that combining a

201

Model Ve
BERT

MUX-BERT (N=2)
MUX-BERT (N=5)

QNLI QQP SST2

1.0x 905 912 917
2.0x 882 904 90.6
4.9x% 85.6 88.8 86.9

Use additional unlabelled or task-specific data

DistilBERTg 2.0x 892 885 913
Block Pruning 2.7x 89.7 - 912
Prune OFA 1.0x 90.3 912 915
Hybrid Approaches
TinyBERTg 2.0x 91.1 91.1 93.0
CoFi 2.7x 91.3 - 930
AutoTinyBERT 4.3% 89.7 899 914
MobileBERT 2.3% 91.0 - 921

Table 2: MUX-PLMs are complementary to existing
efficiency methods, while being competitive standalone.
Contrary to existing methods, MUX-PLMs do not use
additional unlabelled and task-specific data and can
be easily fine-tuned for any downstream task without
architectural modifications. The inference speedups ()
are reported against BERT, .

Config Model GLUE Token N
BERT 80.6 940 59x
SMALL T-MUX 59.5 81.8 8.7x
MUX-BERT! 79.0 933 11.5x
BERT 854 958 1.0x
BASE T-MUX 60.4 81.4 1.9x
MUX-BERT! 82.5 952 2.0x
BERT 85.8 956 0.3x
LARGE T-MUX 61.7 80.9 0.6x
MUX-BERT! 84.1 952 0.6x

Table 3: Changing the model size for MUX-BERT
(N = 2) models. Across different model sizes, MUX-
BERT outperforms T-MUX and achieve higher through-
put (indicated under * column). } = our models.

wide range of paradigms (for example, CoFi com-
bines structured pruning and knowledge distillation,
AutoTinyBERT combines knowledge distillation
and neural architecture search, and MobileBERT
combines knowledge distillation with novel archi-
tectural innovations) is a promising approach to-
wards efficient high-performance models.

Towards this end, MUX-PLMs are complemen-
tary in both approach and motivation to these meth-
ods, and can evolve in tandem with existing effi-
ciency methods. MUX-PLMs demonstrate the via-
bility of MIMO architectures for PLMs, in addition
to being complementary to existing approaches,
and we hope that MIMO architectures develop and
evolve with other efficiency approaches while lever-
aging the best of all efficiency methods.

5.3 Effect of varying model size

In this section, we show that our multiplexing
techniques work on a host of model sizes and
report results for MUX-BERT on three models
sizes, SMALL, BASE, and LARGE for N = 2 (Ta-
ble 3). We report results for other values of N
in the appendix. MUX-BERT’s performance is
close to that of BERT for all model sizes while
having a significantly better throughput (the gap
is less than 0.7 points for TOKEN tasks and 2.9
points for GLUE for close to twice the throughput).
Multiplexing works effectively on all model sizes,
with the drops with respect to BERT being 1.6 and
1.7 points on GLUE for SMALL and LARGE re-
spectively. MUX-BERT’s throughput is always
~ 2x that of BERT, which shows that a spectrum
of MUX-PLM model sizes can be multiplexed dur-
ing pre-training with competitive performance and
with significantly higher throughput.

87
L) o
_ 84 @
- (8]
5 (L)
s 81
g &’
2 N=1 [S)
77 @N=2
@ N-=5 s
74
150 400 1100 3000 8100 22000
Throughput (instances / sec.)
98
95 e | D @
o e
— (B) (s)
=92
k- [S]
N=1
88 @N=2
@ N-=5
85
150 400 1100 3000 8100 22000

Throughput (instances / sec.)

Figure 4: (Top) BERT GLUE performance and through-
put and (Bottom) BERT Token task performance and
throughput, for N € {1,2,5,10} with the SMALL,
BASE, and LARGE configurations (illustrated as S/B/L).
All multiplexed models lie either on or very close to the
Pareto frontier (shown in grey).

Pre-trained models typically have a performance-
computational efficiency trade-off, with larger mod-
els having better performance but worse compu-

Model Mux (N) MNLI Qor
NoEns Ens A NoEns Ens A
2 80.6 812 +06 904 908 +04
MUX-BERT 5 772 788 +16 888 89.7 +0.9
10 736 748 +12 869 877 +0.8
2 803 808 +05 906 909 +03
MUX-ELEC 5 770 784 +14 89.1 899 +0.8
10 746 760 +14 876 883 +0.7

Table 4: Ensembling results for MUX-BERT and MUX-
ELECTRA models for N € {2,5,10}. Ens denotes
Ensembling. Ensembling improves performance for all
the models, with the gains increasing with increasing N.
This suggests that the multiplexing approach can be nat-
urally adapted to load-balancing applications, where the
ensembling strategy can be changed based on demand.

tational efficiency. MUX-PLMs offers a similar
trade-off, with large N leading to better through-
put but lower performance. To understand this
trade-off, we plot the performance and through-
put of BERT and MUX-BERT for different model
sizes and draw the pareto-optimal envelope (Fig-
ure 4). For any model on the envelope, no model
has both better accuracy and throughput. Users
would only choose models on the envelope be-
cause for every model within the envelope, there
always exists a model on the envelope which has
both better performance and throughput. We note
that all multiplexed models lie either on or very
close to the Pareto frontier, for both TOKEN and
GLUE tasks. This suggests that given an accuracy
threshold, MUX-PLM models will usually be faster
than PLMs. For instance, if we wanted the highest
throughput model with a performance > 77% on
GLUE, the optimal BERT model is the SMALL con-
figuration with a throughput of 2815 (in/s), but for
the MUX-BERT model would be the N = 2 with
the SMALL configuration, achieving a significantly
higher throughput of 5539 (in/s).

5.4 Ensembling MUX-PLMs

As opposed to feeding N different instances to
MUX-PLMs to improve throughput, we consider
an alternate setting where we feed the same in-
stance IV times and build an ensemble by averag-
ing the NV class logits to make a single prediction.
We randomly permute the batch, after duplicating
the instance N times, to prevent distribution shift.
We use the BASE size models for N € {2,5,10}
for both MUX-BERT and MUX-ELECTRA (Ta-
ble 4). The ensemble model does significantly
better than the non-ensemble variant on both
MNLI and QQP for all values of N (e.g., 1.6 and

202

Mux (N) Model Mux Demux GLUE Token
MUX-BERT Non-contextual RSA-DeMUX 82.5 95.2

2 Ablation 1 Non-contextual Prefix 83.2 95.3
Ablation 2 Contextual RSA-DeMUX 823 95.3
MUX-BERT Non-contextual RSA-DeMUX 80.3 93.6

5 Ablation 1 Non-contextual Prefix 78.6 389
Ablation 2 Contextual RSA-DeMUX 76.8 94.2
MUX-BERT Non-contextual RSA-DeMUX 77.8 91.6

10 Ablation 1 Non-contextual Prefix 76.6 25.6
Ablation 2 Contextual RSA-DeMUX 76.0 93.3

Table 5: Ablation analysis for MUX-BERT (base con-
figuration) for N € {2,5,10}. Across most configura-
tions, the prefix demultiplexing variant performs worse
than our proposed approach and fails to converge for
token-level tasks for N € {5, 10} (underlined numbers).
The new contextual multiplexing variant (Contextual)
outperforms Non-contextual on token-level tasks.

0.9 points on N = 5 MUX-BERT for the two
tasks). We note that the improvement over the non-
ensemble variant (A) is better for higher IV, due to
the larger ensemble size. This result shows that non-
ensemble variants are faster but perform slightly
worse, while the ensemble variant performs better
but is slower. A spectrum of models lie between
these two extremes, where only a fraction of the
N multiplexed representations can be ensembled,
allowing users to trade off performance and speed.

6 Analysis
6.1 Ablation study

We analyze multiplexing and demultiplexing com-
ponents of MUX-PLMs and report the results in
Table 5. We consider two variants, one which uses
the prefix demultiplexing proposed in T-MUX in-
stead of our proposed RSA-DeMUX and another
which uses Contextual multiplexing instead of Non-
contextual. We note that Variant 1, which uses pre-
fix demultiplexing, performs worse than our MUX-
BERT, other than for N = 2. In fact, Variant
1 does not converge for TOKEN tasks for N =5
and N = 10 and performs 1.7 and 1.2 points worse
on GLUE when compared to MUX-BERT.
Variant 2 uses Contextual multiplexing which
takes into account other tokens present in the in-
stance and also tokens present in the same position
of other instances. This variant performs better than
Non-contextual for TOKEN tasks (almost over 1.7
points on TOKEN for NV = 10) but performs worse
for GLUE tasks. We believe that Contextual multi-
plexing’s better performance in TOKEN is because
the model needs to make a prediction for every
single position in the instance, which requires it
to efficiently multiplex all token positions in the

output. However, for GLUE tasks, the model needs
to make a prediction only for the [CLS] token, for
which Non-contextual multiplexing suffices.

6.2 Muxology: Analyzing hidden
representations of multiplexed models

To understand the nature of representations being
learned by MUX-BERT models, we analyze the
absolute value of activations and entropy of the
attention distribution across all the layers of the
Transformer encoder, averaged over the evaluation
split of WikiText-103 (Merity et al., 2016) (Fig-
ure 5). We report this analysis for different values
of N and for different model sizes.

1. Activation norms spike for MUX-BERT in the
last layer. Figure 5 (top) shows that activation
norms spike in the last layer for multiplexed models.
We believe this is because the model is preparing
for demultiplexing and is packing information from
all N instances, which makes the activations denser.
We believe MUX-BERT has learned to efficiently
encode multiple instances until the last layer where
it needs to make independent predictions for them.

2. Entropy of the attention weights of MUX-
BERT is lower than BERT for higher layers.
Figure 5 (bottom) suggests that MUX-BERT tends
to have lower entropy attention distributions on av-
erage as opposed to BERT for higher layers. This
could be related to Deshpande and Narasimhan
(2020)’s observation of pre-trained models having
peaky attention distributions in the higher layers,
with small irregularities. Since the model implicitly
has to use the same attention distribution for all the
multiplexed instances, the peaky distribution gets
reinforced and is further corroborated by higher
N having lower entropy in the final layer. We,
therefore, believe that MUX-BERT has learned to
create shared representations for multiple instances
to effectively use the instance-independent atten-
tion distribution.

6.3 Effect of data sampling strategies during
inference

During inference, our MUX-PLMs sample N in-
stances uniformly at random from the evaluation
set. However, other data-sampling strategies such
as clustering similar instances based on word-
overlap could improve performance. We explore
the effect of composition of N instances on the
performance of MUX-PLMs in Table 6. For
each model variant, we consider 5 random seeds

203

Small Base Large
1.0 o
0,
o o
0.8 5 \ /2,
= ./ ° .s.
5 S ¢ o .,./.....‘. _./ ‘
Z0.6 :§._—— J NV 2 S
T 0,
o—9 A .h',O/:~o\,_,\'é./ 3 . H
SN F T I S0 —e—e] R 510:0-0.0" *'* %0.0:0:%0.
0.4 ®0.0.0 .0' R ':-Q.g-o...o-O-O""-O.z
6

'/'.

D o, 05:918. Ve.0"%
2t Nitses o VTt N e e
«‘é /‘\. .\0—0/040 o oo X o ;:'.
= 2 :\ '/. ce "3‘ ¢
N’
/' A\Y .
\:/’0 '\:'é‘/t \. .
0 1 2 3 4 1 4 8 12 1 4 8 12 16 20 24
Layer Layer Layer
-o- N=1 -o- N=2 -e= N=5 N=10

Figure 5: Comparing (Top) Layer-wise activation and (Bottom) attention entropy of MUX-BERT and BERT, for
N € {2,5,10} across different configurations. Activation norms tend to spike for MUX-BERT in the last layer and
entropy of MUX-BERT is lower than BERT for higher layers.

N MUX-ELECTRA MUX-BERT

Best ticket Worst ticket A Best ticket Worst ticket A
2 83.1 82.0 1.1 83.4 81.8 1.6
5 80.5 78.9 1.6 80.9 79.7 1.2
10 79.0 77.3 1.7 78.8 77.0 1.8

Table 6: We consider 5 random seeds for every model
variant, which can be viewed as lottery tickets as the
seeds control the composition of N instances. We
present the difference between the worst and the best-
performing ticket across GLUE tasks and regularly see
a > 1 point difference.

which can be viewed as lottery tickets (Frankle and
Carbin, 2018). Since the random seed controls the
composition of N instances, we measure the differ-
ence (A) between the best-performing ticket and
the worst-performing ticket and average the perfor-
mance for all the GLUE tasks. A is consistently
greater than 1 point for all values of N for both
MUX-ELECTRA and MUX-BERT, and illustrates
the importance of the composition of IV instances.
An improved data sampling strategy could lead to
improvements and we leave this to future work.

7 Conclusion

We introduce MUX-PLMs, a class of high-
throughput pre-trained language models trained
with data multiplexing, a multi-input multi-output
(MIMO) architecture. Our MUX-PLMs models,
trained with novel MIMO modules, are competitive

with state-of-the-art PLMs on several downstream
tasks while achieving a many-fold increase in infer-
ence throughput. MUX-PLMs, similar to standard
PLMs, can be fine-tuned on any downstream task
to yield high-throughput, high-performance mod-
els. We hope our work inspires future research in
MIMO architectures for PLMs as a complementary
efficiency paradigm to existing approaches.

Acknowledgements

We gratefully acknowledge support from Google
Al Princeton, where Vishvak Murahari was a stu-
dent researcher for part of this work, and the Sam-
sung GRO program. We thank Mengzhou Xia, Jens
Tuyls, and Tianyu Gao, with special thanks to our
espresso machine.

References

Quora. data.quora.com/First—-Quora-
Dataset—Release—Question—Pairs. Ac-
cessed: 2022-10-15.

Armen Aghajanyan, Bernie Huang, Candace Ross,
Vladimir Karpukhin, Hu Xu, Naman Goyal, Dmytro
Okhonko, Mandar Joshi, Gargi Ghosh, Mike Lewis,
et al. 2022. Cm3: A causal masked multi-
modal model of the internet. arXiv_preprint
arXiv:2201.07520.

Joshua Ainslie, Santiago Ontafién, Chris Alberti, Philip
Pham, Anirudh Ravula, and Sumit Sanghai. 2020.

204

data.quora.com/First-Quora-Dataset-Release-Question-Pairs
data.quora.com/First-Quora-Dataset-Release-Question-Pairs

ETC: encoding long and structured data in transform-
ers. CoRR, abs/2004.08483.

Thomas Akam and Dimitri M Kullmann. 2014. Os-
cillatory multiplexing of population codes for selec-
tive communication in the mammalian brain. Nature
Reviews Neuroscience, 15(2):111-122.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Francisca Blumhagen, Peixin Zhu, Jennifer Shum, Yan-
Ping Zhang Schirer, Emre Yaksi, Karl Deisseroth,
and Rainer W Friedrich. 2011. Neuronal filter-
ing of multiplexed odour representations. Nature,
479(7374):493-498.

Daniel Cer, Mona Diab, Eneko Agirre, Ifiigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1-14.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for
pre-trained bert networks. In Advances in Neural
Information Processing Systems, volume 33, pages
15834—15846. Curran Associates, Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than gener-
ators. In International Conference on Learning

Representations.

Ameet Deshpande and Karthik Narasimhan. 2020.
Guiding attention for self-supervised learning with
transformers. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
4676—4686.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Wikimedia Foundation. Wikipedia.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning

Representations.

Rainer W Friedrich, Christopher J Habermann, and
Gilles Laurent. 2004. Multiplexing using synchrony
in the zebrafish olfactory bulb. Nature neuroscience,
7(8):862-871.

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing BERT: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 143—155, Online. Association for Com-
putational Linguistics.

Stefan Griinewald, Prisca Piccirilli, and Annemarie
Friedrich. 2021. Coordinate constructions in en-
glish enhanced universal dependencies: Analysis
and computational modeling. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 795-8009.

Marton Havasi, Rodolphe Jenatton, Stanislav Fort,
Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshmi-
narayanan, Andrew Mingbo Dai, and Dustin Tran.
2021. Training independent subnetworks for robust
prediction. In International Conference on Learning

Representations.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531.

Sungho Hong, Mario Negrello, Marc Junker, Aleksan-
dra Smilgin, Peter Thier, and Erik De Schutter. 2016.
Multiplexed coding by cerebellar purkinje neurons.
Elife, 5:¢13810.

Ting Jiang, Deqing Wang, and Fuzhen Zhuang. 2022.
Pruning pre-trained language models without fine-
tuning.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. pages 4163-4174.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Francgois Lagunas, Ella Charlaix, Victor Sanh, and
Alexander M Rush. 2021. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Thirteenth international conference on the principles
of knowledge representation and reasoning.

205

http://arxiv.org/abs/2004.08483
http://arxiv.org/abs/2004.08483
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://dumps.wikimedia.org
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://openreview.net/forum?id=OGg9XnKxFAH
https://openreview.net/forum?id=OGg9XnKxFAH
https://doi.org/10.48550/ARXIV.2210.06210
https://doi.org/10.48550/ARXIV.2210.06210
https://doi.org/10.48550/ARXIV.2001.08361

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. 2019. Rethinking the value of
network pruning. In International Conference on
Learning Representations.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Paul Michel, Omer Levy, and Graham Neubig.
2019. Are sixteen heads really better than one?
In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Vishvak Murahari, Carlos E Jimenez, Runzhe Yang,
and Karthik R Narasimhan. 2022. DataMUX:
Data multiplexing for neural networks. In
Thirty-Sixth Conference on Neural Information
Processing Systems.

OpenAl. 2023. Introducing chatgpt.

Friederice Pirschel and Jutta Kretzberg. 2016. Mul-
tiplexed population coding of stimulus proper-

ties by leech mechanosensory cells. Journal of
Neuroscience, 36(13):3636-3647.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When BERT Plays the Lottery, All Tickets Are Win-
ning. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3208-3229, Online. Association
for Computational Linguistics.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1-67.

Alexandre Ramé, Rémy Sun, and Matthieu Cord. 2021.
Mixmo: Mixing multiple inputs for multiple out-
puts via deep subnetworks. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 823-833.

Ronald L Rivest, Adi Shamir, and Leonard Adleman.
1978. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the
ACM, 21(2):120-126.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In CoNLL.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander Rush.
2020. Movement pruning: Adaptive sparsity by
fine-tuning. In Advances in Neural Information
Processing Systems, volume 33, pages 20378-20389.
Curran Associates, Inc.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low pre-
cision quantization of bert. In AAAIL

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical
methods in natural language processing, pages 1631—
1642.

Zhiqging Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic bert for resource-limited de-
vices. pages 2158-2170.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5797-5808, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In International
Conference on Learning Representations.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020.
Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625-641.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Association for Computational Linguistics
(ACL).

206

https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
https://openreview.net/forum?id=UdgtTVTdswg
https://openreview.net/forum?id=UdgtTVTdswg
https://openai.com/blog/chatgpt
https://doi.org/10.18653/v1/2020.emnlp-main.259
https://doi.org/10.18653/v1/2020.emnlp-main.259
https://proceedings.neurips.cc/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/2020.emnlp-main.496

Ziqing Yang, Yiming Cui, and Zhigang Chen. 2022.
TextPruner: A model pruning toolkit for pre-
trained language models. In Proceedings of
the 60th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 3543, Dublin, Ireland. Association for Com-
putational Linguistics.

Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang,
Xiao Chen, and Qun Liu. 2021. AutoTinyBERT:
Automatic hyper-parameter optimization for efficient
pre-trained language models. pages 5146-5157.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert.
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing - NeurIPS
Edition (EMC2-NIPS), pages 36-39.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen,
and Moshe Wasserblat. 2021. Prune once for all:
Sparse pre-trained language models. arXiv preprint
arXiv:2111.05754.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33:17283-17297.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. 2018. mixup: Beyond empirical
risk minimization. In International Conference on
Learning Representations.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International
Conference on Computer Vision (ICCV).

207

https://doi.org/10.18653/v1/2022.acl-demo.4
https://doi.org/10.18653/v1/2022.acl-demo.4

Hyperparameter MUX-BERT MUX-ELECTRA
SMALL BASE LARGE BASE
Number of layers 4 12 24 12
Hidden Size 512 768 1024 768
FFN intermediate hidden size 2048 3072 4096 3072
Attention heads 8 12 16 12
Attention head size 64 64 64 64
Mask percent 15 15 15 N/A
Learning Rate Decay Linear Linear Linear Linear
Warmup steps 10000 10000 10000 10000
Learning Rate [le-4, 5e-5] [le-4,5e-5] [le-4, 5e-5] [1e-4, 5e-5]
Adam € le-6 le-6 le-6 le-6
Adam S 0.9 0.9 0.9 0.9
Adam (s 0.999 0.999 0.999 0.999
Attention Dropout 0.1 0.1 0.1 0.1
Dropout 0.1 0.1 0.1 0.1
Batch Size 256 256 256 256
Sequence Length 512 512 512 512
Train Steps M M IM M

Table 7: Pre-train hyper-parameters for MUX-BERT and MUX-ELECTRA models. We only report results for the
Base configuration for MUX-ELECTRA models.

A Appendices
B Pre-training Details

We report all pre-training related hyper-parameters in Table 7. We primarily use the HuggingFace
Transformers implementations for BERT and ELECTRA based models. All pre-training experiments
were run on 8 A100 GPUs with distributed training. We run a small hyper-parameter search over over two
learning rates. All pre-trained models are primed with the token retrieval task introduced in Murahari
et al. (2022). We train on the Wikipedia and Bookscorpus datasets for up to 10000 training steps with a
learning rate of le — 4, and with a sequence length of 512.

For MUX-ELECTRA models, we don’t train a generator as in the original ELECTRA work, but only
use uniform-random token replacement. This is similar to what was used in ablations in ELECTRA (Clark
et al., 2020). The generator randomly replaces 15% of tokens in the input with other tokens in the
vocabulary.

C Fine-tuning Details

We report all the fine-tuning related hyper-parameters in Table 8. We run a small hyper-parameter search
on the learning rate, batch size and number of training steps for different tasks. All models were trained
with half-precision. We report numbers on the validation split. For GLUE tasks, we use the default metrics
in Wang et al. (2018) and use F1 for the token-level tasks. All fine-tuning experiments were trained on 1
V100 GPU.

Speedup calculation For all models, we calculate throughput (samples/second) on a single V100 GPU
and report throughput gains with respect to the BERTg,5z model. We calculate throughput by averaging
across 3 different trials (1 trial = 200 mini-batches) and use a batch size of 128 and a sequence length of
128 following prior work (Xia et al., 2022). We measure throughput for sequence-classification tasks on
QQP and measure throughput for token-level classification tasks on named entity recognition.

208

Hyperparameter Value
Learning Rate [2e-5, 5e-5]
Adam € le-8

Adam [0.9

Adam [0.999
Learning rate decay Linear
Warmup fraction 0.1
Attention Dropout 0.1
Dropout 0.1

Weight Decay 0

Batch Size [32, 128] for SMALL/ BASE, [16, 64] for LARGE

2000 for RTE and WNLI

10000 for MRPC, COLA and STSB
20000 for NER, SST2, QNLI and POS
[20000, 100000] for MNLI and QQP
128

Train Steps

Sequence Length

Table 8: Fine-tune hyperparameters

D Analysis details

D.1 Ensembling results setup

We find that multiplexing the same instance by duplicating the instance N times leads to worse performance.
This is likely because this input configuration is very out of distribution from what the multiplexed models
are trained on. To address this, we randomly permute the instances in the batch after duplicating the
instances N times. This ensures that the input to the multiplexer lies in a similar distribution to what the
model was trained on.

D.2 Muxology setup

To analyze the hidden states of pre-trained MUX-BERT models at different layers, we take the average
absolute value of hidden states and every layer for both multiplexed and baseline models, across different
configurations. To analyze the entropies of the attention distributions at different layers, we calculate the
attention distribution across different attention heads for each position in the sequence length. To measure
how peaky the attention distribution is likely to be, we calculate the entropies of the attention distributions
at all positions and average across all the positions and across all the attention heads to get the average
entropy for all layers. We conduct this analysis on WikiText-103 and average across all the samples in the
evaluation split.

E Task performance breakdown for all variants

209

Model Size' N MNLI QQP QNLI MRPC WNLI STSB RTE SST2 COLA GLUE GLUE_wniL coLa

1 7786100 88.99100 84.00400 77.70100 5634100 84.25.00 62.45.00 88.88. 00 4348.00 73.77 80.59
SMALL 2 7509101 88.88401 8431102 7975107 50.99:g1 82.65i03 5552415 87.04107 30.64117 70.54 79.03
5 7050401 86.391401 8123109 7426410 54.65:33 7990190 5856119 8257193 1278116 66.76 76.20
10 61.98.p1 80.85+01 6347193 70.69109 56.62143 3693110 5357418 8039104 1.10499 56.18 63.98
1 8424.00 9119100 90.54.00 8775100 5634 00 89.18. 00 63.18. 00 91.74. 00 58.79.00 79.22 85.40
BASE 2 80.59101 90361401 8817101 8377114 5070470 8584101 58.19416 90.62406 5561116 75.98 82.51
5 77.184102 8879401 8558101 80.10406 53.524195 8428102 59.13112 86.88404 1233494 69.75 80.28
10 73.62403 8694401 82.08403 78.63106 52.68:i60 81.62102 5827124 8344106 0.00490 66.36 77.80
1 8579100 9146400 922900 83.82100 56.34.00 89.53.00 66.0600 914000 57.79:00 79.39 85.76
LARGE 2 8323,p2 90.85491 90.66102 8490105 56.34.00 8822102 5921409 9138404 57.89:15 78.08 84.06
5 7955402 8937101 8741402 8377111 5493100 8586403 57.26420 88.65107 46.66109 74.83 81.70
10 3545100 63.18100 50.54100 6838400 56.90.52 82.8lig2 52.13419 5092400 1.87446 S51.35 57.63

Table 9: We show the full GLUE results for MUX-BERT. We report the mean accuracy and standard deviation over
5 seeds. Extrema and values within their standard deviation are emphasized for each model size.

Model Size N MNLI QQP QNLI MRPC WNLI STSB RTE SST2 COLA GLUE GLUE_wnii coLa

1 7786 8899 84.00 7770 5634 8425 62.45 88.88 4348 73.77 80.59
SMALL 2 7521 89.01 84.61 80.64 6197 8297 58.12 87.84 33.08 72.61 79.717
5 7066 86.46 81.60 7574 6197 8024 60.65 8349 1557 68.49 76.98
10 62.17 8093 6385 71.81 6338 3820 5596 8096 2.63 57.77 64.84
1 8424 9119 9054 87.75 5634 89.18 63.18 91.74 58.79 79.22 85.40
BASE 2 80.82 9047 8828 86.03 6620 86.06 60.65 91.51 5693 7855 83.40
5 7766 88.89 8570 81.13 59.15 8447 60.65 8750 1579 71.22 80.86
10 74.04 87.03 8245 7941 6338 81.89 6245 8429 0.00 68.33 78.79
1 8579 9146 9229 8382 5634 89.53 66.06 9140 57.79 79.39 85.76
LARGE 2 8340 9094 9096 86.27 5634 8850 60.29 91.86 60.50 78.78 84.60
5 79.69 8943 8781 8480 5775 86.49 60.65 8945 4756 7596 82.62
10 3546 63.18 5089 6838 6197 83.04 5560 5092 7.5 53.00 58.21

Table 10: We show the full GLUE results for MUX-BERT. We report the maximum accuracy over 5 seeds. Extrema
are emphasized.

N MNLI QQP QNLI MRPC WNLI STSB RTE SST2 COLA GLUE GLUE_wnLL coLa
1 81.49.00 90.73.00 89.73. 00 7598100 5634 00 87.73. 00 5776100 9151 99 56.79. 00 76.45 82.13
2 80.29102 90.58.01 88.39.02 83.73.07 57.18.5; 86.804101 58.77111 88.65104 5192117 7626 82.46
5 76.9910_2 89.08i0_0 85-40i0.3 80-25i].6 56'90i4.5 84.2710_2 57.2611_0 85.09i1_0 26.8911.2 71.35 79.76
10 74.62402 87.63101 8270102 77.89107 50.99.49 8196105 59.86401 82.71i05 27.76405 69.57 78.20

Table 11: We show the full GLUE results for MUX-ELECTRAgasg. We report the mean accuracy and standard
deviation over 5 seeds. Extrema and values within their standard deviation are emphasized for each model size.

N Retreival Rate MNLI QQP QNLI MRPC WNLI STSB RTE SST2 COLA GLUE GLUE_wnL, coLA
0.0 8323102 90.85101 90.6610> 8490105 56.34100 88.22102 59.21.09 91.38.04 57.89115 78.08 84.06
2 0.1 8355103 90.90.0; 90.58.0> 8549.11 5634100 8828102 57.76114 90.69:i05 59.36114 78.11 83.89
0.2 8350501 9096101 90.69.0> 84.95.05 56.34.00 88.28: 02 58.34:16 90.69i05 59.17:15 7810 83.92
0.5 8341102 9091100 9047101 8525105 56.34100 88.02191 59.35:16 89.52106 59.41:20 78.08 83.85
0.0 79.554+02 8937101 874102 83.77+11 5493400 8586403 5726420 88.65. 07 46.66.09 74.83 81.70
5 0.1 794901 89.34.01 87.25.03 8181413 5324116 8580402 5560 24 881907 47.60.;0 7426 81.07
0.2 793701 894201 87.23.03 8240411 5493100 8585 02 5538.06 8784108 4358112 74.00 81.07
0.5 7924401 89.304+01 8721403 82.06417 5634400 859702 5227440 88.58i06 47.01:103 7422 80.66
0.0 354500 63.18.:00 50.54.00 68.38.00 5690.52 828102 52134119 5092400 1.87446 5135 57.63
10 0.1 3545.00 631800 50.65.p2 6838100 5493.50 445115 5148194 509200 1.341,5 4231 46.36
0.2 354500 6318100 5021i05 6843108 54.65142 023415 5235400 S172404 029407 4183 45.94
0.5 354500 6318100 5043104 68.38.00 56.06106 820106 527100 5092400 151497 5118 57.58

Table 12: GLUE results for MUX-BERT srge When using a retrieval auxiliary objective during MLM pretraining
with different trade-off rates to the MLM objective. We report the average accuracy over 5 seeds. Extrema and
values within their standard deviation are emphasized for each value of N.

210

N Mux Strategy ~ MNLI QQP QNLI MRPC WNLI STSB RTE SST2 COLA GLUE GLUE_wnL1 coLa

MUX-BERT 80.59+0.1 90.36+01 88.17+01 83.77414 50.70170 85.84101 58.19416 90.62406 55.61416 7598 82.51

2 DataMUX 81.64i0>2 90.67i0_1 88.39i0_2 84'17i04 56-34i0.0 86.36i0.2 60.87i()‘7 90-50i0.4 53-74i1.0 76.96 83.23
Attention 81 ~32i0.2 90.65i0,0 88.77i0‘1 80.88i0,6 56.3410,0 86.25i0‘1 56.90i1,2 91.06i0,2 47.1 Sil‘l 75.48 82.26
MUX-BERT 77.18102 88.79+01 85.58.01 80.10406 53.52105 84.28.102 59.131:2 86.88.04 1233424 69.75 80.28

5 DataMUX 7632401 89.13.01 8422193 7838109 5944135 8178104 5415113 86.17+04 28324095 70.88 78.59
Attention 7716.01 8871109 8433101 70494106 54.08.32 8037103 5444.55 8195.03 34.67112 69.58 76.78
MUX-BERT 73.62105 8694101 8208203 78.63106 52.68i60 81.62102 5827104 8344106 0.00i00 66.36 77.80

10 DataMUX 7274101 87.88+01 8228402 7730405 5634100 78.07404 5531412 8236403 1356439 67.32 76.56
Attention 7183102 88.00.00 8146402 7353105 5324154 8295:02 5271400 81284104 3284106 68.65 75.97

Table 13: GLUE results for MUX-BERTj}, s using alternative multiplexing-demultiplexing strategies. We report
the average accuracy over 5 seeds. Extrema and values within their standard deviation are emphasized for each
value of N.

Model Size N MNLI QQP QNLI MRPC WNLI STSB RTE SST2 COLA GLUE GLUE_wniL coLa

2 61480 8033 00 60.05. > 6843 05 5634.00 1502104 5112406 79.75103 822107 53.42 59.45
SMALL 5 5835102 7750401 5717403 6838100 563400 1131193 5170413 77.78+403 6.02407 51.62 57.46

10 53.63102 77.03101 51.22103 6838.00 5746.63 1240113 5235197 5092100 0.00400 47.04 52.28

2 63.29.03 8142407 6035), 6838102 5690458 17.65110 51.19417 80.78105 9.621;5 54.40 60.44
BASE 5 60.67+02 7942401 5977102 69.61.0g 53.80+73 1492415 527108 8115106 10354117 53.60 59.75

10 59.07402 78.22401 5799405 6838100 60.28:30 11.83106 53.07411 7835411 740417 5273 58.13

2 64.64100 8210101 6021i02 69.95.09 5634100 2162104 5271400 8034109 872401 55.18 61.65
LARGE 5 6078405 78.56101 60.19403 69.51i05 5634100 1733111 5271i00 7828405 1063107 53.81 59.62

10 48.7910_6 68.41i0_1 55-76i0.8 68.5810_6 58.5913_3 8-38;{:1_1 54.95;&()_9 64.82i1_0 3.48;&3_9 47.97 52.81

Table 14: GLUE results for T"MUX with the original training recipe and implementation from Murahari et al.
(2022). We report the average accuracy and standard deviation over 5 seeds. Extrema and values within their
standard deviation are emphasized for each model size.

211

