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Abstract

We propose KGT5-context, a simple sequence-
to-sequence model for link prediction (LP) in
knowledge graphs (KG). Our work expands on
KGT5, a recent LP model that exploits textual
features of the KG, has small model size, and
is scalable. To reach good predictive perfor-
mance, however, KGT5 relies on an ensem-
ble with a knowledge graph embedding model,
which itself is excessively large and costly to
use. In this short paper, we show empirically
that adding contextual information—i.e., infor-
mation about the direct neighborhood of the
query entity—alleviates the need for a sepa-
rate KGE model to obtain good performance.
The resulting KGT5-context model is simple,
reduces model size significantly, and obtains
state-of-the-art performance in our experimen-
tal study.

1 Introduction

A knowledge graph (KG) is a collection of facts
describing relations between real-world entities.
Facts are represented in the form of subject-
relation-object ((s, r, o)) triples such as (Brendan
Fraser, hasWonPrize, Oscar). In this paper, we
study the link prediction (LP) problem, which is to
infer missing links in the KG. We focus on KGs
in which the entities and relations have textual fea-
tures, such as mention names or descriptions.

Saxena et al. (2022) made a case for large lan-
guage models (LM) for this task. They proposed
the KGT5 model, which posed the link prediction
problem as a sequence-to-sequence (seq2seq) task.
The main advantages of this approach are that

(i) it allows for small model sizes, and

(ii) it decouples inference cost from the graph
size (and, in particular, the number of enti-
ties).

They found that KGT5’s performance was partic-
ularly strong when predicting the object of new

relations for a query entity (e.g., the birthplace of
a person), but fell short of alternative approaches
when predicting additional objects for a known re-
lation (e.g., additional awards won by someone).

To avoid this problem, Saxena et al. (2022) used
an ensemble of KGT5 with a large knowledge
graph embedding (KGE) model (ComplEx (Trouil-
lon et al., 2016)). This ensemble did reach good
performance but destroyed both advantages (i) and
(ii) of using a LM. In fact, KGE models learn a low-
dimensional representation of each entity and each
relation in the graph (Bordes et al., 2013; Sun et al.,
2019; Trouillon et al., 2016). Consequently, model
size and LP cost are linear in the number of entities
in the graph, which can be expensive to use for
large-scale KGs. For example, the currently best-
performing model (Cattaneo et al., 2022) for the
large-scale WikiKG90Mv2 benchmark (Hu et al.,
2021) consists of an ensemble of 85 KGE models;
each taking up more than 86GB of space for pa-
rameters. Though KGE model sizes can be reduced
by using compositional embeddings based on text
mentions (Wang et al., 2021; Clouatre et al., 2021;
Wang et al., 2022; Jiang et al., 2023), inference cost
remains high for large graphs.

We propose and study KGT5-context, which ex-
pands on KGT5 by providing contextual informa-
tion about the query entity—i.e., information about
the direct neighborhood of the query entity—to fa-
cilitate link prediction. Our work is motivated by
the KGE model HittER (Chen et al., 2021), which
follows a similar approach; we use the seq2seq
model KGT5 instead of a Transformer-based KGE
model. KGT5-context is very simple: The only
change to KGT5 is that we add a verbalization of
the neighborhood of the query entity to the descrip-
tion of a given LP task; see Fig. 1 for an example.
KGT5-context retains advantages (i) and (ii) of
KGT5.

We performed an experimental study us-
ing the Wikidata5M (Wang et al., 2021) and
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Figure 1: Overview of KGT5-context (at bottom) and comparison to KGT5 (on top); real example from Wiki-
data5M, best viewed in color. KGT5-context differs from KGT5 in that it appends the neighboring relations and
entities of Yambaó (a drama movie) to the verbalized query. Both models then apply T5, sample predictions from
the decoder, map the samples to entities, and rank by sample logit scores.

WikiKG90Mv2 (Hu et al., 2021) benchmarks.
We found that—without further hyperparameter
tuning—KGT5-context reached or exceeded state-
of-the-art performance on both benchmarks using
a significantly smaller model size than alternative
approaches. The simple KGT5-context model thus
provides a suitable baseline for further research.

2 Expanding KGT5 with Context

Given a query (s, r, ?) and a KG, LP is the task to
predict new answer entities, i.e., the ? slot of the
query. An example is given in Fig. 1.

KGT5 (Saxena et al., 2022) treats link prediction
as a seq2seq task. It exploits available textual infor-
mation for entities and relations, such as mention
names (for both entities and relations) or descrip-
tions. KGT5’s architecture is based on the encoder-
decoder Transformer model T5 (Raffel et al., 2020).
It uses canonical mentions to verbalize the LP
query to a text sequence of form “predict tail:
<subject mention> | <relation mention> | ”.
To predict answers, KGT5 samples (exact) candi-
date mentions from the decoder; the cost of sam-
pling is independent of the number of entities in
the KG. To train KGT5, Saxena et al. (2022) use
standard training techniques for LLMs: KGT5 is
trained on facts in the KG and asked to generate
the true answer using teacher forcing and a cross-
entropy loss.

KGT5-context (ours) proceeds in the same way
as KGT5 but extends the verbalization of the query.
In particular, we append a textual sequence of the
one-hop neighborhood of the query entity s to the
verbalized query of KGT5. As a result, the query
entity is contextualized, an approach that has been
applied successfully to KGE models before (Chen
et al., 2021). KGT5-context simplifies the predic-

tion problem because additional information that is
readily available in the KG is provided along with
the query. In the example of Fig. 1, the contextual
information states that Yambaó is a Mexican movie.
This information is helpful; e.g., it already rules
out the top two predictions of KGT5, which incor-
rectly suggest that Yambaó is a piece of music. For
a more detailed analysis, see Sec. 3.3.

Verbalization details. To summarize, we ob-
tain mentions of the entities and relations in the
query as well as in the one-hop neighborhood of the
query entity. We use these mentions to verbalize the
query together with the neighborhood as “query:
<query entity mention> | <query relation
mention> | context: <context relation
1 mention> | <context entity 1 mention>
<SEP> . . . ”.1 To keep direction of relations, we
prepend the relation mention with “reverse of”
if the query entity acts as an object, i.e., the rela-
tion “points towards” the query entity. A real-world
example is given in Fig. 1. Inspired by neighbor-
hood sampling in GNNs (Hamilton et al., 2017),
we sample up to k (default: k = 100) relation-
neighbor pairs uniformly, at random, and without
replacement.

3 Experimental Study

We conducted an experimental study to investigate
(i) to what extent integrating context in terms of the
entity neighborhood into KGT5 improves link pre-
diction performance, (ii) whether the use of context
can mitigate the necessity for an ensemble of the
text-based KGT5 model with a KGE model, and

1When entity descriptions are available, we include
“description: <description of query entity>” right
before the query context.
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Dataset Entities Relations Edges

Wikidata5M 4.8M 828 21M
WikiKG90Mv2 91M 1,387 601M

Table 1: Dataset statistics.

(iii) for what kind of queries context is helpful. We
found that:

1. KGT5-context improved the state-of-the-art
performance on Wikidata5M using a smaller
model (Tab. 2).

2. KGT5-context was orders of magni-
tudes smaller than the leading models on
WikiKG90Mv2 and reached competitive
performance (Tab. 3).

3. KGT5-context did not benefit further from
ensembling with a KGE model (Tab. 4).

3.1 Experimental Setup
Source code and configuration are available at
https://github.com/uma-pi1/kgt5-context.

Datasets. We evaluate KGT5-context on two
commonly used large-scale link prediction bench-
marks. Wikidata5M (Wang et al., 2021) is the in-
duced graph of the 5M most-frequent entities of the
Wikidata KG. WikiKG90Mv2 (Hu et al., 2021) con-
tains more than 90M entities and over 600M facts.
In contrast to Wikidata5M, it is only evaluated on
tail prediction, i.e., (s, r, ?) queries. Dataset statis-
tics are summarized in Tab. 1. For Wikidata5M and
WikiKG90Mv22, we used the entity mentions pro-
vided on the KGT5 webpage. For Wikidata5M, we
also consider the usefulness of entity descriptions,
which are provided with the dataset and have been
used in some prior studies (Wang et al., 2022; Jiang
et al., 2023). Note that we do not use these descrip-
tions by default, and clearly mark throughout when
they have been used.

Metrics. We follow the standard procedure to
evaluate model quality for the link prediction task.
In particular, for each test triple (s, r, o), we rank
all triples of the form (s, r, ?) (and (?, r, o) on Wiki-
data5M) by their predicted scores. For KGT5 and

2We directly used mentions of entities and relations for
WikiKG90Mv2, instead of the textual embeddings used by
other models. For this reason, the benchmark authors (Hu
et al., 2021) did not provide us with scores on the hidden test
set. The mentions used to be provided with the dataset but
have been removed by now; we obtained them from https:
//github.com/apoorvumang/kgt5.

KGT5-context, we instead sample from the decoder
and ignore outputs that do not correspond to an ex-
isting entity mention. For all models, we filter out
all true answers other than the test triple that occur
either in the train, valid or test data. Finally, we
determine the mean reciprocal rank (MRR) and
Hits@K over all test triples. In case of ties, we
use the mean rank to avoid misleading results (Sun
et al., 2020).

Settings. We mainly follow the setting of KGT5.
For all experiments, we used the same T5 archi-
tecture (T5-small for Wikidata5M, T5-base for
WikiKG90Mv2) without any pretrained weights.
Training from scratch ensures test data is unseen
during (pre-)training and avoids leakage. We used
the SentencePiece tokenizer pretrained by (Raffel
et al., 2020). We trained on 8 A100-GPUs with
a batch size of 32 (effective batch size of 256) us-
ing the AdaFactor optimizer. No dataset-specific
hyperparameter optimization was performed. For
KGT5-context, we sampled up to 100 neighbors
per query entity or up to an input sequence length
of 512 tokens. For inference, we obtained 500 sam-
ples from the decoder.

Models. On Wikidata5M, we compare KGT5-
context to the KGE models ComplEx (Trouillon
et al., 2016) and SimplE (Kazemi and Poole, 2018)
(only graph structure used), the compositional KGE
model SimKGC (Wang et al., 2022), its extension
utilizing hard negatives (Jiang et al., 2023), and
the seq2seq model KGT5 (Saxena et al., 2022).
The model of Jiang et al. (2023) is an ensemble of
multiple SimKGC models, each trained with a dif-
ferent strategy for selecting negatives. Note that in
contrast to KGT5 and KGT5-context, SimKGC is
based on pretrained models (BERT transformers).
During prediction, all text-based models require
access to entity and relation mentions and, when
used, the description of the query entity. SimKGC
additionally requires access to precomputed entity
embeddings, KGT5-context to the 1-hop neighbor-
hood of the query entity in the KG.

On WikiKG90M, we compare to the models pre-
sented on the official leaderboard.2 Here, the best-
performing approaches are large ensembles of mul-
tiple KGE models.

3.2 Link Prediction Performance

Link prediction performance on Wikidata5M is
shown in Tab. 2; additional baselines are given in
Tab. 5 (appendix). Generally, we found that textual
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Add. requirements
for inference

Pre-
trainedModel MRR Hits@1 Hits@3 Hits@10 Params

SimplE † 0.296 0.252 0.317 0.377 2,400M - no
ComplEx †† 0.308 0.255 - 0.398 614M - no

SimKGC 0.212 0.182 0.223 0.266 220M entity embeddings yes
KGT5 ‡ 0.300 0.267 0.318 0.365 60M - no

+ ComplEx ‡ 0.336 0.286 0.362 0.426 674M - no
KGT5-context (ours) 0.378 0.350 0.396 0.427 60M 1-hop neighborhood no

SimKGC + Desc. ‡‡ 0.358 0.313 0.376 0.441 220M entity embeddings yes
+ Hard Negative Ensemble $ 0.420 0.381 0.435 0.490 1,100M entity embeddings yes

KGT5 + Desc. 0.381 0.357 0.397 0.422 60M - no
KGT5-context + Desc. (ours) 0.426 0.406 0.440 0.460 60M 1-hop neighborhood no

Table 2: Link prediction results on Wikidata5M, test split. The first group does not make use of textual information,
the second group uses mention names, the third group additionally entity descriptions. Best per group underlined,
best overall bold. Marked results are from † Zhu et al. (2019), †† Kochsiek and Gemulla (2021), ‡ Saxena et al.
(2022), ‡‡ Wang et al. (2022), $ Jiang et al. (2023). Additional results in Tab. 5 (appendix).

information was highly beneficial. KGT5-context
was the only model that improved upon KGE mod-
els (which do not use textual information) when
only mention information was available. Moreover,
KGT5-context obtained better predictive perfor-
mance than the ensemble of KGT5 with the Com-
plEx KGE model. Entity descriptions provided fur-
ther improvements; they hold valuable information
for this benchmark. With these descriptions, KGT5-
context outperformed traditional KGE models by
up to 12pp in terms of MRR, with a model size
reduction of 90-98%. Likewise, KGT5-context im-
proved on KGT5 by 12pp, on the KGT5+Complex
ensemble by almost 9pp, and performed roughly
on-par with the current state-of-the-art SimKGC
ensemble model, which is significantly larger.

The results on the much larger WikiKG90Mv2
are shown in Tab. 3.2 Here, KGT5-context is multi-
ple orders of magnitude smaller than the currently
best-performing models,3 and improves validation
MRR by almost 1pp.

3.3 Analysis

To investigate in which cases context information
was beneficial, we empirically analyzed LP perfor-
mance w.r.t. (i) query frequency and (ii) the degree
of the query entity. We also sampled predictions
and summarize our general observations.

Query frequency. The frequency of a test query
(s, r, ?) is the number of answers to the query al-

3The parameter count in Tab. 3 corresponds to the size
of the largest model in an ensemble, not the overall model
size. For example, BESS (Cattaneo et al., 2022) consists of
85 models and the complete ensemble has 2.6T parameters;
the KGT5-context model is 5 orders of magnitude smaller.

Model Test
MRR

Valid
MRR Params

ComplEx 0.141 0.182 18.2B
TransE 0.082 0.110 18.2B
ComplEx-Concat 0.176 0.205 18.2B
TransE-Concat 0.176 0.206 18.2B
PIE-RM 0.212 0.254 18.2B3

DGLKE + Rule Mining 0.249 0.292 18.2B3

BESS 0.254 0.292 23.3B3

KGT5, T5 small2 - 0.221 60M
KGT5-context, T5 base (ours)2 - 0.301 220M

Table 3: Link prediction results on WikiKG90Mv2.
Baseline numbers are from the official leaderboard of
OGB-LSC (Hu et al., 2021).

Model 0 1-10 >10 All

ComplEx 0.534 0.351 0.045 0.296
KGT5 0.624 0.215 0.015 0.300
KGT5-context (ours) 0.738 0.415 0.014 0.378

KGT5 + ComplEx 0.624 0.351 0.045 0.336
KGT5-context + ComplEx 0.738 0.351 0.045 0.379

Table 4: Test MRR on Wikidata5M grouped by query
frequency during training.

ready available in the training data. For example,
queries for N:1 relations have frequency 0, whereas
queries for 1:N relations can have large frequency
for high-degree query entities. We bucketized the
test queries of Wikidata5M into low, medium, and
high frequency queries and report average MRR
for various models in Tab. 4. Generally, high-
frequency queries appear harder to answer. These
queries have many known true answers already
(tying up model capacity); there may be many ad-
ditional, potentially unrelated answers and incom-
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pleteness of the KG may be a concern during eval-
uation. In contrast, a low-frequency query such
as (Brendan Fraser, instance Of, ?) has few or no
known answer and might be easier to infer, even
when the combination of this particular subject and
relation was not yet seen during training.

Ensemble with KGE models. In general, the
prior KGT5 model performed reasonably well on
queries that did not occur in the training data, but
was outperformed by a large amount by ComplEx
on queries seen multiple times. Hence, both models
complemented each other in an ensemble. KGT5-
context strongly improved performance over Com-
plEx, KGT5, and the KGT5+Complex ensemble
for low- and medium-frequency queries. For this
reason, an ensemble between KGT5-context and
ComplEx only brought negligible benefits, but has
substantial drawbacks. Consequently, an ensemble
of KGT5-context with a KGE model is not needed
and should not be used.

Entity degree. We also investigated the benefit
of contextual information w.r.t. to the degree of the
query entity (see Fig. 2 in the appendix). We found
that KGT5-context was beneficial and performed
well on query entities with a degree of up to 100.
For entities with very large degrees (i.e., nodes with
more than 100 or even 1000s of neighbors), Com-
plEx showed benefits. As before, we feel that these
performance benefits are negligible considering the
increase in model size and decrease in scalability.

Anecdotal results. We manually probed some
predictions of KGT5-context and found the context
is especially beneficial when (i) the entity men-
tion only provides limited information about the
entity, and/or when (ii) the answer to the query is
contained in the one-hop neighborhood.

A case of (i) is shown in Fig. 1, a real example.
Here, KGT5 was able to capture the geographic
region of the real-world entity only based on its
mention. Based on this geographic notion, it pro-
posed the music genre Latin pop but was unaware
that the entity is a movie. This useful information
can be obtained directly from the one-hop neighbor-
hood and, indeed, was exploited by KGT5-context.

For Wikidata5M, the correct answer entity ap-
pears in the one-hop neighborhood of the query
entity for about 7% of the validation triples. But
even when the answer does not directly appear in
the context, it may contain entities strongly hinting
at the correct answer. For example, it is easier to
predict that an entity has occupation biochemist,

when the context already contains the information
that the entity is a chemist.

4 Conclusion

We proposed and studied KGT5-context, a
sequence-to-sequence model for link prediction
in knowledge graphs. KGT5-context extends the
KGT5 model of Saxena et al. (2022) by using con-
textual information of the query entity for predic-
tion. KGT5-context is simple, small, and scalable,
and it obtained or exceeded state-of-the-art perfor-
mance in our experimental study. It thus provides
a suitable baseline for further research in this area.
A natural direction, for example, is to explore ap-
proaches that integrate contextual information in a
less naive way than KGT5-context does.

Limitations

KGT5-context relies on the textual mentions of
entities and relations (and, optionally, entity de-
scriptions). Therefore, it is only applicable to KGs
that provide such information. KGT5-context may
be able to handle some entities without textual fea-
tures when well-described by their neighborhood;
we did not investigate this though.

To use KGT5-context for prediction, the KG has
to be queried to obtain context information, i.e., the
one-hop neighborhood of the query entity. KGT5-
context thus cannot be used without the underlying
KG.

The verbalized neighborhood of the query entity
leads to long input sequences, which in turn may
induce higher memory consumption and higher
computational cost during training. Overall, train-
ing KGT5-context is typically more expensive
than training traditional KGE models, which can
be tuned (Kochsiek et al., 2022) and trained effi-
ciently (Lerer et al., 2019; Kochsiek and Gemulla,
2021; Zheng et al., 2020).

For inference, KGT5-context first samples
relation-neighbor pairs for contextualization, and
then samples possible answers from the decoder.
These sampling steps can lead to variance in pre-
dictive performance. We found this effect to be
negligible on Wikidata5M, but it may be larger on
other datasets.
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Appendix
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Figure 2: MRR grouped by entity degree on Wikidata5M. Group weight is given in brackets.

Model MRR Hits@1 Hits@3 Hits@10 Params

TransE (Bordes et al., 2013) † 0.253 0.170 0.311 0.392 2,400M
DistMult (Yang et al., 2015) † 0.253 0.209 0.278 0.334 2,400M
RotatE (Sun et al., 2019) † 0.290 0.234 0.322 0.390 2,400M
DKRL (Xie et al., 2016) $ 0.160 0.120 0.181 0.229 20M
KEPLER (Wang et al., 2021) $ 0.210 0.173 0.224 0.277 125M
MLMLM (Clouatre et al., 2021) †† 0.223 0.201 0.232 0.264 355M

Table 5: Additional link prediction results on Wikidata5M from prior work. Results are from † Zhu et al. (2019).
$ Wang et al. (2021). †† Clouatre et al. (2021).
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