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Abstract

This paper describes technology developed to
automatically grade students on their English
spontaneous spoken language proficiency with
common european framework of reference for
languages (CEFR) level. Our automated as-
sessment system contains two tasks: elicited
imitation and spontaneous speech assessment.
Spontaneous speech assessment is a challeng-
ing task that requires evaluating various aspects
of speech quality, content, and coherence. In
this paper, we propose a multimodal and mul-
titask transformer model that leverages both
audio and text features to perform three tasks:
scoring, coherence modeling, and prompt rel-
evancy scoring. Our model uses a fusion of
multiple features and multiple modality atten-
tion to capture the interactions between audio
and text modalities and learn from different
sources of information.

1 Introduction

Language proficiency testing is an increasingly im-
portant part of our society. The need to demonstrate
language abilities through standardized testing is
required in many situations for access to higher
education and employment opportunities.

This paper presents an automatic system to ad-
dress the assessment of English spoken proficiency
with CEFR level. Our framework contains two
tasks: elicited imitation and spontaneous speech
assessment.

The elicited imitation task taps into reading and
speaking skills by requiring examinees to say a
sentence out loud. Test takers must be able to
process the input and are evaluated on their flu-
ency, accuracy, and ability to use complex language
orally (Van Moere, 2012). We employ statistical
machine learning (ML) and natural language pro-
cessing (NLP) using a transformer-based classifier
to directly estimate item difficulties for a large item
bank.
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For spontaneous speech assessment, the candi-
dates are asked to talk about a prompt/question-
related topic. Our spontaneous speech system
is based on EF Standard English Test (EFSET)
dataset. In the proposed system, the students’ spo-
ken answers are first transcribed by a state-of-the-
art automatic speech recognition (ASR) system
and then scored using a multimodal and multitask
framework. This work argues that audio and text
features are complementary for a valid automatic
spoken assessment system (Mayfield and Black,
2020; Gretter et al., 2019).

The contributions in this paper are threefold: 1)
we propose the use of test items for elicited imita-
tion that can be automatically created and graded
using a BERT transformer; 2) a multimodal and
multitask framework for spontaneous speech as-
sessment combining audio and text is proposed; 3)
a complete automated assessment framework was
built and evaluated using a calibrated dataset.

In the pages that follow, we first summarize the
state-of-the-art in automated speech assessment
and then describe our approach to assess language
proficiency. We then present evidence for the va-
lidity and reliability of our approach using EFSET
validation set and a calibration dataset. Finally, we
will give a conclusion.

2 Related Works

A number of approaches have been proposed to
assess different aspects of a learner’s spoken lan-
guage proficiency. Most automatic assessment sys-
tems contain an ASR system, with the success of
deep neural networks (DNN) in speech recognition
(Hinton et al., 2012), a number of automatic as-
sessment systems that deploy DNN-based speech
recognition systems have been proposed. The ex-
tracted features are then used to train a grader to
give a score. All existing automatic assessment sys-
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tems are learning-based and can be classified based
on whether they are feature-based, end-to-end or
multitask approaches.

2.1 Features-based approach

The Educational Testing Service (ETS) presented
an automatic assessment system focused on sponta-
neous speech, named SpeechRater (Higgins et al.,
2011; Zechner et al., 2009). SpeechRater exploits
features related to pronunciation (audio and fluency
features), grammatical accuracy and ASR confi-
dence. This system gives a correlation of 0.7 with
human scores on a dataset from the Test of English
as a Foreign Language (TOEFL).

In Wang et al. (2018), an automatic assessment
system for spontaneous speech of English is pro-
posed using data from the Business Language Test-
ing Service (BULATS) Online Speaking Test of
Cambridge English Language Assessment. This
system uses a deep neural network ASR system
to generate transcriptions from which a set of fea-
tures are extracted. In addition to audio and fluency
features, they also exploit confidence, syntactic
parsing (Briscoe, 2006) and pronunciation features.
This system shows a Pearson Correlation Coef-
ficient (PCC) of 0.865 and Mean Squared Error
(MSE) of 10.2 when compared with expert scores.

Gretter et al. (2019) introduced an automatic as-
sessment system using a DNN ASR system and
then scored students’ answers using a feedforward
neural network that processes features extracted
from the automatic transcriptions. In addition to
audio signals, the system uses a set of LMs trained
over different types of text data to compute fea-
tures. The system was trained using the Trentino
evaluation campaigns on trilinguism. This system
shows a correlation of 0.7 and a weighted kappa of
0.77 when compared with expert scores.

Recently, Bamdev et al. (2023) presents a ma-
chine learning-based approach to assess the En-
glish proficiency of non-native speakers from their
speech samples. The paper uses the SLTI SOPI
dataset, which contains 1200 speech samples with
different proficiency levels, rated by human experts
on a scale from 1 to 5. The paper extracts various
linguistic features from the speech samples, such
as pronunciation, fluency, vocabulary, grammar,
and discourse. They train two types of machine
learning models to predict the proficiency scores
from the linguistic features: a classification model
that assigns each speech sample to one of the five

proficiency levels using support vector machines
(SVMs), and a regression model that outputs a con-
tinuous score between 1 and 5 using random forest
regressors (RFRs). The paper reports that the re-
gression model achieves a higher accuracy of 0.82
than the classification model with 0.77, based on
the correlation with human scores.

2.2 End-to-End approach

Chen et al. (2018) proposed an end-to-end ap-
proach based on bidirectional long short-term mem-
ory (BD-LSTM) using attention mechanism and
regression. This system performs better than the
initial SpeechRater framework developed by ETS.
The conventional model shows a PCC of 0.58 when
the end-to-end approach provides higher perfor-
mance with 0.60.

Grover et al. (2020) proposed a multi-modal
end-to-end neural approach for automated assess-
ment of non-native English speakers’ spontaneous
speech using attention fusion. The pipeline em-
ploys BD-RNN and BD-LSTM neural networks
to learn complex interactions among acoustics and
lexical features. They used data collected by Sec-
ond Language Testing Inc. (SLTI) administrating
Simulated Oral Proficiency Interview (SOPI) for
L2 English speakers. The model shows a weighted
kappa of 0.50 and 0.32 of MSE.

Recently, Singla et al. (2021) introduces a
speaker-conditioned hierarchical model that as-
sesses the language proficiency of speakers based
on their oral responses. The model leverages a two-
level attention mechanism to relate the prompts and
responses, and speaker embeddings to capture indi-
vidual variations. The model outperforms the base-
lines on human-machine agreement and provides
insights into the learned representations. The paper
shows that the model attains an average QWK of
0.82 on four datasets, which is a 6.92% increase
over the baseline model.

2.3 Multitask Approach

Muangkammuen and Fukumoto (2020) presents a
multi-task learning model that combines automated
essay scoring and sentiment analysis. The model
uses a hierarchical neural network to predict a holis-
tic score and sentiment classes at different levels of
text. The paper shows that sentiment features can
improve essay scoring for some prompts.

More recently, Yang et al. (2022) proposes a
multi-task learning framework that incorporates rel-
evance and coherence modeling as auxiliary tasks
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for automated text scoring. The paper uses negative
sampling to generate samples for the auxiliary tasks
and evaluates the model on the ASAP dataset. The
paper reports that the model improves the QWK
scores by 1.5% on average compared to other neu-
ral network models.

3 Proposed Approach

In this section, we are going to describe our system
which combines elicited imitation and spontaneous
speech assessment.

3.1 Elicited Imitation

The Elicited Imitation (EI) is a testing method that
usually requires participants to listen to a series of
stimulus sentences and then repeat the sentences
as closely as possible. EI has been widely used as
a measure of oral proficiency in second language
acquisition research (Kostromitina and Plonsky,
2021; Wu et al., 2021).

Test takers must be able to process the input
(e.g., orthography and grammatical structure) and
are evaluated on their fluency, accuracy, and ability
to use complex language orally (Van Moere, 2012).
In practice, test items are written by experts. This
labor-intensive process often restricts the number
of items that can be created. To tackle this problem,
we propose the use of test item formats that can be
automatically created and graded using NLP.

3.1.1 Test Items Construction

To estimate item difficulty for the EI task, we em-
ploy statistical NLP to automatically project items
onto a 3-point scale (elementary, intermediate, ad-
vanced).

These levels were assigned using an NLP model
(sentence complexity classifier) trained on newsin-
levels dataset. The newsinlevels corpus consists of
12,000 sentences ranked by 3 reading levels (ele-
mentary, intermediate, advanced).

Class Precision Recall F-1 Score
Elementary 0.86 0.95 0.90
Intermediate 0.68 0.64 0.66
Advanced 0.86 0.81 0.83

Table 1: Performance of BERT-based Sentence Com-
plexity Classifier.

We use a transformer-based architecture (BERT,
(Devlin et al., 2018)) that has been pretrained on a

large unlabeled corpus, and finetune it on newsin-
levels dataset. Our model achieved 82% of accu-
racy on a validation dataset. Table 1 shows detailed
performance of our BERT-based Sentence Com-
plexity Classifier.

To build a bank of sentences, we downloaded
2000 English sentences from Tatoeba' (a free
crowdsourced database of self-study resources for
language learners). Then we apply our sentence
complexity ranker to the Tatoeba dataset. Finally,
we obtained a list of sentences annotated with the
3 difficulty levels.

To construct our final item list, we filtered the
Tatoeba dataset with these features:

* length of sentence - 3 length bands: short (<8
syllables), medium (8-15 syllables), long (>
15 syllables) ;

» grammatically acceptable sentences: we se-
lected acceptable English sentences from the
grammar perspective ;

* non-profane sentences.

Table 2 shows examples of sentences, rated for
predicted difficulty by the BERT complexity clas-
sifier model.

3.1.2 Automated Speech Scoring for Elicited
Imitation

Our elicited imitation assessment method is based
on local features derived from automatic speech
recognition, e.g., the Goodness of Pronunciation
(GOP) score. It takes the probabilities of the
phonemes and processes them into the phoneme-
level scores. In addition, it uses a process called
“Forced Alignment” to align the targeted words and
phonemes to the 10-millisecond audio frames from
the given audio input.

3.2 Multimodal & Multi-task Learning for
Spontaneous Speech Assessment

Our multimodal architecture consists of two paral-
lel branches, the audio modality-based branch, and
the text modality-based branch which consists of
a multitask BERT model. Its core mechanisms are
the fusion of multiple feature vectors and multiple
modality attention.

From the audio data, we extract three kinds of
features that belong to the audio modality: acous-
tic, prosodic, and spectral. A Time Delay Neural

'nttps://tatoeba.org
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Candidate Sentence Predicted Level
You are in my way. Elementary
Humans were never meant to live forever. Intermediate

I was wondering if you were going to show up today. Advanced

Table 2: Example sentences, rated for predicted difficulty by the BERT complexity classifier model

Network (TDNN) then transforms these features
into high-level representations.

We use a multitask BERT model to extract word
embeddings from the text data that belong to the
text modality. A fully connected layer then trans-
forms these embeddings into contextual represen-
tations.

We concatenate the outputs of the TDNN and
the fully connected layer to fuse multiple feature
vectors. We apply a multi-head self-attention mech-
anism to the concatenated vector to fuse multiple-
modality attention, which can model the interac-
tions and relationships among different modalities
and features. The model produces a CEFR score
by a fully connected layer and a softmax layer as
the final output.

Figure 1 shows the structure of the attention-
based mechanism multimodal multitask model.

Audio Text

Mu Ititask
AUdIO Feature ”

QQQ@} [@@QQ

Multimodal Fusion Gl bz
Layer =
Self Attention
Add&Norm
v
CEFR

Output Layer Level

Multimodal
Association Layer

Figure 1: Structure of multimodal and multitask learn-
ing model.

3.2.1 TDNN model

Automatic Speech Recognition (ASR) is based on
a hybrid Time Delay Neural Network (TDNN)
acoustic models trained with the kaldi ASR toolkit
on a mix of 9k hours of in-house data and Lib-
riSpeech (Peddinti et al., 2015). For the scoring
model, we restrict in house data for utterances with

the best pronunciation scores. 3-fold speed pertur-
bation is used to augment the training data. No
augmentation with noise was used, although the
in-house part of the dataset reflects various back-
ground conditions w.r.t. additive noise. We did not
split the ASR training dataset w.r.t. native language
or clustered it for accents, in order to make the
resulting system simpler. As language model, an
ARPA tri-gram is used for transcription with the
transcription acoustic model in a single decoding
pass.

Beside mel filterbank spectra, we also compute
fundamental frequency contour directly from au-
dio and silence/pause duration patterns as well as
hesitation statistics from the alignment provided by
the ASR during decoding. These supra-segmental
features can be extracted quite reliably and can
be used to assess intonation and stress patterns as
well as fluency. The essential statistics for pause
and hesitation include frequency of occurrence and
duration (mean, standard deviation). Fundamen-
tal frequency can be used to assess intonation and
stress patterns. We measured a Word Error Rate
(WER) of 20.6% on elicited speech transcription
on our in house 9 hours audio test set.

Phone quality is also influenced by stressing, in
unstressed vowels reduction may take place. This
can also be exploited in the assessment of proper
stressing as part of fluency. The transcription acous-
tic models were created such that for most vowels,
both a stressed and an unstressed variant is used
and trained. In languages with lexical stress, such
as English, this differentiation is simple and can be
represented at the dictionary level.

Generally, the more hesitations are present, and
the more and longer the pauses get, the least flu-
ent is the speech, supposing we keep the expected
speaking style constant. In tasks where speaking
style is less formal, however, disfluencies such
as hesitation and pauses are natural phenomena
and hence, assessment is prevented from assigning
lower fluency scores in such cases.
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3.2.2 Multitask learning

Multi-task learning (MTL) is a machine learning
technique that learns multiple tasks at the same
time by sharing information among them (Craw-
shaw, 2020). MTL can improve the performance
of each task compared to learning them separately.
In MTL, there is a main task and some auxiliary
tasks that can benefit from each other and enhance
the generalization ability. The basic assumption for
auxiliary tasks is that they should be relevant to the
main task and help the main task learn better.

Discourse structure and coherence are important
aspects of student answers and are often a part of
grading rubrics. We describe the transformer-based
discourse features that have been used to measure
prompt relevancy and coherence.

Relevance Coherence
[ ScorBu Loy ] [Mudnling L:vur} [Mudelln; I.avzr}

Auxiliary Task T
_ [ _ .
O n 7 |
| n ..
) u m )
1 1

| Transformer Block |

Auxiliary Task T

max]

[ e

BERT Layer

| Transformer Block |

f ¥

Figure 2: An overview of our multi-task learning archi-
tecture.

Scoring task is the main task of our model. It
aims to predict a score for each essay. We employ
a dense layer with a linear activation function to
compute the score for each candidate answer based
on the text representation R. The text representa-
tion R is a high-dimensional vector that encodes
the semantic and syntactic information of both the
prompt and the answer. We modify the output layer
to produce a single scalar value and we use the
mean squared error as a loss function.

y=WTB(z)+b (1)

where y is the predicted value, W is the weight
vector of the output layer, B(x) is the output of
BERT for the input text z, and b is the bias term of
the output layer.

Coherence modeling measures conceptual re-
lations between different units within a response.
Our approach measures overall coherence by cal-
culating the semantic relatedness between adjacent

sentences. Obviously, coherence scores for well-
organized answers should be higher than the disor-
ganized/random answers.

We use the BERT pre-trained language model
(Devlin et al., 2018) and fine-tune it on EFSET
dataset® using a fully connected perceptron layer.
We leverage the Next Sentence Prediction objec-
tive of BERT and get a single representation for
both sentences s/ and s2. Given the sentence pair
P;;, the embedding of the [CLS] symbol from the
top layer of BERT is denoted as Cj;. Owing to
the Next Sentence Prediction pre-training objective
of BERT, this vector Cj; is able to aggregate the
semantic relations for the input sentence pair and
is capable of identifying the relative order between
two sentences. The softmax function is defined as:

Pij = softmax(WC;j + b) ()

where W and b are the parameters of the fully con-
nected perceptron layer, and F;7 is the probability
of sentence s; preceding sentence s;.

To find the right order of the sentences we use
topological sort (Prabhumoye et al., 2020; Tarjan,
1976). Finally, we use the sentence accuracy met-
ric (Logeswaran et al., 2018) to quantify the coher-
ence of answers. Sentence accuracy measures the
percentage of sentences for which their absolute
position was correctly predicted.

Our model aims to reorganize an unordered set
of sentences into a coherent paragraph. Then, the
coherence score for well-organized answers should
be higher than the incoherent answers.

Prompt-relevancy features measure how well
the answer matches the prompt. We assume that
the essay content and the topics are closely related.
ATS systems may assign a high score to an essay
that is well-written but off-topic. However, a hu-
man rater will prefer essays that are on-topic and
penalize essays that are not. To capture the prompt-
specific knowledge, we design an auxiliary task
called prompt-relevancy modeling. We take the top
40% essays of all prompts and shuffle them, and
use their prompts as labels. Then, we feed the la-
tent text representation R learned from BERT into
a dense layer with a softmax activation function to
predict the prompt.

P = softmax(WR+ ) 3)

We filtered the dataset using the coherence score provided
by expert. Then we generated permuted sentence samples.
Finally, we built a training set of 35000 samples and a test set
of 9500 samples.
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where P is the predicted prompt, W is the weight
matrix, b is the bias vector, and softmax is the
activation function.

3.2.3

The Multimodal Fusion Layer fuses multimodal
data features.

In our approach, we use two main forms of mul-
timodal sequence data: text (T) and audio (A). The
modal features are extracted by different methods,
which produce different dimensional features for
text and audio sequences T € T, A.

To align the sequences and make them have the
same dimension, we apply 1D temporal convolu-
tional layer as the final step.

Cross-modal Attention leverages the informa-
tion exchange between text and audio modalities
to fine-tune the weights of the model and the pre-
trained language model BERT. The data processing
layer produces the text features and audio features,
respectively.

3.24

The output sequence of the last layer of BERT
encoder text is combined with the attention us-
ing residual connection and layer normalization
(Add&Norm). This allows the network to stack
more layers without suffering from vanishing gra-
dients and also enhances the model accuracy and
convergence rate.

The output sequence of the last layer of the
BERT encoder for text for each task is combined
with the attention weights from the cross-modal
attention layer using residual concatenation, which
adds the two sequences element-wise. Then, the
resulting sequence is normalized using layer nor-
malization, which scales and shifts the sequence
to have zero mean and unit variance. This pro-
cess of residual concatenation and normalization
(Add&Norm) helps to stabilize the training and
improve the performance of the multimodal archi-
tecture.

Multimodal Fusion Layer

Multimodal Association Layer

3.2.5 Output Layer

The last layer of our multimodal model is a softmax
function that outputs a CEFR score between 1 and
6 for each input pair of audio and text. The softmax
function is defined as:

eti
8(.1‘1) = niex] (4)

Jj=1
where x; is the input to the function, which in our
case is a linear combination of the concatenated

features from the audio and text branches and n is
the number of elements in the vector.

4 Experiments

4.1 Dataset

In this section, we present corpora that have been
used to train and evaluate our system.

4.1.1 EF Standard English Test - Spontaneous
Speech Assessment

The EF Standard English Test® (EFSET) dataset
is based on a standardized test of the English lan-
guage designed for non-native English speakers.
EFSET contains around 4100 student tests (each
test containing 14 prompts) annotated by teachers.
Each student test is annotated with 4 scores be-
tween 0-100 representing accuracy, fluency, range
and coherence. The 4 scores are then mapped to a
final score using weights®.

finalscore = accuracy*0.3+ fluency*0.3+
range * 0.3 + coherence x 0.1

4.1.2 EF Speak Oral English Test -
Calibration dataset

For this experiment, we created a calibration/gold
standard dataset to evaluate our experiments.

We used the online outsourcing platform Up-
work to target English teachers or tutors and ask
them to distribute the test to their students. Students
could not submit the test twice and no additional in-
struction and information was given to pass the test.
The test takers are from three continents: Africa
(Nigeria), Europe (Albania, Ukraine, Turkey), and
Asia (Philippines and Korea).

A total of 400 responses have been collected and
totally 10 expert scorers participated in the scoring
of the tests. The two parts of the tests are scored
individually, and the scorer could not associate the
parts as the information of students is anonymous.
In the scoring process, a few individual audios are
regarded as technical issues, which is defined as
either the audio cannot be played or is inaudible.
We remove the parts marked as technical issues
and only reserve the test parts so that all the au-
dio recordings are properly scored by the scorers.
As a result, there are 379 test results and scores
qualified.

‘https://www.efset.org/
“These weights resulted from a calibration process that
occurred during the test creation.
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4.2 Evaluation

To evaluate our system, we use the Quadratic
Weighted Kappa (QWK) and Pearson Correlation
Coefficient (PCC). Table 3 shows the performance
of our multimodal multitask framework compared
to the expert graders for the EFSET test set. Our
baseline system (multitask only) obtains a QWK
score of 0.80 on the test set which shows a sub-
stantial agreement and a PCC of 0.8. When the
system combines multimodal and multitask learn-
ing, it improves the QWK to 0.84 and the PCC to
0.86, showing a higher agreement and a stronger
correlation.

To compare these results with recent works,
(Singla et al., 2021) reports that their hierarchi-
cal model achieves an average QWK of 0.82 across
four datasets, which is slightly lower our frame-
work on EFSET. Another features-based approach
provided by (Bamdev et al., 2023) reports that the
system achieves a QWK of 0.81 on SLTI SOPI
dataset, which is also lower than our model on EF-
SET. These papers suggest that the multimodal mul-
titask framework has a competitive performance in
automated speech scoring compared to other recent
works.

Table 4 shows the performance of our frame-
work on calibration evaluation set for EI and SSA
tasks. Our system obtains 0.78 of QWK and 0.82 of
PCC for both tasks. Figure 3 illustrates the associa-
tions between our test scores and IELTS. There is a
strong correlation between our scores and IELTS.

Model QWK PCC
Multitask BERT (only) 0.80 0.83
Multitask BERT+Multimodal ~ 0.84  0.86

Table 3: Performance of the Multimodal & Multitask
framework compared to the expert graders.

Test Part QWK PCC
ElI 071  0.79
SSA 0.84 0.86
EI+SSA 0.78 0.82

Table 4: Performance of the complete framework (EI
and Spontaneous Speech Assessment) compared to the
calibration dataset.

5 EF Speak Oral English Test

The EF Speak Oral English Test is an online as-
sessment initially created using the methods in this
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Figure 3: Relationship between EFSET Speaking Test
scores and IELTS proficiency levels, as shown by scat-
terplot and pearson correlation coefficient (r = 0.83).

paper. The elicited imitation task contains 9 items
ranked by difficulty using our BERT classifier. The
spontaneous speech assessment task contains 6
prompts. Figure 4 shows examples of items. Fi-
nally, each part is scored by our framework and the
final value is mapped to the corresponding CEFR
level.

Part1- Task 2

Please hear the audio and repeat after the beep:

Part 2 - Task 4

What can you do in the evening in your city?

Figure 4: Example of test items for Spontaneous Speech
Assessment.

6 Conclusion

This paper has described an automatic assessment
system for spontaneous English based focused on
elicited imitation and spontaneous speech assess-
ment. This system uses a multimodal and multitask
framework to leverage both audio and text features.
The performance of the proposed system has been
evaluated using PCC and QWK measures and the
best combination of features gives a PCC of 0.86
and a QWK of 0.84 when compared with expert
scores.
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