
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023), pages 118–130
July 13, 2023 ©2023 Association for Computational Linguistics

SPC: Soft Prompt Construction for Cross Domain Generalization

Wenbo Zhao1, Arpit Gupta1, Tagyoung Chung1 and Jing Huang2

Alexa AI, Amazon, USA
1{wenbzhao,guparpit,tagyoung}@amazon.com

2jinghuang.zhu@gmail.com

Abstract

Recent advances in prompt tuning have proven
effective as a new language modeling paradigm
for various natural language understanding
tasks. However, it is challenging to adapt the
soft prompt embeddings to different domains
or generalize to low-data settings when learn-
ing soft prompts itself is unstable, task-specific,
and bias-prone. This paper proposes a prin-
cipled learning framework—soft prompt con-
struction (SPC)—to facilitate learning domain-
adaptable soft prompts. Derived from the SPC
framework is a simple loss that can plug into
various models and tuning approaches to im-
prove their cross-domain performance. We
show SPC can improve upon SOTA for con-
textual query rewriting, summarization, and
paraphrase detection by up to 5%, 19%, and
16%, respectively.

1 Introduction

Prompting has emerged as a new paradigm for tun-
ing language models (LMs), drawing increasing
research attention. It shows impressive utility in
stimulating an LM’ hidden knowledge without fine-
tuning it (Petroni et al., 2019). Simply adding some
descriptive words to the input can steer a general-
purpose LM to a specific task in a zero-shot fashion.
Table 1 shows some examples of prompting. The
prompt “in other words” is added after the conver-
sation as additional input, turning the LM into a
contextual query rewriter. Any natural language un-
derstanding task can be reformulated into a genera-
tion task with proper prompting (Liu et al., 2021b;
Raffel et al., 2020). As shown in Table 1, the dia-
logue state tracking task is converted to generating
the slot value given the prompted input. As a result,
a natural language understanding task turns into a
prompt design task. More sophisticated prompting
techniques are derived to better adapt the LM, such
as in-context learning (Xie et al., 2021), chain-of-
thought (Wei et al., 2022). Researchers hypothesize

that these prompting techniques make the LM un-
derstand the task instructions and do implicit task
adaptation (Xie et al., 2021; Wang et al., 2022a).

Albeit the impressive utility of these prompting
techniques, they have some limitations that encour-
age further research. One major drawback is that
the prompt templates significantly impact model
performance but require handcrafting, which is why
there is increasing prompt engineering and sharing
of “good” templates (Zhou et al., 2022). Chosen un-
wisely, a prompt template would not work or even
hurt the model inference (Liu and Chilton, 2022;
Wang et al., 2022b). Further, one has to design
prompts for each task, making it inefficient and
less robust to transfer across models or tasks (Sanh
et al., 2022). The other drawback of prompting is
that it works best for large models (Reynolds and
McDonell, 2021). However, training and serving
large LMs are known to be costly.

These limitations drive us to study new prompt-
ing methods that require little manual effort and
work for large and small models. Soft prompt-
ing is one of these approaches. Unlike prompting
that adds words to the input, soft prompting adds
embeddings to the model, such as injecting embed-
dings to the token embedding layer or other model
layers (Asai et al., 2022). Such embeddings, or
soft prompts, can be automatically learned. Many
studies have shown that soft prompting works well
for smaller-sized models and can be as effective
as fine-tuning large LMs with orders of magnitude
fewer trainable parameters (Lester et al., 2021; Li
and Liang, 2021; Liu et al., 2021c; Su et al., 2022).

Soft prompting is a promising approach to fur-
ther improve cross-domain generalization and task
adaptation for all-sized models. However, some
barriers need to be removed. First, learning soft
prompts lacks guidance, and traditional learning
objectives (such as cross-entropy) often lead to
unstable training, sub-optimality, and unstable per-
formance. Further, the unstable performance is am-

118

Task Input Prompted Input Output

Contextual Query Rewrite
User: Show me the latest movie by Tom Hanks.

[Input] In other words, Who directed Finch?Agent: Here is Finch by Tom Hanks.
User: Who directed it?

Summarization Las Vegas police ... [Input] TL;DR: The victim ...
Dialogue State Tracking I am looking for a gastropub. [Input] What is ${restaurant.food}? gastropub
Paraphrase Detection Useless math. Algebraic topology. Sentence 1 [S1] and sentence 2 [S2] are equivalent

Table 1: Prompting examples.

plified in cross-domain settings. Soft prompts are
often biased by a specific domain and hence less ef-
fective for other domains. In low-data settings, it is
particularly difficult to learn soft prompts with con-
sistent cross-domain performance (Su et al., 2022;
Lester et al., 2021; Liu et al., 2021b; Chen et al.,
2022a).

Our objective is to derive a principled paradigm
for learning domain-adaptable soft prompts, for
which we propose the soft prompt construction
(SPC) framework. Using this SPC framework, we
further derive a simple loss: the SPC loss. The loss
supervises the optimization of soft prompts with-
out re-tuning the entire model. The learned soft
prompts demonstrate superior cross-domain gener-
alization than other fine-tuning and prompt tuning
approaches. Our contributions are the following:

(1) We propose an SPC framework that learns
soft prompts in a zero/few-shot manner and
demonstrates superior cross-domain general-
ization in extensive experiments on diverse
tasks.

(2) We propose an SPC loss that can simply plug
into various language models and boost their
in/cross-domain performance.

(3) Our SPC framework builds upon the simplest
soft prompt tuning approach, requiring or-
ders of magnitude fewer trainable parameters
than finetuning or other soft prompt tuning
approaches.

2 Related Work

Prompting adds token-level templates to the model
input, often designed manually (Petroni et al., 2019;
Liu et al., 2021b). AutoPrompt automates prompt
design via gradient-based search (Shin et al., 2020).
Other approaches like (Gao et al., 2021; Sun et al.,
2021) may use LMs to generate the prompts. Two
prompting techniques are particularly useful for
large LMs (LLMs): in-context learning (ICL) and
chain-of-thought (CoT). ICL uses a few examples

to demonstrate the task, and the LLM can perform
the task in a few-shot manner (Xie et al., 2021).
CoT instructs an LLM to reason step-by-step to
perform a task (Wei et al., 2022). CoT can be seen
as a special case of ICL as it often provides exam-
ples to demonstrate step-by-step reasoning, such as
ReAct (Yao et al., 2022), self-consistency (Wang
et al., 2022a). Token-based prompts’ performance
is highly dependent on prompt selection and con-
straint on natural language words.

On the other hand, soft prompt tuning uses
embedding-level prompts and is optimized by gra-
dients. The prompt embeddings do not necessarily
represent natural language words and can general-
ize to different domains. DART (Zhang et al., 2021)
treats input token embeddings as prompt templates.
Qin and Eisner (2021) optimize soft prompts via
perturbing a prompt mixture. PrefixTuning (Li
and Liang, 2021) prepends prompt embeddings
to the model layers and uses additional networks
to re-parameterize them. P-Tuning v2 (Liu et al.,
2021c) extends PrefixTuning and achieves perfor-
mance comparable to fine-tuning. Such works of-
ten use deep prompts (adding prompt embeddings
to all model layers) or reparameterization, intro-
ducing a large number of new parameters (Li and
Liang, 2021; Jiang and Wang, 2022). Lester et al.
(2021) add task-specific soft prompts to the model
input and obtain performance comparable to fine-
tuning large LMs, especially on low-resource do-
main adaptation tasks.

However, soft prompts’ performance is unsta-
ble and sensitive to initialization (Qin and Eisner,
2021). Learning soft prompts across tasks is chal-
lenging, especially in low-data scenarios (Gu et al.,
2022). To this end, Chen et al. (2021) construct
soft prompts via knowledge injection and implicit
relation constraint. Gu et al. (2022) pretrain soft
prompts on varied tasks to improve generalization
but require prompts to be added during pre-training.
Qin et al. (2021) study the generalization of soft
prompts via (nonlinear) subspace decomposition.
However, Su et al. (2022) find that the prompt dis-

119

Encoder Decoder

who directed the movie finch

<s>… who directed it

Encoder Decoder

Frozen Parameters

Encoder Decoder Encoder Decoder

SPC LossTrainable Parameters

(a) Finetuning (d) SPC Tuning [= (c) + SPC loss](b) Prefix Tuning (c) Naïve Prompt Tuning

… who directed it

who directed the movie finch

<s>

who directed the movie finch

<s>… who directed it … who directed it

who directed the movie finch

<s>

MLP

Figure 1: Model diagrams for (a) fine-tuning, (b) PrefixTuning, (c) naive prompt tuning, and (d) SPC + prompt
tuning. SPC loss can plug into any tuning methods and language models. SPC prompt embeddings are shown as
prefixes, but they can be placed anywhere.

tance cannot be appropriately quantified by Eu-
clidean or cosine distances, implying a nonlinear
and (potentially) non-metrizable prompt embed-
ding space. Hence, constructing the prompt embed-
ding space via decomposition is challenging.

3 Soft Prompt Construction

Using the examples in Table 1, prompting requires
us to design different templates for different tasks,
such as “in other words” for contextual query
rewriting and “TL;DR” for summarization. Such
handcrafting process is inefficient, does not general-
ize, and the performance is unstable. We aim to re-
place these prompt tokens with soft prompt embed-
dings and automatically learn domain-adaptable
soft prompts. Instead of designing prompt tem-
plates, we devise a method to learn prompt embed-
dings that are universal to all tasks. Such prompt
embeddings aim to align the model s.t. [Input] +
[Prompt] yields [Output]; e.g., [Input] In
other words –> [Output] ⇒ [input token
embeddings][prompt embeddings] –> [output
embeddings]. We present a soft prompt construc-
tion (SPC) framework for learning cross-domain
generalizable soft prompts.

Consider the data on cross-domain tasks D =
X× Y consisting of the input set X and output set
Y. For text generation tasks, for example, each
element in X or Y represents a sequence of tokens.
Given the generality of the tasks and data structures,
we omit the dimensionality in the notations when
there is no confusion. The objective of a language
model is to maximize the expected log-likelihood

maxEFy [log fθ(y | x)] (1)

where x ∈ X, Fy is the probability measure w.r.t.
random variable y (note we use different fonts for
a random variable y and a sample y), and fθ is the
likelihood function with model parameter θ and the
conditional density f(y | x). To help this objective,

prompting is introduced and prompts p are added
to the input [p, x]

maxEFy

[
log

∫

p
fθ(y | p, x)dνp

]
(2)

where νp is the probability measure of the prompt,
and we will omit this for notional simplicity when
there is no confusion. Let L = log

∫
p fθ(y | p, x).

We have

L = log

∫

p
fθ(y | p)fθ(p | x) (3)

≥
∫

p
[log fθ(y | p) + log fθ(p | x)] (4)

where from (3) to (4) we apply Jensen’s inequality.
To maximize (2), we need to find a maximizer of
the lower-bound (4). Taking the partial derivative
of (4) w.r.t. p and setting it to zero, one of the
feasible maximizers p∗ is obtained by (5)

p∗ = x⊕ y (5)

where ⊕ means direct sum. Indeed, if we plug (5)
into (4), it achieves the maximal (3). When using

soft prompts [p, x]
fθ7→ y ⇒ [ep, ex]

fθ7→ ey where ex,
ey, ep are embeddings of x, y, and p, relation (5)
naturally extends to the embedding representations

e∗p = ex ⊕ ey (6)

We propose to enforce such a relation using an SPC
loss

lspc = ∥W [Wxex;Wyey]−Wpep∥2 (7)

where [·; ·] is embedding concatenation, W s are
linear transformations that will be learned during
model training. The SPC loss is directly added to
the original loss (e.g., cross-entropy) to supervise
the training.

For those interested, we also provide an alge-
braic view for our methodology in Appendix B.

120

Implementation details A backbone language
model is used and its parameters are frozen. The
prompt embeddings ep have fixed length and are
concatenated to the input token embeddings ex, ef-
fectively increasing the input length. Prompt length
and concatenation are explained in Section 4. Out-
put embeddings ey are taken from the last output
layer. During training, the SPC loss (7) is directly
added to the original loss (e.g., cross-entropy loss).
The prompt embeddings and the linear weights of
the SPC loss are learned. At inference time, the
linear weights are discarded, and only the learned
prompt embeddings are concatenated to the input
token embeddings. Only one soft prompt is learned,
and it is universal for all domains and tasks. An
illustration is shown in Figure 1. Code 1 shows the
code for computing the SPC loss.

4 Experiments

We design experiments to validate the main claims
of our SPC framework: (1) SPC loss can be
plugged into any model or tuning method, and (2)
improve the zero/few-shot in/cross-domain gener-
alization. We will explain our selected tasks, data,
model, implementation, and results.

4.1 Task description

We select standard text generation and classifica-
tion tasks: (1) contextual query rewriting (CQR),
(2) abstractive summarization, and (3) paraphrase
detection.

CQR refers to rewriting a contextual query in
dialogue into a non-contextual query such that any
missing information from the context is completed.
CQR plays a crucial role in conversation systems,
and the rewritten query can be used for downstream
tasks such as question answering, information re-
trieval, and reading comprehension. CQR can
be addressed by rule-based approaches, retrieval-
based approaches (Fan et al., 2021), pointer-based
models (Rastogi et al., 2019; Elgohary et al., 2019;
Quan et al., 2019), generation-based models (Anan-
tha et al., 2021; Yu et al., 2020; Liu et al., 2021a;
Regan et al., 2019). We combine the end-to-
end generation-based approach with prompt tun-
ing to exploit both. Yilmaz and Toraman (2021)
have attempted a soft prompt tuning approach
for query rewriting. Abstractive summarization
refers to generating a summary of a given text.
Unlike extractive summarization, which extracts
phrases from the original text, abstractive sum-

marization may generate new phrases (Lin and
Ng, 2019). The difficulty is to balance the se-
mantic cohesion between the text and the new
generation. Such problem is addressed by atten-
tion methods (Narayan et al., 2018; Gehrmann
et al., 2018), extraction-abstraction-based meth-
ods (Chen and Bansal, 2018), pointer-generator-
based models (See et al., 2017), generation-based
methods (Zhang et al., 2020). Only a few use
a prompt tuning approach (Li and Liang, 2021;
Liu et al., 2022). Paraphrase detection refers to
telling if two sentences mean the same (Yin and
Schütze, 2015). Prompt tuning approaches have
proven effective for this task (Lester et al., 2021;
Gu et al., 2022).

Zero/few-shot cross-domain settings We train
with all training data for in-domain tasks and evalu-
ate on the test data. For cross-domain experiments,
we adopt a few-shot one-to-one domain-transfer
setting: first train with the source domain training
data and then train with a single batch (16 samples
in our settings) from the target domain training data.
No target domain validation data is used. For the
summarization task, we select five domains: sport,
business, politics, entertainment, and technology.
For the paraphrase detection task, we evaluate the
few-shot cross-domain transfer between QQP and
MRPC in both directions.

Zero/few-shot cross-task settings We conduct
zero/few-shot cross-task transfer evaluation be-
tween CQR and summarization: take the trained
model from the CQR task, evaluate on the summa-
rization task, and vice-versa.

4.2 Data and metrics

The QReCC dataset for the CQR task consists
of 14K open-domain dialogues with 80K (query,
rewrite, answer) triples (Anantha et al., 2021). The
XSum dataset for the abstractive summarization
task consists of 227K (document, summary) pairs.
The documents are collected from BBC news arti-
cles covering topics like sport, business, politics,
entertainment, and technology. The summaries are
of one-sentence length (Narayan et al., 2018). For
both tasks, the original data split is used. Rouge
score (Lin, 2004) is used as a standard evaluation
metric.

Following Lester et al. (2021), we use the
QQP (Shankar et al., 2017) and MRPC (Dolan
and Brockett, 2005) dataset from the GLUE (Wang

121

et al., 2019) benchmark for the paraphrase detec-
tion task. QQP consists of 795K question pairs
from Quora. Since there is no label for QQP’s
test set, we use the validation set for testing and
use 10% of the training set for validation. MRPC
consists of 5.8K sentence pairs from online news
articles. The original data split is used. Follow-
ing Lester et al. (2021) and Raffel et al. (2020), we
format the QQP question pairs as [question 1:
<question 1 text> question 2: <question 2
text>]. For MRPC, we format the sentence pairs
as [sentence 1: <sentence 1 text> sentence
2: <sentence 2 text>]. We convert the binary
class labels (1, 0) to “same” and “different” to bet-
ter situate the task in a generative setting. Only
exact matches with the label word are considered
correct. 1 F1 score is used as a standard metric.

4.3 Model and baselines

We test the utility of the SPC loss by plugging it
into fine-tuning and prompt tuning approaches and
comparing the before/after performance. Admit-
tedly, many prompt tuning work surfaces at the
time of this manuscript (Liu et al., 2021c; Chen
et al., 2022b; Gu et al., 2022). However, it is not
our intention to build a better mousetrap but to
present a new problem—that of learning domain-
adaptable soft prompts—that naturally leads to a
new learning paradigm. With this consideration,
we select fine-tuning, PrefixTuning (Li and Liang,
2021), and (naive) prompt tuning (Lester et al.,
2021) as our baselines because they are SOTA for
respective tasks, most widely compared, and do not
involve any additional components/tricks. Compar-
ing these clean baselines present a clearer picture
of SPC’s benefits. The baselines are:

(1) Fine-tuning the BART model (Lewis et al.,
2020).

(2) PrefixTuning (Li and Liang, 2021), a strong
baseline commonly compared by other work.
It uses the pretrained BART model as the
backbone and prepends prompt embeddings
to the encoder and decoder layers. The prefix
embeddings are reparameterized by feedfor-
ward neural networks (see Figure 1). We also
implement a variant of PrefixTuning—only

1During inference, the generation length is 2 (including
a start token). We observe that the T5 model can generate
the exact “same/different” tokens with rare exceptions, so no
words in vocabulary are masked off.

prepending prompt embeddings at the decoder
layers.

(3) (Naive) prompt tuning (Lester et al., 2021),
the simplest soft prompt tuning. It prepends
prompt embeddings to the input layer (not all
layers, see Figure 1). We use the same BART
backbone model for CQR and summarization
tasks and add prompt embeddings to decoder
input. For the paraphrase detection task, we
use the same pretrained and LM-adapted T5
models (Lester et al., 2021; Raffel et al., 2020)
and add prompt embeddings to encoder input.

4.4 Training and implementation

CQR, summarization We use the pretrained
BART-large model (Lewis et al., 2019) for fine-
tuning. For PrefixTuning and SPC, we freeze the
BART model and only tune the prompt-related
parameters. PrefixTuning requires training prefix
embeddings and the reparameterization networks.
SPC requires training prefix embeddings and the
weights in the loss equation (7).

Paraphrase detection The pretrained and LM-
adapted T5 models are used (Lester et al., 2021;
Raffel et al., 2020). The T5-small model has 77M
parameters, and the T5-XL model has 3B parame-
ters.

All training and evaluation use comparable con-
figurations and hyperparameters (e.g., batch size,
learning rate, training epochs, prompt length, gen-
eration length, beam size). We find the optimal set
of hyperparameters through searching, as shown in
Table 8. The implementation is based on the Hug-
gingFace’s Transformers library (Wolf et al., 2020).
We also re-implement the PrefixTuning model (Li
and Liang, 2021). We use the metrics code that
comes with the HuggingFace datasets. Training is
done on the AWS cluster with eight NVIDIA V100
or A100 GPUs. More details on hyper-parameters
and computation costs are shown in Appendix A.

4.5 In-domain results

CQR Table 2 shows the results on the CQR task
using fine-tuning, PrefixTuning, and prompt tuning
with/without SPC loss. For each prompt tuning ap-
proach, we compare random prompt initialization
(rand) and BART word embedding initialization
(bart). Results show that the SPC loss plugin (row
8–12) uniformly increases performance over fine-
tuning, PrefixTuning, and prompt tuning (row 1–7),

122

Approach Rouge-2 Rouge-L Gain/Loss (+/-%)

1 Finetune 74.93 83.29
2 Prefixboth,rand 37.14 53.57
3 Prefixboth,bart 55.10 68.94
4 Prefixdec,rand 69.68 79.13
5 Prefixdec,bart 72.08 81.13
6 Promptrand 68.39 78.16
7 Promptbart 67.13 77.34
8 SPC+Finetune 75.40 83.24 +0.6/-0.06
9 SPC+Prefixdec,rand 72.77 81.60 +4.5/+3.1
10 SPC+Prefixdec,bart 73.33 81.97 +1.7/+1.0
11 SPC+Promptrand 70.86 80.33 +3.6/+2.8
12 SPC+Promptbart 72.84 81.67 +8.5/+5.6

Table 2: Before/after SPC results on contextual query
rewriting task with fine-tuning (Finetune), PrefixTuing
(Prefix), and prompt tuning (Prompt).

Approach Rouge-2 Rouge-L Gain/Loss (+/-%)

Finetune 20.66 35.48
Prefixboth,rand 10.49 24.57
Prefixboth,bart 12.47 26.63
Prefixdec,rand 19.39 34.30
Prefixdec,bart 18.81 33.79
Promptrand 16.33 31.08
Promptbart 16.66 31.63

SPC+Finetune 20.82 35.55 +0.8/+0.2
SPC+Prefixdec,rand 18.66 33.62 -3.8/-2.0
SPC+Prefixdec,bart 18.88 33.76 +0.4/-0.09
SPC+Promptrand 17.02 32.15 +4.2/+3.4
SPC+Promptbart 17.91 32.91 +7.5/+4.0

Table 3: Before/after SPC results on abstractive summa-
rization task with fine-tuning (Finetune), PrefixTuing
(Prefix), and prompt tuning (Prompt).

with the gain ranging from 0.6%–8.5%. For Prefix-
Tuning (row 2–5), prompting only at the decoder
layers (row 5) is the best among its variations. SPC
loss also significantly reduces sensitivity to prompt
initialization.

Summarization Table 3 shows the results on the
summarization task. We observe similar trends to
CQR. 2 The SPC loss increases performance over
fine-tuning, PrefixTuning, and prompt tuning, with
the gain ranging from 0.2%–7.5%. SPC loss also
significantly reduces sensitivity to prompt initial-
ization.

4.6 Cross-domain results
Given the performance boost of SPC on top of
other tuning approaches demonstrated in the last
section, we choose to use the simplest and most

2Our implementation does not achieve the performance
reported in (Li and Liang, 2021). This may arise from different
experiment configurations: compared to (Li and Liang, 2021),
we do not use BPE tokens and length normalization, and we
use smaller batch sizes and only 10% validation data.

parameter-efficient SPC loss + prompt tuning
(SPC+Prompt) to demonstrate SPC’s utility in
cross-domain settings.

Summarization Table 4 presents the results for
both in-domain and few-shot (16) cross-domain
summarization tasks obtained with fine-tuning, Pre-
fixTuning at the decoder with BART initialization,
and SPC+Prompt with BART initialization. For in-
domain, fine-tuning outperforms the prompt tuning
methods. This aligns with our expectations, given
that fine-tuning tunes the entire model, thereby uti-
lizing a significantly larger number of trainable
parameters compared to prompt tuning approaches.
Remarkably, despite having far fewer trainable pa-
rameters, SPC+Prompt manages to achieve perfor-
mance that is either comparable to or better than
that of PrefixTuning. In some domains, it even
matches the performance of fine-tuning. Further-
more, when plugged into fine-tuning, SPC has the
potential to enhance its performance even further
(as shown in Table 3). Most impressively, despite
less sufficient in-domain training, SPC+Prompt
surpasses other state-of-the-art methods in cross-
domain performance. This greatly improves cross-
domain adaptation.

Paraphrase detection Table 5 shows the results
on the paraphrase detection task for both in-domain
and few(16)-shot cross-domain between QQP and
MRPC. SPC+Prompt initializes prompt embed-
dings with the first prompt-length token embed-
dings of the T5 model. SPC+Prompt outperforms
prompt tuning with large margins, validating the
cross-domain generalization of the soft prompts
learned by SPC.

Cross-task Table 6 shows the results for
zero/few-shot cross-task experiments between
CQR and summarization. SPC+Prompt is at par
or better in all settings. Prompt tuning approaches
perform better than fine-tuning in low-resource set-
tings, consistent with the findings by Chen et al.
(2022a).

4.7 Analysis and discussion

Number of parameters PrefixTuning has around
7% trainable parameters (including prefix embed-
dings and reparameterization networks) compared
to fine-tuning. Our SPC method drastically reduces
the number of trainable parameters by using 0.07%
parameters (including prompt embeddings and SPC
loss parameters) as shown in Table 7. This ratio

123

Domain Approach Sport Business Politics Entertainment Technology

Sport
Finetune 23.89, 37.83 9.79, 23.75 11.34, 24.35 15.02, 29.16 7.69, 22.13
Prefixtune 18.83, 33.10 13.16, 26.71 14.49, 28.14 19.02, 32.58 12.73, 28.03
SPC+Prompt 18.38, 33.00 14.04, 28.25 15.03, 28.68 20.53, 34.73 11.38, 27.06

Business
Finetune 14.99, 29.06 15.79, 30.65 14.07, 27.44 18.28, 32.71 11.08, 25.96
Prefixtune 15.03, 29.98 14.52, 28.80 15.12, 28.30 19.64, 32.63 12.00, 26.27
SPC+Prompt 16.51, 30.92 14.70, 29.31 15.52, 28.84 20.61, 34.17 12.25, 27.54

Politics
Finetune 11.65, 24.98 10.49, 24.24 16.35, 29.20 16.03, 29.38 8.12, 21.93
Prefixtune 16.04, 30.10 13.42, 27.61 15.57, 28.84 19.98, 33.63 11.52, 26.42
SPC+Prompt 16.50, 30.97 13.92, 28.15 15.78, 29.36 20.60, 34.80 12.62, 28.04

Entertainment
Finetune 14.60, 28.67 13.01, 27.31 15.62, 28.82 23.62, 37.76 10.31, 25.28
Prefixtune 16.59, 31.02 14.07, 28.42 15.23, 28.31 21.09, 35.26 11.56, 26.33
SPC+Prompt 16.60, 31.11 14.07, 28.50 15.17, 28.05 20.88, 35.24 12.15, 27.56

Technology
Finetune 15.08, 28.81 12.90, 27.17 14.41, 27.82 18.95, 32.50 11.30, 26.15
Prefixtune 16.28, 30.66 14.16, 28.55 15.09, 28.52 32.56, 42.25 12.00, 26.90
SPC+Prompt 15.49, 29.74 13.22, 27.13 13.65, 26.55 19.38, 33.06 11.56, 26.31

Table 4: Few-shot cross-domain results on summarization task with fine-tuning (Finetune), PrefixTuing (Prefix),
and SPC+prompt tuning (SPC+Prompt). SPC+Prompt uses significantly fewer trainable parameters. Reported as
(Rouge-2, Rouge-L) pairs. Bold numbers represent the best of the three approaches for each domain–domain pair.
Underlined numbers represent in-domain full-data results.

Source Domain Target Domain Approach T5-small (F1) T5-xl (F1)

QQP
QQP

Prompttune 69.93 81.26
SPC+Prompt 73.68 81.42

MRPC
Prompttune 68.49 70.45
SPC+Prompt 79.32 77.78

MRPC
MRPC

Prompttune 79.89 79.87
SPC+Prompt 81.22 81.29

QQP
Prompttune 53.13 54.02
SPC+Prompt 63.64 60.87

Table 5: In-domain & 16-shot cross-domain results on
paraphrase detection task with prompt tuning (Prompt-
tune) and SPC+prompt tuning (SPC+Prompt).

Source Task Target Task Approach Zero-Shot Few-Shot

QReCC XSum
Finetune 2.29, 11.79 6.15, 18.56
Prefixtune 2.01, 11.05 10.26, 24.08

SPC+Prompt 2.14, 11.13 13.98, 28.39

XSum QReCC
Finetune 9.33, 19.66 42.29, 54.22
Prefixtune 10.61, 19.77 33.20, 45.72

SPC+Prompt 19.33, 31.69 43.26, 54.96

Table 6: Zero/Few-shot cross-task results with
fine-tuning (Finetune), PrefixTuing (Prefix), and
SPC+prompt tuning (SPC+Prompt). Reported as
(Rouge-2, Rouge-L) pairs.

becomes negligible as the LM goes larger (e.g., T5-
XL, GPT-3). We do not show SPC results with repa-
rameterization as its effect is inconsistent across
tasks (Liu et al., 2021c).

Ablation study Table 2, 3, and Figure 2 show
the effectiveness of our SPC framework in com-
parison with baselines. The SPC loss significantly
improves the performance of fine-tuning, Prefix-

Approach Total Parameters Trainable Parameters (#/%)

Finetuning 406,291,456 406,291,456 / 100%
PrefixTuning 447,507,008 41,215,552 / 9.21%
PrefixTuningdec 426,899,232 20,607,776 / 4.83%
Prompt Tuning 406,393,856 102,400 / 0.025%
SPC+Prompt 406,589,225 297,769 / 0.073%

Table 7: Trainable parameter count w.r.t. BART model
and fixed prompt length 100.

Tuning, and prompt tuning.

Prompt length Prompt length significantly af-
fects the performance of prompt tuning ap-
proaches (Li and Liang, 2021; Liu et al., 2021c),
as shown in Figure 3. Their relationship is non-
linear. A longer prompt (hence more parameters)
does not translate to better performance, suggest-
ing prompt tuning’s high variance that cannot be
stabilized by using more parameters or larger mod-
els (Chen et al., 2022a). Generally, simpler tasks
require a shorter prompt (Liu et al., 2021c).

Prompt initialization Prompt tuning methods
generally benefit from “meaningful” prompt ini-
tialization, such as initializing from model word
embeddings as shown in Table 2 and 3. Our SPC ap-
proach is less sensitive to the initialization method
than PrefixTuning (Chen et al., 2022a), and the
SPC loss helps stabilize performance.

Prompt position Our experiments suggest that
generation tasks favor prompting after the original
input, i.e., at the decoder. For the text classification

124

finetune

finetune+spc

prefix-rand

prefix-bart

prefix-dec-rand

prefix-dec-bart

prefix-dec-rand+spc

prefix-dec-bart+spc

prompt-rand

prompt-bart

prompt-rand+spc

prompt-bart+spc

50

55

60

65

70

75

80

85
R
ou

ge
-L

finetune
prefixtune
prompttune

Figure 2: Ablation study on CQR task. Y-axis is the
Rouge-L score and X-axis represents model variants.

25 50 75 100 125 150 175 200
prefix length

20

22

24

26

28

R
ou

ge
-L

(a) QReCC

0 25 50 75 100 125 150 175 200
prefix length

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

R
ou

ge
-L

(b) XSum

Figure 3: Prompt length v.s. SPC performance on (a)
QReCC and (b) XSum. Results obtained with (a) 10%
validation and 25% training data; (b) 10% validation
and 20% training data.

task (paraphrase detection), we prompt before the
original input as suggested by Liu et al. (2021c);
Lester et al. (2021). However, in our experience
prompting after the original input still performs
better for most tasks.

Interpretability There is an ongoing debate on
whether soft prompts are interpretable. Webson
and Pavlick (2021) find little evidence supporting
language models understanding the prompts’ mean-
ing. Other works suggest that soft prompts form
semantically close clusters (Lester et al., 2021;
Zhang et al., 2021) and task-specific clusters (Su
et al., 2022). However, the prompted embedding
space may be highly nonlinear and potentially
non-metrizable; hence, the clusters induced by
Euclidean or cosine distance may not imply se-
mantic similarity (Su et al., 2022). Instead, the
clusters may be illusions arising from certain ini-
tialization strategies or the clustering tendency in
high dimensions—namely, the probability for high-
dimensional vectors to be uniformly distributed
across dimensions is low. Our experiments find that
the learned soft prompts do not convert to meaning-

ful phrases. However, carefully controlled experi-
ments are required to exclude confounding factors,
and we leave this exploration to future work.

5 Conclusions

This paper proposes a soft prompt construction
(SPC) framework to learn domain-adaptable soft
prompts. The derived SPC loss is model/task-
agnostic and can plug into other models and tun-
ing methods to improve their cross-domain per-
formance. Experiments on three tasks (contex-
tual query rewriting, abstractive summarization,
paraphrase detection) demonstrate that SPC im-
proves significantly over strong SOTA: PrefixTun-
ing (Li and Liang, 2021), prompt tuning (Lester
et al., 2021), and fine-tuning in zero/few-shot cross-
domain/task settings across different LMs (BART,
T5 family). Various properties of SPC are also an-
alyzed. This study paves the way for loss-guided
domain-adaptable prompt learning.

Limitations

The proposed SPC framework is model and task ag-
nostic and can scale to different models and tasks.
It is adaptable to domain/task shifts and gener-
alizes well with low data. However, the prompt
length has to be tuned for each task, and there is no
principled way of determining the optimal prompt
length. This work does not explore the interpreta-
tion of soft prompts or prompt ensemble. Future
work can investigate other loss forms derived from
our SPC framework, explore the combination of
fine-tuning’s strong in-domain performance and
SPC’s cross-domain performance, and apply SPC
and other parameter-efficient tuning approaches to
large LMs.

Ethical Statement

We hereby state that our study adheres to the ACL
Code of Ethics and Professional Conduct. We do
not see an immediate negative impact or poten-
tial misuse of the proposed SPC method. Should
our method fail in real-world applications, it will
not cause potential harm to vulnerable populations.
We examine the dataset and trained models and do
not see bias incurred by our method. Our study
does not use demographic or identity characteris-
tics from users. No data is or will be collected from
users. Our method does not increase energy and
carbon costs but will potentially reduce them due
to its data- and parameter-efficient training.

125

References
Raviteja Anantha, Svitlana Vakulenko, Zhucheng Tu,

Shayne Longpre, Stephen Pulman, and Srinivas
Chappidi. 2021. Open-domain question answering
goes conversational via question rewriting. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
520–534.

Akari Asai, Mohammadreza Salehi, Matthew E Peters,
and Hannaneh Hajishirzi. 2022. Attempt: Parameter-
efficient multi-task tuning via attentional mixtures
of soft prompts. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6655–6672.

Michael Barr and Charles Wells. 1990. Category theory
for computing science, volume 1. Prentice Hall New
York.

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and
Shangsong Liang. 2022a. Revisiting parameter-
efficient tuning: Are we really there yet? arXiv
preprint arXiv:2202.07962.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin
Deng, Yunzhi Yao, Chuanqi Tan, Fei Huang,
Luo Si, and Huajun Chen. 2021. Knowprompt:
Knowledge-aware prompt-tuning with synergistic
optimization for relation extraction. arXiv preprint
arXiv:2104.07650.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,
Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022b. Knowprompt: Knowledge-
aware prompt-tuning with synergistic optimization
for relation extraction. In Proceedings of the ACM
Web Conference 2022, pages 2778–2788.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 675–686.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Ahmed Elgohary, Denis Peskov, and Jordan Boyd-
Graber. 2019. Can you unpack that? learning to
rewrite questions-in-context. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5918–5924.

Xing Fan, Eunah Cho, Xiaojiang Huang, and Chenlei
Guo. 2021. Search based self-learning query rewrite
system in conversational ai. In 2nd International
Workshop on Data-Efficient Machine Learning (De-
MaL).

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830.

Sebastian Gehrmann, Yuntian Deng, and Alexander M
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4098–4109.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2022. Ppt: Pre-trained prompt tuning for few-shot
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8410–8423.

Yuxin Jiang and Wei Wang. 2022. Deep continuous
prompt for contrastive learning of sentence embed-
dings. arXiv preprint arXiv:2203.06875.

Serge Lang, FW Gehring, and KA Ribet. 2002. In-
troduction to differentiable manifolds, volume 32.
Springer.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. CoRR, abs/1910.13461.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Hui Lin and Vincent Ng. 2019. Abstractive summariza-
tion: A survey of the state of the art. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 9815–9822.

126

http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461

Hang Liu, Meng Chen, Youzheng Wu, Xiaodong He,
and Bowen Zhou. 2021a. Conversational query
rewriting with self-supervised learning. In ICASSP
2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
7628–7632. IEEE.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021b. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Vivian Liu and Lydia B Chilton. 2022. Design guide-
lines for prompt engineering text-to-image generative
models. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, pages 1–
23.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,
Zhilin Yang, and Jie Tang. 2021c. P-tuning v2:
Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint
arXiv:2110.07602.

Xiaochen Liu, Yu Bai, Jiawei Li, Yinan Hu, and
Yang Gao. 2022. Psp: Pre-trained soft prompts for
few-shot abstractive summarization. arXiv preprint
arXiv:2204.04413.

William S Massey. 2019. A basic course in algebraic
topology, volume 127. Springer.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
Topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying lms with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212.

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin,
Ning Ding, Zhiyuan Liu, Juanzi Li, Lei Hou, Peng
Li, Maosong Sun, et al. 2021. Exploring low-
dimensional intrinsic task subspace via prompt tun-
ing. arXiv preprint arXiv:2110.07867.

Jun Quan, Deyi Xiong, Bonnie Webber, and Changjian
Hu. 2019. Gecor: An end-to-end generative ellipsis
and co-reference resolution model for task-oriented
dialogue. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4547–4557.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Pushpendre Rastogi, AI Alexa, Arpit Gupta, and
Tongfei Chen. 2019. Scaling multi-domain dialogue
state tracking via query reformulation. NAACL HLT
2019, pages 97–105.

Michael Regan, Pushpendre Rastogi, Arpit Gupta,
and Lambert Mathias. 2019. A dataset for resolv-
ing referring expressions in spoken dialogue via
contextual query rewrites (cqr). arXiv preprint
arXiv:1903.11783.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Comput-
ing Systems, pages 1–7.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
et al. 2022. Multitask prompted training enables zero-
shot task generalization. In The Tenth International
Conference on Learning Representations.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Iyer Shankar, Dandekar Nikhil, and Csernai Ko-
rnel. 2017. First quora dataset release: ques-
tion pairs (2017). URL https://www. quora.
com/q/quoradata/First-Quora-Dataset-Release-
Question-Pairs.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235.

Edwin H Spanier. 1989. Algebraic topology. Springer
Science & Business Media.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, et al. 2022. On transferabil-
ity of prompt tuning for natural language processing.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3949–3969.

127

Yi Sun, Yu Zheng, Chao Hao, and Hangping Qiu. 2021.
Nsp-bert: A prompt-based zero-shot learner through
an original pre-training task–next sentence prediction.
arXiv preprint arXiv:2109.03564.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022a. Self-consistency
improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171.

Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix
Yu, Cho-Jui Hsieh, Inderjit S Dhillon, and Sanjiv
Kumar. 2022b. Preserving in-context learning ability
in large language model fine-tuning. arXiv preprint
arXiv:2211.00635.

Albert Webson and Ellie Pavlick. 2021. Do prompt-
based models really understand the meaning of their
prompts? arXiv preprint arXiv:2109.01247.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Charles A Weibel. 1995. An introduction to homologi-
cal algebra. 38. Cambridge university press.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and
Tengyu Ma. 2021. An explanation of in-context learn-
ing as implicit bayesian inference. arXiv preprint
arXiv:2111.02080.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Eyup Halit Yilmaz and Cagri Toraman. 2021. Conqx:
Semantic expansion of spoken queries for intent de-
tection based on conditioned text generation. arXiv
preprint arXiv:2109.00729.

Wenpeng Yin and Hinrich Schütze. 2015. Convolu-
tional neural network for paraphrase identification.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 901–911.

Shi Yu, Jiahua Liu, Jingqin Yang, Chenyan Xiong, Paul
Bennett, Jianfeng Gao, and Zhiyuan Liu. 2020. Few-
shot generative conversational query rewriting. In
Proceedings of the 43rd International ACM SIGIR
conference on research and development in Informa-
tion Retrieval, pages 1933–1936.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng,
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun
Chen. 2021. Differentiable prompt makes pre-trained
language models better few-shot learners. arXiv
preprint arXiv:2108.13161.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

128

A Additional Experiment Details

1 # Using PyTorch as demonstration
2 freeze_params(model)
3 model.train()
4

5 # Initialize prompt embedding
6 prompt_embedder = torch.nn.Embedding(

prompt_length , embedding_dim)
7 prompt_embedder.weight = torch.nn.

Parameter(model.shared.weight [:
prompt_length , :]. clone().detach ())

8 prompt_embedding = prompt_embedder(range
(prompt_length))

9

10 # Add prompt embedding to model input
and run forward pass

11 inputs_embeds = torch.cat((
prompt_embedding.clone(),
input_embeds), dim=1)

12 outputs = model.forward(input_embeds)
13

14 # Get embeddings
15 E_x = outputs.encoder_hidden_states [0]

shape (batch_size , sequence_length
, embedding_dim)

16 E_y = outputs.decoder_hidden_states [-1]
17 E_p = outputs.decoder_hidden_states [0]

or outputs.encoder_hidden_states
[0][: , <prompt indices >, :]

18

19 # Transform embeddings
20 E_x = W_x(E_x).squeeze (-1)
21 E_y = W_y(E_y).squeeze (-1)
22 E_xy = torch.cat((E_x , E_y), dim=1)
23 E_xy = W(E_xy)
24 E_p = W_p(E_p).squeeze (-1)
25

26 # Compute loss
27 spc_loss = (E_xy - E_p).pow(2).sum(dim

=1).sqrt().mean()
28 loss = outputs.loss + spc_loss
29 loss.backward ()

Code 1: Pseudo-code for SPC loss.

Table 8 shows the hyperparameter search space.
The prompt lengths we used for CQR, summa-
rization, and paraphrase detection are 200, 200,
and 120. To conduct a fair comparison, we use
the same batch size and number of epochs for all
model variants on the same task, regardless of tun-
ing approaches. The (batch size, training epochs)
for CQR, summarization, and paraphrase detection
tasks are: (16, 50), (16, 50), (16, 200).

Fine-tuning tends to converge faster than
parameter-efficient approaches. For example, fine-
tuning (with/without SPC) reaches high validation
performance with fewer epochs and slowly im-
proves after that. Parameter-efficient approaches
(PrefixTuning, prompt tuning, with/without SPC)
take more epochs to reach the same performance.
However, we do not use early stopping and use the

Hyperparameter Search Space

prompt position {encoder, decoder, both}
prompt length {1, 5, 10, 20, 30, ..., 200}
prompt initialization {random, model token embedding}
max/min generation length (vary with tasks)
beam size {1, 2, 3, 4, 5, 6}
length penalty {1}
batch size {8, 16}
learning rate {5e-5, 1e-5, 1e-4, 1e-3, 1e-2}
learning rate scheduler {none, linear}
warmup steps {none, 10%}
epochs full-data: ≤ 200; few-shot: ≤ 1000

Table 8: Hyperparameter search space.

best checkpoint for evaluation after finishing all
epochs.

The exact number of epochs for stabilizing per-
formance varies with each setting and task. How-
ever, we can compare their effective FLOP (= num-
ber of trainable parameters × number of epochs to
stabilization). For example, for the CQR task, the
effective FLOP for fine-tuning, PrefixTuning, and
SPC+Prompt are: 406M params × 20 epochs =
8120M FLOP, 41M params × 40 epochs = 1640M
FLOP, 0.3M params × 45 epochs = 13.5M FLOP.
Hence, even with more epochs, SPC+Prompt has a
drastically smaller effective FLOP.

B Methodology: Algebraic Perspective

The soft prompt tuning problem aims to generate
the target conditioned on the prompted input, which
is achieved by simply tuning the prompt embed-
dings rather than designing the prompt tokens. We
aim to improve soft prompts’ cross-domain general-
izability by proposing a domain-adaptable learning
paradigm.

We examine the three spaces that play a crucial
role here: general task (or input) space, prompted
space, and specific task (or output) space. De-
note the tuple (input space, prompted space, output
space) as the three-spaces. The input space is the
general task space because it contains the task infor-
mation without referring to a specific task or target.
For example, an LM cannot tell if text input is for
rewriting or summarization without fine-tuning on
the specific task (see Table 1). However, prompts
in the prompted space provide the context to spec-
ify the task and steer the LM to predict targets in
the specific task space (Reynolds and McDonell,
2021). For instance, Table 1 shows how a prompted
input, which combines input and prompt, contains
both the original text and task-specific information.
Nonetheless, the hand-designed prompts are not

129

scalable to other tasks as they require manual labor,
and traditional soft prompt tuning approaches do
not generalize to new domains.

So how do we learn domain-generalizable soft
prompts? We take an algebraic approach and re-
sort to the category theory. Category theory is
fundamental to other (modern) math streams and
applied to other fields, such as computer science.
It studies the universal properties of mathematical
objects, their structures, and the relations between
them (Barr and Wells, 1990). Using category the-
ory, we can derive the universal properties of the
three-spaces and their relations, and such proper-
ties will be natural to domains, i.e., they will be
domain-invariant.

First, let us formalize the three-spaces into cat-
egories. The input space, prompted space, and
output space carry the canonical structure of sets,
so they are categories of sets (Barr and Wells,
1990): Seti, Setp, Seto. Within the category,
the objects are sets of tokens (i.e., tokens of in-
puts, prompts, and outputs), and the morphisms
are functions between sets. We introduce the
functor: structure-preserving map between cate-
gories F : Seti → Seto, such that for any object
x ∈ Seti, F (x) ∈ Seto, and for any morphism
f : x → y ∈ Seti, F (f) : F (x) → F (y) ∈ Seto.
Similarly, we introduce functors G : Setp → Seto
and H : Seti → Setp. A commutative diagram 4
shows such relations.

Next, we push the category of sets to the cate-
gory of vector spaces—that is, we move to the cor-
responding embedding spaces of the three-spaces.
Embedding spaces naturally carry the structure
of vector spaces, so they are categories of vector
spaces: Vecti, Vectp, Vecto (they are actually
categories of topological vector spaces as the em-
beddings carry manifold structure, but we omit this
structure for simplicity) (Lang et al., 2002). For
notional convenience, we omit the underlying field
of real numbers for the vector space. The objects
in the Vect category are vector spaces, and the
morphisms are linear maps between vector spaces.
Similarly, we have functors F̄ : Vecti → Vecto,
Ḡ : Vectp → Vecto, H̄ : Vecti → Vectp. The
map from the category of sets to the category of
vector spaces is also a functor: the “embedding”
functor.

To make Vectp domain-invariant, we must find
invariance between functorial maps. We resort
to homology: algebraic objects that are topolog-

Vecti Vectp

Vecto

Seti Setp

Seto

H̄

F̄
Ḡ

H

F
G

Figure 4: Commutative diagram between categories.

ically invariant (Weibel, 1995). Denote the cat-
egory of chain complexes over Vect as ∂Vect
whose objects are chain complexes in Vect and
morphisms are chain maps. There is a homology
functor (Spanier, 1989):

◦
H : ∂Vect → Vect

that maps from chain complexes to their homology
(modules). However, computing the homology is
non-trivial. To simplify the problem, we introduce
a short exact sequence—simplest form of chain
complexes and can be used to construct longer
chain complexes (Massey, 2019; Weibel, 1995)—
in Vect: K ≡ 0 → Ei

h→ Ep
g→ Eo → 0 where

Ei, Ep, Eo are the input, prompted, output embed-
ding spaces, and 0 is the zero object (exercise for
readers to check such exact sequence exists). This
indicates K’s homology

◦
H(K) ≡ ker(g)

im(h) = 0id is
trivial and Ep is acyclic and invariant. Further,
there exists a morphism h−1 : Ep → Ei such that
h−1 ◦ h = idEi . By the splitting lemma (Weibel,
1995), we have Ep

∼= Ei ⊕ Eo. Hence, we can
construct the prompted embedding space Ep from
the direct sum of input embedding space Ei and
output embedding space Eo, hence the name “soft
prompt construction” (SPC). There are more than
one approaches to enforce such a domain-invariant
property. We choose the most straightforward one:
the SPC loss (7).

130

