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Abstract

The emergence of pre-trained language models
has taken story generation, which is the task
of automatically generating a comprehensible
story from limited information, to a new stage.
Although generated stories from the language
models are fluent and grammatically correct,
the lack of coherence affects their quality. We
propose a knowledge-based multi-stage model
that incorporates the schema, a kind of struc-
tured knowledge, to guide coherent story gener-
ation. Our framework includes a schema acqui-
sition module, a plot generation module, and
a surface realization module. In the schema
acquisition module, high-relevant structured
knowledge pieces are selected as a schema. In
the plot generation module, a coherent plot plan
is navigated by the schema. In the surface real-
ization module, conditioned by the generated
plot, a story is generated. Evaluations show that
our methods can generate more comprehensible
stories than strong baselines, especially with
higher global coherence and less repetition.

1 Introduction

Story generation is a challenging text generation
task that uses a limited text, such as a first sentence,
as a clue to form a story. The story must not only
be grammatically correct but also have logic and
consistency, which is known as coherence. Illogical
sentences, unrelated entities, and generic phrases
are problems that affect the coherence of generated
stories (Holtzman et al., 2020).

Incorporating knowledge into models has shown
promising results in the story generation task; exter-
nal information is provided to the models to capture
more features not given in the context. For example,
Guan et al. (2020) applied commonsense knowl-
edge to their language model by using pre-training.
As shown in Table 1, while their method alleviates
the information deficit and produces more fluent
sentences, there is still room for improving coher-
ence. In particular, what is needed is a more so-
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Context tyron is headed home from basketball
practice.

he hears a noise coming from outside
of his car. he decides to pull over and
see what ’s going on. tyron sees a metal
spike in his tire. he calls his dad for help
and waits.

her son has to take his test. her son

has to take the test. his son, his
brother, and their mother were both
in school. her son, his brother, and their
mother were both disappointed.

he is ready to play. he is also dressed
in his big black dress. when he
leaves for the game he is surprised.
he is headed home.

Human
written

GPT-2

Knowledge
pre-trained
GPT-2

Table 1: Stories generated by human and neural mod-
els (Guan et al., 2020). Generated stories are illogi-
cal, describe unrelated entities, and contain unnatural
repetitions. Low global coherence makes automatically
generated stories difficult to understand in spite of their
sentences being grammatically correct.

phisticated mechanism that teaches how to utilize
external knowledge more effectively in the model
to control the coherence of generated stories.

To obtain better coherence, many previous stud-
ies have attempted to decompose the story gener-
ation task into stages. The use of a plot has been
shown to help the model understand narratives by
providing expectations, resolving ambiguity, and
filling in unstated information (Sakaguchi et al.,
2021). A script is introduced, which represents
a core plot for a story, to guide the surface real-
ization of the story(Fan et al., 2018; Yao et al.,
2019). They first predicted the script and then uti-
lized it to generate sentences in a story. In this
two-stage generation process, these models gen-
erated sentences capturing the lexical information
from the plot. However, they did not explore how
to have a structure within the plot. The lack of a
structure may cause illogical or repeated events to
be generated for a plot. As a result, even though
each generated sentence was related to the corre-
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Current Event

get fire starter

make fire

build a fire

no knowledge build a fire »

Predicted Event

buy some woods
and a fire starter

Sentence generated
from Event

he bought some
woods and a fire
starter in a shop.

>»

he built the fire.

Figure 1: Effect of a schema on plot generation. Structured knowledge is used to guide plot generation. Compared
with the model without a schema, our model generates a more logical plot that is not repetitive.

sponding plot, the coherence between sentences
was poor (Fan et al., 2018; Yao et al., 2019). To
alleviate this issue, a kind of structured knowledge
is desired to be incorporated to drive the plot.

In this paper, we propose a structured knowledge-
based multi-stage story generation model. For en-
hancing the coherence of generated stories, we ap-
ply relevant external knowledge as a schema to the
plot generation stage to explicitly guide the genera-
tion of a plot. The coherent plot can be an excellent
navigator that guides the model to generate stories
containing more coherent and explainable content.

The aforementioned schema is a concept in psy-
chology that describes a pattern of thought or be-
havior that organizes categories of information and
their relationships to guide perception, interpreta-
tion, imagination, or problem solving (APA Dictio-
nary, 2022). “Background knowledge” or “prior
knowledge” are also be used interchangeably with
schema (Sadoski et al., 1991). They serve a crucial
role in providing an account of how old knowl-
edge interacts with new knowledge in perception,
language, thought, and memory (Brewer and Naka-
mura, 1984). There is a clear link between schema
and comprehension because a structure facilitates
the planful retrieval of textual information and al-
lows the reconstruction of elements that have not
been learned or forgotten (Anderson and Pearson,
1984). We consider that schema could provide a
window into how models might use knowledge ef-
fectively. Encouraged by the concept, We try to
apply schema into the model to guide the coherent
story generation. Our model utilizes highly rele-
vant knowledge as structured knowledge to com-
pose a schema. The knowledge in the schema could
provide external information and stimulate knowl-

edge stored in the model. As shown in Figure 1,
when our model infers a plot, it is affected by the
schema (get fire starter, gather wood, and make
fire). Compared with the event (build a fire) pre-
dicted by a model without schema, our model can
generate a more explainable prediction (buy some
wood and a fire starter), that is not repetitive. Ob-
viously, a story produced from a coherent plot will
be more coherent.

The main contributions of this paper are summa-
rized as follows:

* We construct a multi-stage story generation
model by combining BART (Lewis et al.,
2020) with GPT-2 (Radford et al., 2019) to
generate a coherent story.

* We propose a novel plot generation framework
by allowing the incorporation of structured
external knowledge into the model. In this
model, the schema is utilized to guide the pre-
diction of a coherent plot, thereby improving
the coherence of generated stories.

* We develop two models, one with a story-level
schema and the other with a sentence-level
schema, to explore their ability and limitation
of using knowledge in the story generation
model.

* The results of objective and subjective eval-
uations show that our story-level model can
generate more coherent stories than strong
baselines.
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2 Related Work
2.1 Storytelling

Storytelling consists of tasks that aim to generate
a readable story like human-writing. Chandu et al.
(2019) transformed stories to fit different character
styles. Some work tries to generate stories from
various sources, including generating a story from
a short sequence (Fan et al., 2018; Rashkin et al.,
2020), and a topic (Zhai et al., 2019; Yao et al.,
2019). While storytelling has developed rapidly in
recent years, the quality gap between automatically
generated stories and human-written stories is still
large.

2.2 Script-based Generation

Script-based story generation is a strategy that de-
composes the story generation task into stages. One
of the common methods is applying a two-stage
model which generates a script that represents a
core plot for a story first, then uses the script to
guide the surface realization of the story(Fan et al.,
2018, 2019; Yao et al., 2019). In Yao et al. (2019)
they utilized a storyline before a whole story is
generated, which increases the coherence. Xu et al.
(2018) proposed a method that uses a compressed
sentence as a representation to enrich and control
the content of sentences in a generated story. To
generate scripts with correct orders, a new dataset
“proScript” is created for the scripts generation
task (Sakaguchi et al., 2021). Ammanabrolu et al.
(2020) proposed an ensemble-based system that
can generate semantically-related sentences from
scripts (Sakaguchi et al., 2021).

2.3 Knowledge-based Text Generation

Incorporating knowledge has demonstrated advan-
tages in various NLP generation tasks, such as fact-
aware generation (Logan et al., 2019), conversa-
tion generation (Wang et al., 2020). Especially in
open-domain generation tasks, which suffer from
the lack of external information, the knowledge
provides information that cannot be found in the
source and helps the model capture more details.
With the development of pre-trained language mod-
els, researchers have come to incorporate exter-
nal knowledge into the pre-trained models. Yang
et al. (2019a) utilized knowledge to enhance the
representations in BERT to improve comprehen-
sion. Xiong et al. (2020) proposed a method to
encourage pre-trained language models to learn
entity-level knowledge when answering questions.
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Guan et al. (2020) pre-trained GPT-2 with common-
sense knowledge to ensure that the model learns the
information and generates more fluent and logical
stories.

3 Proposed Methods

3.1 Task Setting

Our task is a story completion task, which is to
generate the rest of a story Y = [s1, s9, ..., s;] from
the first sentence of the story X = sg, where s; is
the i-th generated sentence.

3.2 Model Architecture

In common with the other multi-stage story gener-
ation models, we first generate a plot P from eg.
It is a sequence of events [ey, e2, €3, ..., ¢;] where
each event corresponds to the core information of a
sentence. ey is pre-extracted from sg. Then, story
Y is completed according to plot P. We use a
phrase containing a predicate to represent an event
in a sentence because giving an informative rep-
resentation helps models capture dependencies in
the context (Lin et al., 2021). We apply depen-
dency parsing to recognize the root and its object
and retain all the words between them. Then, we
normalize the root verb to the base form.

Our model involves schema acquisition (SA),
plot generation (PG), and surface realization (SR)
modules. The SA module is utilized to obtain the
structured knowledge as a schema 7" from a large
set of candidate knowledge pieces K. The PG mod-
ule is formulated as a knowledge-based generation
model, where the schema 7' and the event e; are
set as input to generate the following events as the
plot P. The SR module is a conditional generation
model, where the plot P is expanded to the story
Y.

We propose two PG models, i.e., a story-level
model and a sentence-level model, to explore the
ability and limitations of knowledge use in our
models. In the story-level model, the whole plot
is generated with the same schema. In contrast,
the sentence-level model generates a plot event by
event with updated schemata.

3.2.1 Schema Acquisition (SA)

In the SA module, the structured knowledge, the
schema 7', is acquired from a candidate knowledge
set K.

In the previous knowledge-incorporated mod-
els (Guan et al., 2020; Ji et al., 2020; Liu et al.,



2021), it is unclear how to use a large number of
external knowledge pieces because the models do
not know which information is more appropriate
to be captured for the current story generation step.
They do not acquire new knowledge or update the
old knowledge as the stories’ backgrounds change.

The schema in this study provides entities and
their interactions (predicates) that are relevant in
the current background and allows the model to
capture necessary information, rather than irrele-
vant information in the previous models, in which
the knowledge is fixed without considering the cur-
rent background (e.g., in a normal concept net, pan
is related to cooker, but in the context of shopping,
pan may be more relevant to cashier). The knowl-
edge pieces in the schema, such as pay for the pan,
can specifically give relevant information in such a
shopping scenario.

First, we obtain the candidate knowledge set K
for the event eg. A candidate knowledge set is a set
of knowledge pieces that are relevant to an event.
Each knowledge piece is of a phrasal form begin-
ning with a verb (e.g. get fire starter, gather wood,
make fire). Since the knowledge piece contains
both a predicate and its arguments, it is shown to
be useful to improve language understanding and
global coherence (Yang et al., 2019b).

We use COMET-ATOMIC2020 (Hwang et al.,
2021) to obtain the knowledge. It is a neural knowl-
edge model that can generate relevant knowledge
for an input text under specific relationships. We
feed the event eg as the input and collect the knowl-
edge pieces generated from the model as the can-
didate knowledge set K. We utilize the relations
under the event-centered category, “IsAfter”, "Has-
SubEvent”, "IsBefore”, "HinderedBy”, ”Causes”,
and “xReason”, to get the knowledge pieces.

We need to pick out the knowledge pieces with
higher relevance and lower noise from the candi-
date knowledge set to compose the schema. We
introduce semantic similarity to realize the function.
For encoding, we utilize Sentence-BERT (Reimers
and Gurevych, 2019) because it shows better per-
formance than the traditional BERT on the sentence
similarity benchmarks.

In practice, we find some candidate knowledge
pieces have only slight difference (e.g., go to a
beach and go to the beach). To delete such du-
plicate knowledge pieces, following Peng et al.
(2021), we first calculate the cosine similarity be-
tween each pair of two candidate knowledge pieces.
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We set 80% semantic similarity as our threshold,
which means if the score for a pair is higher than
0.8, only one candidate knowledge piece will be
left.

Then, the semantic similarity between the
event ep and each candidate knowledge piece
is calculated. We select the top-n candidate
knowledge pieces to compose a schema T' =
{t1,1t2,ts, ..., tn}, where t,, represents the knowl-
edge piece with the n-th score.

3.2.2 Plot Generation (PG)

In the PG module, the plot P, which represents
the backbone of the story, is generated from the
schema 7' and the event eg.

We fine-tune a BART to generate a sequence of
events [e1, 2, €3, ..., ¢;] for the plot P, as BART
shows better performance in tasks with external
knowledge (Liu et al., 2021; Ji et al., 2020).

When training, e; is pre-extracted from the sen-
tence s; in a story. The events except ey are com-
bined in order as a target plot.

3.2.3 Surface Realization (SR)

In the SR module, by using the first sentence sg
and the plot P as the prefix, the rest of a story Y is
generated.

We fine-tune a GPT-2 (Radford et al., 2019)
to implement the SR module because GPT-2
shows excellent ability in conditional generation
tasks (Zhipeng et al., 2019).

3.3 Plot Generation Strategies
3.3.1 Story-level Model

As shown in Figure 2(a), in the story-level model,
we first extract the event e from the first sentence
so and then obtain a schema 7 by SA module. The
schema Ty is utilized for generating the whole plot
P.

In the PG module, to help the model recognize
different ingredients in the input, we add a spe-
cial token [k] before every knowledge piece in the
schema, and add another special token [e] before
the event eg. These kinds of prompt tokens have
been used in related tasks (Gupta and Durrett, 2019;
Zheng and Huang, 2021). In the output, we use a
special token [sep] between events to distinguish
the boundary. [bos] and [eos] tokens are also used
to indicate the beginning and end of the output.

When fine-tuning, the form of the source text
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Figure 2: (a): Framework of the story-level model. The whole plot is generated in one iteration. (b): Framework of
the sentence-level model. Events in the plot are generated one by one.

and target text is as follows:

source : [K]| t1 [k] t2 ... [K] t,, [e] €0

target : [bos| e; [sep] ez [sep] ... e; [eos]

where t,, represents the n-th knowledge piece in
the schema. The generated plot P concatenated
with the first sentence s is fed into the SR module.

In the SR module, we add a special token [e] be-
fore each event in the plot and use [sep] to separate
the plot P and the first sentence sq. [bos] and [eo0s]
tokens show the end of the prefixed text and the
target text, respectively.

In this strategy, the form of the fine-tuning data
for the SR module is:

[e] e1...[e]e; [sep] so [bos] s1...s; [eos];

3.3.2 Sentence-level Model

Different from the story-level model, in the
sentence-level model, we generate the plot by using
a different schema 7;_; for each event e;(7 > 1).
As shown in Figure 2(b), when generating the
event e;, we rerank the knowledge pieces with
the similarity scores to get the updated schema
Tioq = {61 e et =1}, where ¢77! repre-
sents the knowledge piece with the n-th highest
score with the event e;_;. Then, we will update
it again by e; in the next step. This procedure is
repeated to obtain all the events to combine into a
plot. Please note that the initial input is the event
ep and the schema Tp, as in the story-level model.

In the PG module, as in the story-level model,
for the input, we add a special token [k] before
every knowledge piece in the schema, and add a
special token [e] before the event e;. In the output,
because there is only one event in the output, we

only use [bos] and [eos] tokens are added to show
the beginning and end of the output.

When fine-tuning, the source text and the target
text are:

source : [k] ¢4 [k] t51  [K] £ [e] ey

target : [bos]e;[eos]

The SR module in the sentence-level model has
the same structure as in the story-level model. The
generated plot P concatenated with the first sen-
tence sg is used as the input to generate the story.

4 Experiments

In this section, the details of the dataset, the exper-
imental settings, and the baselines in our experi-
ments are introduced.

4.1 Dataset

We used the ROCstory (Mostafazadeh et al., 2016,
2017) and WritingPrompts (Fan et al., 2018)
datasets in our experiments. ROCstory dataset con-
tains 98,161 English stories, where each story con-
sists of five sentences. Excluding the stories from
which we could not extract events', we separated
the dataset into 86,892, 4,827, and 4,828 stories for
training, validation, and test sets, respectively. In
addition, the first letter was replaced with a low-
ercase letter. For the WritingPrompts dataset, we
first randomly sampled 100,000, 5000, and 5000
stories as training, validation, and test datasets, re-
spectively. Then, we used the spaCy library? to
segment every story into sentences and retained
only the first five sentences as a story.

IStories that contain sentences which can not extract pred-

icates.
*https://spacy.io/
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4.2 Experimental Settings

In our experiments, we use the first sentence as
input, and the number of generated sentences was
limited to four, following the dataset (z =4). We ap-
plied the spaCy library for dependency parsing. We
used the parameters of the large version of BART
and the small version of GPT-2.> The number of
knowledge pieces in a schema was tuned to 60 on
the validation dataset.

4.3 Baselines

We compared our models with the following story
generation models:

Plan & Write (Yao et al., 2019): An LSTM-
based multi-stage model without using knowledge.

LM-Based Plan & Write : We replaced the
LSTMs used in Plan & Write with BART and GPT-
2. The form of data for training is the same as
in Yao et al. (2019).

HINT (Guan et al., 2021): A language model-
based model that considers the high-level features
in the context to improve the coherence.

GPT-2 (Radford et al., 2019) : We applied the
public checkpoint of the pre-trained parameters and
then fine-tuned with the ROCStory corpus.

Knowledge-enhanced GPT  (Guan et al., 2020):
A commonsense knowledge pre-trained model with
multitask learning.

KGBART (Liu et al., 2021): They incorporated
the complex relations of concepts into the model to
generate logical and natural sentences.

GRF (Jietal., 2020): They used dynamic multi-
hop reasoning on multi-relational paths to help the
pre-trained model generate reasonable text.

Furthermore, to investigate the effect of the com-
ponent, we derived a variant of our sentence-level
model that generates two events by one schema
in one iteration in the PG module, named double-
event.

5 Evaluation

5.1 Objective Evaluation

We used the following metrics to compare different
models: BLEU (Papineni et al., 2002) was used

3The language models are from https:/huggingface.co.

to evaluate the n-gram overlap between a gener-
ated story and a human-authored story. We experi-
mented with n=1, 2 (B-1, B-2). The metric to eval-
uate the diversity of generated text is Distinct (Li
et al., 2016). Distinct-n calculates the ratio of dis-
tinct n-grams to all the generated n-grams. We
experimented with n = 4 (Dist). Repetition (Shao
etal., 2019) was used to evaluate the redundancy of
generated text. Repetition-n shows the percentage
of generated stories containing at least one repeated
n-gram. We experimented with n = 4 (Rept).

5.2 Subjective Evaluation

We conducted a subjective evaluation with Ama-
zon Mechanical Turk (AMT). The annotators were
limited to those in the United States who had high
school or above equivalent education. We utilized
two aspects, grammaticality and coherence, to an-
alyze the quality of generated stories. When evalu-
ating each aspect, annotators read two stories from
different models and then they selected a better one.
A special selection tie was possible in each aspect
in order to cope with cases where the stories are of
similar quality. We randomly sampled 168 pairs of
stories and assigned 10 annotators to each pair of
stories. We used average scores among the anno-
tators. Because the scores of the baselines for the
objective evaluation on the WritingPrompts dataset
are definitely lower than our model, we tried the
subjective evaluation only on the ROCstory dataset.

5.3 Results and Analysis
5.3.1 Results of the Objective Evaluation

The results of the objective evaluation in the ROC-
story dataset are shown in Table 2. Our story-
level model outperformed the baselines in terms
of BLEU and repetition. This shows our story-
level model can generate stories more like human-
writing, which indicates structural information pro-
vided by the schema makes the model easy to catch
the relevant information not given by the prediction
of the next event.

The right part of Table 2 shows the results on
the WritingPrompts dataset. Unlike the ROCstory
dataset, the WritingPrompts dataset is a more com-
plex dataset, which contains more dialogue con-
tents as well as descriptions of the environments.
We found that our story-level model outperforms
the baselines in all metrics. The higher distinct
score and lower repetition score of our model in-
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Models ROCstory WritingPrompts
B-1T B-21 Dist{T Rept| B-1T B-27 Dist{T Rept|
Plan&Write 36.14 2636 68.89 12.28 1990 7.00 27.20 74.40
LM-Based Plan & Write 31.85 2370 39.75 50.94 14.61 1221 26.71  86.80
HINT' 33.40 1540 69.30 25.30 2240 840 31.30 75.36
GPT-2 36.47 2695 72.83 33.28 2398 20.62 3571 6540
Knowledge-enhanced GPT 36.57 26.76 82.23  18.82 1494 1287 49.21 81.50
KGBART 31.48 22.66 40.15 7.00 - - - -
GRF 35.63 2577 50.38  68.20 2239 2099 5143  79.30
Our story-level model 38.23 27.67 74.79 6.71 31.36 2537 84.75  20.90
Our sentence-level model  36.61 26.68 65.55  39.80 29.22 2482 7486 44.70
double-event model 37.63 2736 69.08 27.50 30.58 2490 81.82 40.10
Gold story N/A  N/A 95.07 3.08 N/A  N/A 98.04 8.70

Table 2: Results of the objective evaluation on the ROCstory and WritingPrompts datasets. The values in bold
are the best performance. The results for the gold stories are in ifalics. Compared with the previous work, our
story-level model got higher BLEU-1, 2, and Repetition. {: the results from (Guan et al., 2021).

Models Coherence Grammaticality
Story-level model vs Win Tie Loss Win Tie Loss
Plan&Write 66.67%** 16.19% 17.14% 36.19%** 51.43% 12.38%
GPT-2 75.24%**  16.67% 8.09% 46.67%** 42.38% 10.95%
Knowledge-enhanced GPT 51.90%** 10.95% 37.15% 47.62%** 19.52% 32.86%
KGBART 48.57%** 22.86% 28.57% 43.34%** 33.33% 23.33%
GRF 51.43%** 20.00% 28.57% 37.62%** 36.67% 25.71%
Our sentence-level model ~ 46.20%** 21.90% 31.90% 30.00% 48.10% 21.90%
double-event model 45.72%*  19.52% 34.76% 37.14% 29.05% 33.81%

Table 3: Results of the subjective evaluation. Our story-level model obtained better coherence scores than the
baselines while keeping grammatical correctness. The scores marked with * and ** mean our story-level model
outperforms the other models significantly with p < 0.05 and p < 0.01 with t-test, respectively.

dicate that the structured knowledge can guide the
model to use it more efficiently to produce diverse
stories and suppress duplicate contents compared
with the previous knowledge-incorporated mod-
els. As the schema is dynamic and contextualized
structured knowledge, it provides better necessary
information for story generation than fixed knowl-
edge to control the generation of coherent stories.
Therefore, the model can ensure that the generated
stories are more human-like, even in complex con-
texts. The higher BLEU scores in Table 2 reflect
the power of the schema.

However, we observed that utilizing a story-level
schema would reduce the diversity of generated
stories, causing our model to perform worse than
the Knowledge-enhanced GPT in the ROCstory
dataset. We analyze that more information might be
contained in the events: One reason might be that

this gives stricter constraints to GPT-2, which in-
creases the generation difficulty. These constraints
limit the space for the details being able to be added.
The other reason might be that GPT-2 needs more
cost to balance the quality of the generated sen-
tences and the integrity of information in the events.
However, these constraints also control irrelevant
content generation, leading to high BLEU scores.
Otherwise, GPT-2 has more space to add words
to a story, which might cause the story to contain
incoherent content or repetition.

5.3.2 Results of the Subjective Evaluation

The results of the subjective evaluation are shown
in Table 3. Compared with the Knowledge-
enhanced GPT, our story-level model had higher
coherence and grammaticality scores. Instead of
feeding thousands of knowledge to the model to
pre-train it, we used only 60 pieces of knowledge
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Cases  current event

schema

generated next event

have a shower

get out of the shower
Case 1

go in bathroom
clean body ...

go to the bathroom

go in bathroom

go to the bathroom

take a shower

go to the bathroom

clean oneself ...

take wallet from ground

notice a wallet on the ground

go to the police

look for the owner

look for the owner ...

Case 2

look around for person

look for the owner

buy the dog

take the dog to a trainer

pick up the dog ...

Table 4: Examples of a repeated event and incoherent event generated by the sentence-level model. Case 1 shows a
similar schema causing repeated events. Case 2 shows a lack of context causing incoherent events.

for a schema, which shows that the schema is more
useful for our model to effectively guide the gen-
eration. Compared with KGBART and GREF, our
story-level model still had better performance in
terms of coherence and grammaticality, which indi-
cates a structured schema can help the model catch
more relevant information.

5.3.3 Analysis of Our Different Models

The sentence-level model performed poorly com-
pared with the story-level model in both evalua-
tions, while it provides more schemata. To investi-
gate the reasons, we illustrate two cases in Table 4.
First, we observed that, although we update the
schema in the sentence-level model in every step, if
the current event is similar to the previous one, the
knowledge pieces in the previous schema will also
be in the updated schema (e.g. go in bathroom). Be-
cause the schema takes up most of the input space,
it has a heavy weight for affecting the events gen-
erated in the PG module. Obviously, homogeneous
knowledge in the input leads to repeated events to
be generated in the plot (Case 1), which will cause
generated stories with repetitions, as reflected in
the high repetition score in Table 2.

Second, because a sentence-level schema is gen-
erated depending only on the current event, the
schemata for a whole plot tend to contain a lot of
inconsistent knowledge pieces (in Case 2). Using
only the current sentence leads to a lack of con-
text and a lack of control. As a result, inconsistent
events are generated (the information dog is related
to owner, but not related to wallet), which leads to
incomprehensible stories.

To reduce the repeated information in the schema
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and enhance the control from the context, we set
the double-event model to compare with. In our
double-event model, we generate two events in one
iteration by the same schema in the PG module,
and then update the schema by the generated events.
In this model, although the schema contains less
information than in the sentence-level model, it can
keep more context when generating the sequential
events, and avoid repetition. As shown in Table 2,
we can see the two problems in the sentence-level
model are alleviated. The double-event model gets
better performance than our sentence-level model
in all of the objective evaluation metrics.

In contrast, in the story-level model, the subse-
quent events for a story are generated together, and
only a schema is generated depending only on a
given event, while it might cause less diversity.

6 Conclusion

We presented a knowledge-based multi-stage
model for coherent story generation. A structured
knowledge, schema, was applied to navigate the
story generation process, which makes the model
able to readily absorb and integrate the knowledge
not contained in the context to generate coherent
content. The results of objective and subjective
evaluations of the datasets showed that the pro-
posed method outperforms strong baselines and
often produces stories with more coherence and
less repetition without harming grammatical cor-
rectness. Furthermore, by exploring our different
models, we found some limitations in the usage of
knowledge in the multi-stage models. We hope our
work can give good guidance to future work.
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