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Abstract

While fully supervised relation classification
(RC) models perform well on large-scale
datasets, their performance drops drastically
in low-resource settings. As generating anno-
tated examples are expensive, recent zero-shot
methods have been proposed that reformulate
RC into other NLP tasks for which supervi-
sion exists such as textual entailment. How-
ever, these methods rely on templates that are
manually created which is costly and requires
domain expertise. In this paper, we present a
novel strategy for template generation for re-
lation classification, which is based on adapt-
ing Harris’ distributional similarity principle
to templates encoded using contextualized rep-
resentations. Further, we perform empirical
evaluation of different strategies for combin-
ing the automatically acquired templates with
manual templates. The experimental results
on TACRED show that our approach not only
performs better than the zero-shot RC meth-
ods that only use manual templates, but also
that it achieves state-of-the-art performance for
zero-shot TACRED at 64.3 F1 score.

1 Introduction

Relation classification (RC) identifies the relation
that holds between two entities that co-occur in
the same text. For example, given the sentence:
Jane’s White House desk has a sign “Home on
the Range”, the relation between Jane and White
House is employee_of. Beyond this simple ex-
ample, RC is a critical NLP task with important
applications to many domains such as intelligence
(Doddington et al., 2004) and biomedical (Nédellec
et al., 2013; Krallinger et al., 2017).

Recent directions mitigate the amount of super-
vision necessary for RC by taking advantage of
the knowledge stored in large language models
(LLMs). For example, Sainz et al. (2021) reformu-
lated RC as an entailment task based on templates
that are manually created as the verbalizations of

relation labels. Then they are used to formulate
a hypothesis that can be verified with an off-the-
shelf LLM entailment engine. Other directions
feed prompts that capture the definition of the task
and examples into encoder-decoder language mod-
els (Han et al., 2022b). However, most of these
directions tend to rely on templates/prompts that
are manually-created by domain experts. This strat-
egy has a potential high cost, and also runs the risk
of inserting undesired biases in the data. Directions
that focus on automatically learning prompts often
produce prompts that are nonsensical to humans
(Shin et al., 2020)

Our work aims to limit the above drawbacks
of template-based approaches for RC. In particu-
lar, we expand the approach of Sainz et al. (2021)
with explainable templates that are automatically
acquired from a large textual collection. For tem-
plate acquisition, we modify the BERT-Informed
Rule Discovery (BIRD) algorithm (Rahimi and Sur-
deanu, 2022), which, given a seed template, auto-
matically generates templates with similar meaning.
BIRD encodes templates using contextualized rep-
resentations generated by a transformer network
(Devlin et al., 2019), and then uses a similarity
measure to acquire similar templates based on an
extension of the distributional similarity principle
(Harris, 1954) to templates. For example, given a
manual template {subj} was founded by {obj},
the template {subj} was created by {obj}is
automatically created.

We use these automatically-acquired templates
to expand the pool of manual templates used for
RC, and show that this expansion yields statistically
significant performance improvements.

The key contributions of this paper are:

* We introduce a novel strategy for template
generation for RC, which is based on adapting
Harris’ distributional similarity principle to
templates encoded using contextualized repre-
sentations.

187

Proceedings of the Sth Workshop on Representation Learning for NLP (RepL4NLP 2023), pages 187-195
July 13, 2023 ©2023 Association for Computational Linguistics



* We perform an empirical analysis of different
strategies for how to combine automatically-
acquired templates with templates that were
manually generated. The strategies include se-
lection using entailment score, selection using
BIRD’s similarity score, and selection guided
by the lowest entropy. All in all, our best com-
bination obtains state-of-the-art performance
for zero-shot TACRED, at 64.3 F1 score.

2 Related Work

Supervised Relation Classification. Most recent
approaches for supervised relation classification
use pre-trained language models such as models
with self-supervised objectives, e.g., BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) and
GPT-3 (Brown et al., 2020), or adapt sequence-to-
sequence models to the task, such as TS5 (Raffel
et al., 2020), BART (Lewis et al., 2020), and GLM
(Du et al., 2021). Prior to the advent of large lan-
guage models supervised models needed a large
amount of labeled data for training models from
scratch (Kambhatla, 2004, Zeng et al., 2014). Re-
cent approaches outperform traditional approaches
by finetuning language models (Wu and He, 2019,
Joshi et al., 2020, Yamada et al., 2020, Wang et al.,
2021b, Lyu and Chen, 2021, Paolini et al., 2021,
Wang et al., 2022a) or prompting (Han et al., 2022b,
Han et al., 2022a, Zhang et al., 2023).

Our work is different in that we focus on the zero-
shot scenario, a common situation in the real world,
where a RC system must be developed rapidly with-
out the luxury of training data.

Zero-shot Relation Classification. Getting ac-
curate annotations for RC can be expensive be-
cause it is challenging for annotators to identify
and come to a consensus on the structural infor-
mation required. This poses an obstacle for RC
models, which have traditionally depended on di-
rect supervision from a sufficient end-task training
data. Standard supervised models often perform
poorly when dealing with low-resource situations
(Schick and Schiitze, 2021), highlighting the im-
portance of developing methods that perform well
in low-resource settings. As a result, several ap-
proaches have been proposed for relation classifica-
tion with few training examples (Han et al., 2018,
Gao et al., 2019, Baldini Soares et al., 2019, Sabo
et al., 2021, Sainz et al., 2021). For the problem of
zero-shot relation classification, Rocktischel et al.
(2015) and Demeester et al. (2016) proposed the

use of logic rules. Wang et al. (2022b) used sil-
ver standard data cleaned by a class-aware clean
data detection mechanism to train a textual entail-
ment engine. In the literature, zero-shot RC has
been reformulated as other tasks such as reading
comprehension (Levy et al., 2017), textual entail-
ment (Obamuyide and Vlachos, 2018, Sainz et al.,
2021, Wang et al., 2022b), summarization (Lu
et al., 2022), span-prediction (Cohen et al., 2020),
question answering (Cetoli, 2020), triple genera-
tion (Wang et al., 2022a, Wang et al., 2021a), and
prompting (Gong and Eldardiry, 2021).

Our work fits within this latter group. However,
our contribution is that it mixes manual seed tem-
plates with explainable templates automatically ac-
quired using the distributional similarity principle
tailored for templates. Our results indicate that this
simple strategy yields state-of-the-art performance
on a popular zero-shot RC task.

3 Background

As mentioned, our zero-shot approach for relation
classification relies on an entailment engine that
is fed automatically-generated templates. In this
section we discuss the building blocks necessary
for this idea.

3.1 The Relation Classification Task

In the relation classification task we intend to clas-
sify a sentence with two marked entities into a pre-
defined set of relations, or indicate that none of the
relations hold between them (none-of-the-above
or NOTA). Each input is a triple z; = (s, e1,€32);
which consists of a sentence s with an ordered pair
of two entities e; and e (each entity is a span over
s). The output r € R U {NOTA} indicates the two
entities conform to one of the relations defined in
the target set of R = {ry,72,...,rn} or none of
the relations hold.

3.2 Zero-shot RC as an Entailment Task

Since our work is based on the works of Sainz et al.
(2021) that reformulated RC as an entailment task
on TACRED dataset, we provide an overview of
their work. In a zero-shot setup no training ex-
amples are provided to the model. Therefore, the
RC model must make predictions on relation in-
stances without seeing any related data prior to that.
By reformulating RC as an entailment task, it is
possible to take advantage of the existing off-the-
shelf entailment engines and use them as-is. Fig-
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‘ Pandit was born in Old Lane Partners. [ per:place_of_birth ‘

Pandit worked at the

brokerage Morgan Stanley for

‘ Pandit’s birthday is on Old Lane Partners. ‘ per:date_of_birth ‘

about 11 years until 2005,

when he and some Morgan

[ Pandit is Old Lane Partners years old. ‘ per:age

\

Stanley colleagues quitand
later founded the hedge fund
Old Lane Partners.

‘ Old Lane Partners was founded by Pandit. ‘ org:founded_by ‘

Premise

Hypothesis

EntailmentEngine

Figure 1: Overview of the entailment-based zero-shot
relation classification approach via label verbalization.

ure 1 demonstrates the overview of the approach.
First, a set of templates are manually created for
each relation type in TACRED. The templates ver-
balize the relation types. For example, the re-
lation PER:DATE_OF_BIRTH can be verbalized as
{subj}’s birthday is on {obj}. Sainz et al.
(2021) manually created 2 templates on average for
each relation type. After that, an entailment engine
is used to perform inference on each example in
TACRED’s test set. For each such example, the
{subj} and {obj} placeholders of all the templates
are replaced with the two marked entities of the
example. After that, we use the TACRED exam-
ple as premise and each template as hypothesis to
feed them to an entailment engine. The entailment
engine will produce an entailment score for each
template. We pick the template with the highest
score and return its corresponding relation type as
the final prediction.

For the NOTA relation, however, creating tem-
plates does not produce good results. As a result, a
threshold-based approach is used to detect NOTA.
A threshold (between O and 1) is selected for the
NOTA relation. If none of the entailment scores
are above this threshold, the input example will
be classified as NOTA. The treshold is selected by
using 1% of TACRED’s development set.

3.3 Rule Acquisition

BERT-Informed Rule Discovery or BIRD (Rahimi
and Surdeanu, 2022) is a rule' acquisition algo-
rithm. Informally, BIRD learns inferences from

! Alternatively called patterns or syntactic paths.

text such as “X is the author of Y = X writes Y.
Some of these inferences are not exact paraphrases
(but are still relevant and potentially useful) such
as “X is the author of Y =~ X is known for Y. More
formally, BIRD is initialized with a seed rule (e.g.
“X is the author of Y”’), which is implemented as a
syntactic path connecting two concepts, and infers
one or more possible matches (e.g. “X writes Y
where each match is a syntactic path. BIRD gener-
ates the matches by implementing Harris’ Distribu-
tional Hypothesis principle (Harris, 1954) to rules.
It states that if two patterns tend to link the same
sets of words, they tend to have similar meanings.

BIRD relies on contextualized representations
generated by a transformer network (Devlin et al.,
2019). In particular, a pattern has two slots (X and
Y); BIRD computes contextualized embeddings for
each slot. By doing so, a pattern will be repre-
sented by two embedding vectors. Then a (cosine)
similarity score is calculated between each slot of
any given two patterns, i.e., one similarity score
is calculated for slot X and one similarity score is
calculated for slot Y. Finally, the average of the
two similarity scores is computed as the similarity
score between the two patterns.

Given a corpus, BIRD extracts and stores all pat-
terns from the corpus and then computes the contex-
tualized embeddings for each slot of each pattern.
Therefore, given a pattern, BIRD can search the
extracted patterns space and find the most similar
patterns to the input pattern.

3.4 TACRED Dataset

TACRED (Zhang et al., 2017) is a large-scale re-
lation classification benchmark that is consisted
of 106,264 examples and 42 relation types includ-
ing the no_relation (NOTA) label. Each exam-
ple contains the information about the entity type,
among other linguistic information. TACRED ex-
amples include 68,124 for training, 22,631 for vali-
dation, and 15,509 for testing.

4 Approach

One limitation of (Sainz et al., 2021) is that they
rely on manually-generated templates, which re-
quire effort to create and may prone to bias. Our
work mitigates this limitation by automatically ex-
panding the manual patterns using BIRD.

We utilize the manual templates as seed pat-
terns to feed them into BIRD to generate new pat-
terns that tend to have similar meanings to the
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Manual Template

‘ {subj} was founded by {obj}. ‘

H Extract Syntactic Path
AV

nsubjpass—found—nmod agent

| m—p3 BIRD

nsubjpass«—create—nmod_agent X was created by Y

nsubjpass«start—nmod_agent X was started by Y
nsubjpass—establish—nmod_agent X was established by Y
nsubjpass—form—nmod agent X was formed by Y
nsubjpass«introduce—nmod_agent X was introduced by Y
nsubjpass«develop—nmod_agent Y X was developed byY
nsubjpass«represent—nmod_agent X was represented by Y
nsubjpass«launch—nmod_agent X was launched by Y
nsubjpass«build—nmod_agent X was built by Y

nsubjpass«—lead—nmod agent Xwas led by Y

Figure 2: The process of using manual templates as seed pattern to generate similar patterns by BIRD.

Manual Template BIRD-generated Pattern

Manual Template BIRD-generated Pattern

| {subj}was founded by {obj}. ‘ ‘ X was created by Y |

‘ {subj}was founded by {obj}. | | X was created by Y |

J l

Example Sentence Example Sentence

l l

Example Sentence Example Sentence

Google was founded by Larry Page.

| Google was created by Larry Page.

Larry Page was created by Google. |

| Google was founded by Larry Page.

Premise Hypothesis

Entailment Engine

Contradiction Neutral Entailment

0.001 0.003 0.997

Premise Hypothesis

Entailment Engine

Contradiction Neutral Entailment

0.621 0.062 0.317

Figure 3: The process of determining the subject and object of a pattern generated by BIRD.

manual templates. Figure 2 shows this process.
For each manual template, we extract its syntac-
tic path. For example, for the template {subj}
was founded by {obj}, we extract the syntac-
tic path nsubjpass<found—nmod_agent (X was
founded by Y). Then the syntactic path is fed to
BIRD to generate new syntactic paths. We gen-
erate 40 patterns for each manual template. Af-
ter the syntactic paths are generated, we generate
their corresponding English text using a module
we created. For example, for the syntactic path
nsubjpass<-create—nmod_agent, the English
text “X was created by Y” is generated.

The corresponding patterns of 12 manual tem-
plates did not exist in BIRD’s pattern collection.
Therefore, it was not possible to use them as seed
patterns. For these templates we manually selected
an existing high-quality pattern that was very close
in meaning. For example, the pattern “X is spouse
of Y” did not exist in BIRD’s pattern collection.

We chose the pattern “X married Y” instead.

4.1 Determining Subject and Object of a
Pattern

The manual templates have {subj} and {obj}
placeholders which correspond to the subject and
object of a relation, respectively. The patterns gen-
erated by BIRD do not contain this information.
That is, it is unclear what the mapping is between
the X and Y slots in a BIRD template and {subj?}
and {obj} in a relation template. Therefore, it is
necessary to determine which slot of a pattern is
the subject and which slot is the object. We use our
off-the-shelf entailment engine to determine this
information. Figure 3 demonstrates this procedure.
For each generated pattern, we create an example
sentence for its seed manual template. This exam-
ple sentence will be used as premise. As for the
hypothesis, we create two example sentences for
the pattern by using the same words that filled the
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placeholders of the seed manual template to fill the
slots of the pattern. The two example sentences are
the same sentence except their slot-filler words are
swapped. One of these two hypotheses is expected
to have a similar meaning to the manual template’s
example sentence. Therefore, we expect the en-
tailment engine to produce a high entailment score
for it and to produce a low score for the other one.
We pick the hypothesis with the highest entailment
score to determine the subject and object of the
pattern. If the entailment engine produces entail-
ment scores below 0.5 for both of the hypotheses,
we discard the pattern. By determining the sub-
ject and object of the patterns, they become fully
functioning templates.

4.2 Selection of Patterns

After the templates are generated and set up, a selec-
tion mechanism is required to keep the most useful
ones and discard the rest.” We always keep all of
the manual templates and the selection mechanism
is only applied on the BIRD-generated ones.

4.2.1 Selection using entailment score

In subsection 4.1, it was explained that an entail-
ment score is obtained for each BIRD-generated
pattern when the subject and object of the pattern
is determined. We use this entailment score to sort
the templates and keep the top ones.

4.2.2 Selection using BIRD’s similarity score

For a seed pattern, BIRD generates similar patterns
using a similarity measure. This yields a similarity
score for each BIRD-generated pattern. We use
this similarity score to sort the templates and keep
the top ones.

4.2.3 Selection guided by lowest entropy

A low entropy for the prediction of a classifier
means that the classifier was more confident when
making the prediction. We use this idea to pick the
templates that together result in the lowest entropy.
For each TACRED test set example, we perform
the following. For each relation r; € R, we pick
the template (from the pool of templates for r;) that
produces the highest prediction score (entailment
score when TACRED example is premise and the
template is hypothesis). For all r; € R — {r;}, we
pick the template (from the pool of templates for
r;) that produces the lowest prediction score. The

Keeping all of the templates resulted in poor performance
in our experiments.

combination of these chosen templates create one
candidate set of templates. This procedure is done
for each r; € R. As aresult, we will have 41 can-
didate sets. Each candidate set is expected to have
a low entropy. We keep the candidate set with the
lowest entropy. Note that during the candidate sets
creation process, we never look at the gold labels
and merely use the model prediction scores.

4.3 Inference

After the final set of templates is selected, we per-
form the inference according to the method de-
scribed in Sainz et al. (2021) as shown in Figure
1. During inference, they pick the template that
produces the highest entailment score and return its
corresponding relation type as the final prediction.
In addition to using the “highest entailment score”,
we also experimented with two additional meth-
ods to perform the final prediction. Firstly, instead
of choosing the relation type that has the highest
entailment score, we computed the average of the
top 3 highest entailment scores for each relation
type, and then we pick the relation type that has
the highest amount of this average. Secondly, we
used a normalized unweighted voting mechanism.
For each template, if its entailment score is more
than its neutral and contradiction scores, we count
this template as a positive vote. We count these
positive votes for each relation type and then di-
vide the count by the total number of templates for
the relation type. The relation type with the high-
est normalized votes will be selected as the final
prediction.

5 Experiments

5.1 Experimental Settings

We conducted our experiments on TACRED using
the zero-shot RC setup from Sainz et al. (2021). For
our experiments, we used DeBERTa which was the
off-the-shelf entailment engine that produced the
highest results in Sainz et al. (2021).

The set of templates that we used for our experi-
ments included all of the manual templates as well
as a small subset of the BIRD-generated templates.
The subset was selected according to the pattern
selection methods explained in subsection 4.2. Ini-
tially, we generate 40 patterns per each manual
template. After that, we sort the generated patterns
according to a scoring measure and keep the top k
patterns with k = {1,2,3,4}>.

3Values of k higher than 4 did not yield better performance.
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The no_relation threshold was selected using 1%
of the validation set. Sainz et al. (2021) divided
the validation set to 100 stratified folds, ran 100
experiments for each fold, and obtained 100 f1
scores. They reported the median f1 score along
with f1 standard deviation. We do the same.

5.2 Results

Table 1 shows the zero-shot RC results including
our best results which were obtained using “entail-
ment score” as pattern selection method and “high-
est entailment score” as inference method. Third-
party results are as reported by authors. The table
indicates that our results match the current state-of-
the-art for zero-shot TACRED (Zhang et al., 2017),
and are 1.5 F1 points above Sainz et al. (2021)’s re-
sults. The improvement in F1 comes from both bet-
ter precision and better recall. In order to confirm
that the difference in F1 scores between our method
and (Sainz et al., 2021) is statistically significant,
we ran a significance test using bootstrap resam-
pling experiment with 1000 samples. This test indi-
cated that the difference in F1 scores between our
method and (Sainz et al., 2021) is statistically sig-
nificant with a p-value of 0.3. We find these results
encouraging considering that the manual patterns
in Sainz et al. (2021) were manually developed
by domain experts, whereas the pattern acquisition
method in BIRD was developed independently of
the TACRED task and its distributional similarity
statistics were acquired from a different dataset (a
Wikipedia subset) (Rahimi and Surdeanu, 2022).

We experimented with different pattern selection
methods as shown in Figure 4. We observed that
entailment score performed better overall than the
rest. We also observed that as the number of added
templates increased, the performance of the models
decreased indicating that increasing the number of
templates had a negative effect on performance. In
general, while BIRD’s similarity score was more
robust as more templates are considered, the best
result was obtained with one added template. Fur-
thermore, we experimented with different inference
methods as shown in Figure 5 when the pattern
selection method was entailment score (since it
produced the highest results). We observed that
highest entailment score performed better than the
rest. We hypothesize that this is caused by the
relatively noisy BIRD generated templates, which
suggest that future work is needed to better align
BIRD’s output with the entailment-driven RC task.

Model Pr. Rec. F1
SuRE - - 20.6
DEEPSTRUCT - - 36.1
DEEPEX - - 49.2
Zero-shot SQUAD  49.7 789 57.1
NLIpeBERT2 66.3 59.7 628+1.7
Wang et al. (2022b) - - 643 +1.2
NLIgrp (ours) 68.8 604 643+1.3

Table 1: Zero-shot RC results. Our best results was
obtained by using “entailment score” as pattern selec-
tion method and “highest entailment score” as inference
method. Top six rows are from third-party zero-shot
RC systems as reported by authors. Third party results
are from SuRE (Lu et al., 2022), DEEPSTRUCT (Wang
et al., 2022a), DEEPEX (Wang et al., 2021a), Zero-shot
SQuAD (Cohen et al., 2020), NLIpeggrTa (Sainz et al.,
2021), and Wang et al. (2022b).
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6 Conclusions

This paper introduces a zero-shot approach for re-
lation classification. Our direction expands the
method of Sainz et al. (2021), which converts the
relation extraction task into textual entailment that
is informed by manual templates that character-
ize the relations of interest. Unlike Sainz et al.
(2021), we combine manual templates with tem-
plates that were automatically-acquired using an
adaption of Harris’ distributional similarity prin-
ciple to templates encoded using contextualized
representations.

We empirically evaluate our approach on a zero-
shot setting of the TACRED relation classification
task (Zhang et al., 2017). We investigated multiple
strategies to rank the quality of the automatically-
acquired templates. All in all, we found that a
simple strategy, which considers the top template
as ranked by a textual entailment engine, performs
the best. Our results match the current state-of-
the-art for zero-shot TACRED. We find this result
exciting, especially considering that the template
acquisition component is disconnected from the
TACRED dataset. Beyond these results, this paper
opens interesting questions for future work such as
how to increase the relevance of the automatically-
acquired templates for a specific task.
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