
Proceedings of Recent Advances in Natural Language Processing, pages 658–665
Varna, Sep 4–6, 2023

https://doi.org/10.26615/978-954-452-092-2_071

658

Sign Language Recognition and Translation: A Multi-Modal Approach
using Computer Vision and Natural Language Processing

Jacky Li, Jaren Gerdes, James Gojit, Austin Tao, Samyak Katke,
Kate Nguyen, and Benyamin Ahmadnia

Department of Computer Engineering and Computer Science
California State University, Long Beach, United States

jacky.li01@student.csulb.edu, jaren.gerdes01@student.csulb.edu,
james.gojit@student.csulb.edu, austin.tao01@student.csulb.edu,
samyak.katke01@student.csulb.edu, kate.nguyen@student.csulb.edu,

benyamin.ahmadnia@csulb.edu

Abstract

Sign-to-Text (S2T) is a hand gesture recogni-
tion program in the American Sign Language
(ASL) domain. The primary objective of S2T
is to classify standard ASL alphabets and cus-
tom signs and convert the classifications into
a stream of text using neural networks. This
paper addresses the shortcomings of pure Com-
puter Vision techniques and applies Natural
Language Processing (NLP) as an additional
layer of complexity to increase S2T’s robust-
ness.

1 Introduction

Globally, sign language is one of the main lan-
guages for those who cannot communicate verbally.
Despite its global presence, not many people un-
derstand it or use it. In 2020, 48 million people
in the United States alone experience some form
of hearing loss, with less than 500,000 – about
1% – of them that drive sign language regularly
(Lacke, 2020; NIDCD, 2021). The World Health
Organization (WHO) estimates that the number of
individuals with hearing loss will affect nearly 2.5
billion by 2050 (WHO, 2023). With these setbacks,
signers may find it challenging to communicate
with other individuals not akin to their mode of
communication.

While mild hearing loss can be remedied with
hearing aids and rehabilitation, these solutions may
often be too expensive. Individuals can alterna-
tively learn sign language. Hand gestures are a
form of non-verbal communication used by indi-
viduals in conjunction with speech to communicate.
With the increasing use of technology, hand-gesture
recognition is considered an essential aspect of
Human-Machine Interaction (HMI), allowing the
machine to capture and interpret the user’s intent
and respond accordingly. The ability to discrimi-
nate between human gestures can help in several

applications that range from virtual and augmented
reality to healthcare services (Ceolini et al., 2020).

As technology becomes easier to use and ac-
cessible, many people can likely perform simple
commands with computer devices, such as typing
text and video streaming. To address the problem
statements, we propose S2T – a solution to close
the sign language knowledge gap by translating
simple hand gestures into text.

1.1 Sign-to-Text v1

The first Sign-to-Text (S2T) iteration was imple-
mented using Computer Vision to classify the En-
glish alphabet and custom gestures for text, such
as space and delete. Computer Vision allows for
gesture learning and recognition through images
or video by identifying repeated patterns. Specific
key descriptors can be isolated in a given frame
using preprocessing techniques to eliminate noise
and allow the neural network to perform on the
highest data quality. While this process allows for
the appropriate classification of newly introduced
data, Computer Vision alone is not accurate enough
to classify all ASL signs due to the limitations of
Computer Vision and the nuances of ASL.

Classification accuracy in Computer Vision is de-
pendent on the quality of the data. Two key factors
that affect performance are image lighting, which
affects how much detail can be seen, and image
quality, which affects how much detail is retained.
These can be seen within the data as qualities such
as object luminosity, palm orientation, and hand
shape.

The nuances of ASL are due to the limited range
of signs. About 10,000 different ASL signs cor-
respond to the English language or about 200,000
words. Some signs differ from others by a slight
hand rotation, while others are polysemous. Signs
that vary slightly with one another and signs that
have multiple meanings make it near-impossible for



659

Computer Vision alone to classify the signer’s en-
tire message with 100% accuracy, especially when
trying to sign long sentences. Here we introduce
Natural Language Processing (NLP) in conjunction
with Computer Vision to overcome ASL nuances
and address the weaknesses of Computer Vision as
a standalone solution (Klingler, 2021).

1.2 Natural Language Processing

NLP is the computer’s ability to understand lan-
guage in both verbal and written forms. NLP is
used in various applications, such as Speech Recog-
nition, Language Translation, and Image Interpre-
tation. In recent scientific research, it is also used
to investigate inter-specie communication between
humans and whales to understand and better aid
them. S2T can improve output results by leverag-
ing specific NLP techniques such as autocorrection
and context awareness. S2T can also enhance ac-
cessibility by applying Machine Translation (MT).

1.2.1 Autocorrect
Autocorrect is a word processing task that identi-
fies misspelled words and tries to resolve them by
providing potentially intended words as a replace-
ment. Autocorrect can be implemented in many
ways depending on its use case, but all follow the
same foundation to rely on some form of corpus or
dictionary (D’Agostino, 2021).

The first iteration of S2T can correctly classify
hand gestures with 82.76% accuracy. S2T can ben-
efit from autocorrect by identifying misclassified
alphabet gestures and replacing them with candi-
date words. This may help improve S2T’s accuracy
in achieving the desired final output.

1.2.2 Context Awareness
Simple autocorrection may not fully capture the
user’s intent in their sentences. Simple algorithms
such as the Levenshtein distance would compare
misspelled words too closely similar based on the
number of edits from each word. This type of al-
gorithm may often time alter and lose the original
context, making it hardly usable for regular conver-
sation language processing. Due to the complexity
of languages, context awareness can be used to help
retain the original context and convey user intent.
Context awareness can be implemented in many
ways, including part-of-speech tagging and atten-
tion mechanisms. The main idea behind context
awareness is to analyze the sentence and extract
key terms. These terms will then determine the

best word to replace a target word (autocorrect),
provide insight, and suggest the following word
(autocomplete). When context awareness is used
with autocorrect, it is more likely to retain the con-
text of a given sentence and less likely to veer off
(Wood, 2014).

1.2.3 Machine Translation
MT is an NLP technique that translates one lan-
guage into another without the help of humans.
There are four main types of MT techniques –
Rule-Based Machine Translation (RBMT), Statisti-
cal Machine Translation (SMT), Neural Machine
Translation (NMT), and Hybrid Machine Transla-
tion (HMT). Early iterations of MT use the rule-
based approach to extrapolate grammatical rules
as the basis for building sentences. However, this
approach poses several limitations, such as the in-
ability to process complex sentence structures and
idioms. SMT is another approach where the system
uses extensive bilingual data and statistical models
to determine the most probable output. Like RBMT,
SMT can also not process complex sentences and
idioms (Martin et al., 2011).

NMT is a more recent approach that utilizes deep
learning models. NMT takes advantage of being
trained over large amounts of data, enabling it to
process complex sentences and idioms as opposed
to RMBT and SMT. Depending on how the data
and model are prepared, these single-network ap-
proaches may not catch all translations. HMTs can
be used to combat this by combining translation
models to improve the output further (Brownlee,
2019; Torregrosa et al., 2019; Aulamo et al., 2021).

This paper is organized as follows; Section 2
reviews the previous related work. Section 3 de-
tails the proposed methodology. Section 4 outlines
the experimental design. Section 5 describes and
analyzes the experimental results, and finally, Sec-
tion 6 concludes the paper and provides our future
directions.

2 Related Work

This research will explore NLP techniques and ap-
ply them to S2T to enhance the translation quality
after making prior classifications in Computer Vi-
sion. We know that the research field combining
NLP and ASL is limited. However, it is noted that
NLP can be applied to ASL applications when pro-
vided with some consumable input, such as text.
In the field of NLP, immense research has been



660

put into autocorrect, context awareness, and ma-
chine translation. Since S2T can be broken into
two parts (autocorrect and machine translation), we
treat each part as an individual entity.

Autocorrect algorithms can vary in performance
depending on their use case. However, they all fol-
low a similar pattern by cross-referencing an accu-
rate corpus to identify misspelled words. TextBlob
is a standard open-source library launched in 2013
and has been widely used as a standard autocor-
rect tool (TextBlob, 2013). A study on TextBlob
shows that it can correct 54.6875% of the mistakes
in a given prompt. This low score can be due to
TextBlob’s over-correcting behavior and lack of in-
formation to correct it to the target word (Popovic,
2023).

There are also many machine translation algo-
rithms and architectures that each perform best
depending on the specific application. Transformer
models commonly show great success and have
been a standard in many NLP tasks since Google in-
troduced them in 2017 (Caswell and Liang, 2020).

3 Sign-to-Text v2

S2T is equipped with computer vision techniques
to translate sign language into text. We propose
NLP as a second layer of data processing to en-
hance translation accuracy and introduce an extra
translation feature to make the program more acces-
sible. This additional layer will address the main
drawbacks of Computer Vision as a standalone so-
lution.

3.1 Classification Improvement

One major flaw of S2T-v1 has its low classifica-
tion accuracy of 82.76%. Given the letter-by-letter
translation nature of S2T, a letter-by-letter classifi-
cation will most likely result in typos in a given text.
To reduce the number of typos based on gesture
classification, autocorrect can be used to detect and
fix them. Traditionally, autocorrect can identify
misspelled words by comparing the target words
against a known dictionary or corpus. Advanced au-
tocorrect features must be utilized, such as context
awareness, due to the nature of how misspellings
are created. With context awareness, it can further
analyze the text stream to provide a closer and more
appropriate approximation to the user’s intended
sentence.

3.2 Language Translation

Another feature S2T can leverage is transforming
the English output into another language. This ad-
ditional feature does not directly affect the classifi-
cation accuracy of the original S2T implementation.
Instead, language translation makes it more acces-
sible for users to communicate effectively with
various language speakers. The primary challenge
that S2T will face is retaining context through its
text processing transitions. As machine translation
is the final layer of S2T, it will face potential in-
accuracies in the initial phase of computer vision
classification and the autocorrect technique. Our
research explores and compares different autocor-
rect and machine translation methods to ensure the
closest possible translation the user intends to con-
vey.

4 Experimental Framework

4.1 Datasets

For autocorrect to perform well, it requires a dataset
that contains correctly spelled words as the source
of truth (GWICKS, 2018). Without this, the auto-
correct would perform erroneous corrections, such
as correcting correct words into incorrect words.
This dataset must be pruned of any odd words that
may be defined, as these words are infrequent in
regular conversations. These sparse representations
are pruned as it may negatively impact the autocor-
rect performance in accuracy.

The other dataset required for autocorrection
would be a dictionary of words and correspond-
ing frequencies, on which the autocorrect will base
its corrections. Additionally, with the prior dataset,
we can create a second dataset with words and their
corresponding probabilities of appearing in the En-
glish language (Tatman, 2017).

Our work serves ASL, which directly transcribes
into English. Therefore, it is necessary for any
dataset we use to have bilingual alignments with
the English language. Tatoeba, an open-source
collective for sentences and translations, is our se-
lect source for the translation task (Tatoeba, 2006).
Phrase pairs in the retrieved data consist of user-
provided, collectively evaluated, and approved
translations for many languages, including low-
resource languages. As this work is not solely
extensive into machine translation, our team found
that the one-to-many translation mappings at the
sentence level are cordial to our application.



661

In preparation for the NMT and SMT models ob-
served in this work, given that we have chosen not
to develop single-model, multilingual support, all
bilingual pairs are uniformly processed. All punc-
tuation is stripped, and all characters are lowercase
where applicable. For NMT specifically, all tokens
are vectorized before model training. We have also
limited the vocabulary size for all models to reduce
complexity in this iteration.

4.2 Autocorrection
We propose the following autocorrection algorithm
in Algorithm (1).

Algorithm 1 Proposed Autocorrect Algorithm

1: procedure CORRECT(src, fn, ca_flag)
2: tgt← Ø
3: words← src.split()
4: sgt ← context suggestions dictionary for

src
5: for word in words do
6: w, p ← true word, punctuation from

word
7: ac_sgt← suggestions of w defined by

fn
8: if ac_sgt exists then
9: append w to tgt

10: else
11: if ca_flag, w in sgt.keys() then
12: skew ac_sgt by an arbitrary

amount using sgt as reference
13: re-sort ac_sgt by descending

similarity, probability
14: end if
15: append top result of ac_sgt to tgt
16: end if
17: append p to tgt
18: append whitespace char to tgt
19: end for
20: return tgt as string
21: end procedure

Our autocorrection algorithm follows a general
structure; however, we wanted to experiment with
what word distance algorithm would work best for
our project domain. Our team considered research-
ing the performance differences between Minimum
Edit Distance, Needleman-Wunsch, and Damerau-
Levenshtein algorithms. As our baseline, TextBlob
library’s correction function will be used.

The Minimum Edit Distance algorithm (1),
known formally as the Levenshtein Distance algo-

Algorithm 2 Minimum Edit Distance Algorithm

D(i, j) = min


D(i− 1, j) + del_cost
D(i, j − 1) + ins_cost
D(i− 1, j − 1) + repl_cost

(1)

repl_cost =

{
miss_cost if x[i] ̸= y[j]

match_cost if x[i] = y[j]
(2)

Algorithm 3 Needleman-Wunsch Algorithm

D(i, j) = max


D(i− 1, j) + g

D(i, j − 1) + g

D(i− 1, j − 1) + s(xi, yj)
(3)

rithm, measures the minimum difference between
two words, x and y. The algorithm’s recurrence is
commonly used in dynamic programming (Nam,
2019).

The Minimum Edit Distance algorithm involves
the usage of three cost variables: del_cost, ins_cost,
and repl_cost, for each deletion, insertion, and re-
placement of a letter in word x at index i to the
letter in word y at index j, respectively. These
three variables can be set to whichever value the
user wishes, but for our purposes, we set the values
of del_cost to 1, ins_cost to 1, and repl_cost to one
of two values as described in (2). Namely, if the
letter of word x at index i is not equal to that of
word y at index j, then repl_cost is set to a variable
miss_cost, which is 2. Otherwise, repl_cost is set
to another variable match_cost, which is 0.

The Needleman-Wunsch algorithm (3) general-
izes the Levenshtein distance and considers global
alignment (Kellis, 2021). It functions very similarly
to the Minimum Edit Distance algorithm, filling
in a similar table of values, but is used primarily
in bioinformatics to align protein or nucleotide se-
quences. Because of this, gaps are punished and
given a designated gap penalty in the algorithm’s
overall calculations.

In the algorithm definition defined in (3), g is the
gap penalty, and s(xi, yj) is the similarity score be-
tween words x and y at indices i and j, respectively.
Unlike Minimum Edit Distance, which minimizes
the number of edits to convert some word x to an-
other word y, Needleman-Wunsch maximizes the
score that an alignment between two sequences



662

Algorithm 4 Damerau-Levenshtein Algorithm

da,b(i, j) = min



0 if i = j = 0

da,b(i, j − 1) + 1 if i > 0

da,b(i− 1, j) + 1 if j > 0

da,b(i− 1, j − 1) + 1(ai ̸=bi) if i, j > 0

da,b(i− 2, j − 2) + 1(ai ̸=bi) if i, j > 1, ai = bj−1, ai−1 = bj

(4)

could be.
The Damerau-Levenshtein algorithm (4) calcu-

lates the Damerau-Levenshtein distance between
two given strings by following the same process
as the classical Levenshtein distance but differs
from this by including transpositions in its oper-
ations calculations (Zhao and Sahni, 2019). This
algorithm first determines the optimal string align-
ment distance and then calculates a distance with
adjacent transpositions. The applications of this
algorithm include DNA and fraud detection, and
the U.S. government uses it in export control.

TextBlob is a Python library for processing tex-
tual data. We used our project’s .correct() function
to identify and correct misspelled words in a given
string. This function works by utilizing a dictionary
of English words, determining whether a word is
correct. If incorrect, a list of possible words based
on edit distances is generated, and the word with
the least edit distance is selected.

To bolster the accuracy of our autocorrection
algorithm, we also considered the implications of
context awareness. The context awareness algo-
rithm we used is part of the SpaCy module: the
ContextualSpellCheck (Goel, 2020). This mod-
ule is loaded into a SpaCy pipeline that can then
perform on a given sentence string. Contextual-
SpellCheck will then analyze the entire input, iden-
tify misspelled words using an English dictionary,
and suggest what each incorrect word should be
based on the context of the words around it. The
context of each of these words is trained through a
model at word-by-word, sentence-by-sentence, and
document (entirety) levels. These suggested words
were then utilized in our minimum edit distance
function to increase the priority of these context-
based words being chosen as the ultimate correc-
tion. The SpaCy module ContextualSpellCheck
was chosen over similar approaches, such as BERT
(Bidirectional Encoder Representations from Trans-
formers), due to its compatibility with our code.
SpaCy allowed for quick evaluations and gave us

the means to increase priority for individually cho-
sen words numerically.

In our proposed autocorrect algorithm (1), we im-
plement the SpaCy-ContextualSpellCheck pipeline
as the assignment to sgt using the incorrect corpus
src. We then skew the original autocorrect sugges-
tions made by one of the given algorithms above
using a word from src and, if context-awareness
is allowed and the word is recognized in sgt. This
aims to take the contextual suggestions and boost
the probabilities of choosing those words. As a
result, the words chosen before or after contextual
skewing can lead to different words being given as
the top result in ac_sgt.

To process the corpus, the algorithm temporar-
ily "removes" directly subsequent punctuation for
each word seen. This punctuation is then "returned"
once this word is processed. The reason for this
particular step results from how each word is pro-
cessed. The current algorithm can receive an in-
put word with punctuation and output without that
punctuation, and the punctuation would get "eaten".
If we allowed this to continue for an entire corpus,
the corrected corpus could have a different contex-
tual meaning from its original. As such, each word
must be sub-processed so that if there is punctua-
tion, that punctuation is saved and returned to its
original place.

4.3 Machine Translation

There are many approaches to performing MT, as
mentioned in Section 1.2.3. Considering the use
cases for our pipeline, we seek methods that can
produce quality translations with low overhead in
terms of resource usage and increased speed. Ini-
tially, we decided to utilize large language models
(LLMs) such as T5 or GPT for the end-to-end task.
However, to better understand the modern machine
translation task from its roots and assess methods
built solely for translation, we have chosen to uti-
lize NMT as the base approach, with SMT as a sup-
plement to the outputs of the base model. Choos-



663

ing these two presents an opportunity to explore an
HMT approach, which will be further elaborated
in Section 6 as future work.

The NMT model utilized in this framework is
the ever-familiar Transformer, trained on bilingual
pairs. The Transformer is known to be a significant
improvement over previous neural architectures
like Recurrent Neural Networks (RNNs) and Gated
Recurrent Units (GRUs) for sequence transduction
(Vaswani et al., 2017). The key feature of the Trans-
former is the implementation of multi-head atten-
tion modules—generally, attention-based methods
in artificial neural networks.

Simple word-based SMT was selected to sup-
plement NMT, namely the IBM model series. As
an overview, the IBM models consist of several
iterations, each aiming to resolve the deficiencies
from the previous, that utilize word alignment prob-
abilities to generate tokens. Selective features such
as fertility and context are included depending on
the model version to improve the model outputs.
In our work, we employed IBM Models 1 and 2
from Python’s NLTK library, trained on the same
bilingual pairs as the Transformer. These early it-
erations of the IBM series are outdated regarding
a well-performing, standalone translation model.
Despite this, we have chosen these models as a
preliminary mechanism for establishing confidence
in the outputs of the NMT model.

5 Result Analysis and Discussion

5.1 Autocorrection Results

Algorithm % Fixed Errors
Needleman-Wunsch 49.67%
TextBlob 53.31%
Minimum Edit Distance 57.28%
Damerau-Levenshtein 58.28%
Needleman-Wunsch (CA) 59.60%
Damerau-Levenshtein (CA) 60.26%
Minimum Edit Distance (CA) 63.25%

Table 1: Results of each algorithm by the percentage of
erroneous words fixed. CA is short for Context Aware-
ness.

We ran each of our algorithms over fifty sen-
tences with randomly distributed incorrect words.
We compared these results to the corresponding
correct sentence counterparts to determine the per-
centage of errors that were correctly fixed after
being run.

Our findings showed that the Minimum Edit
Distance (Levenshtein) algorithm utilizing context
awareness performed the best out of all tested algo-
rithms. In contrast, the base Needleman-Wunsch
without context awareness performed the poorest.
Without context awareness, Damerau-Levenshtein
performed the best.

Overall, context awareness improved each algo-
rithm that we tested. Needleman-Wunsch received
the most improvement at ten percent but did not
outrank the other context-aware options. Damerau-
Levenshtein benefited the least from context aware-
ness, and Minimum Edit Distance’s percentage of
errors fixed increased enough to bump it into first
place in the algorithm rankings.

5.2 MT Results

Model BLEU-4 ROUGE-1
Transformer 31.758 0.534
IBM Model 1 N/A 0.243
IBM Model 2 N/A 0.175

Table 2: Results of each algorithm by BLEU and
ROUGE metrics, on Tatoeba EN-FR dataset. IBM Mod-
els were not evaluated on BLEU-4.

All three models were trained and evaluated on
over 200,000 English-French bilingual pairs pro-
vided by Tatoeba (Tatoeba, 2023).

The Bilingual Evaluation Understudy (BLEU)
metric is the prominent standard for supervised
evaluation of the quality of machine-generated
translations. As shown in Table 2, it is used to
evaluate the Transformer model to verify that our
implementation corresponds with other NMT stan-
dards. The IBM Models were not evaluated with
BLEU, as we have decided that the purpose of
these selected SMT methods would be better suited
for unigram overlaps. Hence, we have also evalu-
ated all models with ROUGE-1. Although not used
as often as BLEU for judging translation quality,
we have selected this metric based on determining
each model’s efficacy in generating relevant words
for a desired translation. These observations drive
future work of translation in our pipeline.

To compare, the training and evaluation of the
original Transformer on the WMT14 English-to-
French dataset scored 38.1 for BLEU. Using the
same architecture on the Tatoeba dataset, we have
obtained a score of 31.8, a 6.3% decrease.



664

6 Conclusions and Future Work

This paper proposes a multi-modal approach to im-
prove sign language recognition and translation by
combining computer vision and NLP techniques.
By applying autocorrect as a fail-safe for com-
puter vision classification, our team was able to
fix 63.25% of the errors present in our dataset,
which beats the baseline model by 9.94%. This
improvement in word correction provides the ma-
chine translation layer to perform better as it can
retain the context closest to the intended mean-
ing. However, the NMT model implemented in this
study performed slightly subpar compared to the
original Transformer for English-to-French transla-
tion from different datasets. The evaluations con-
ducted for SMT also show poor performance on
the selected database. More extensive tuning and
training on perhaps another corpus, such as those
from past WMT conferences or OPUS, would ben-
efit all methods selected here. This may also align
the results of our implementation closer to those
of related works utilizing the same architectures.
As MT relies on the results of autocorrect, our
plan plans to investigate more into improving the
implementation of autocorrect. The root of misclas-
sifications primarily comes from the results of com-
puter vision first. While these misclassifications
are due to the similarity between each gesture, not
all gestures are utterly similar. This suggests that
autocorrect can benefit from emphasizing weights
for each classification group. By applying an addi-
tional bias per classification group, autocorrect can
achieve increased correction accuracy overall.

Further improvements to autocorrect focus
on an improved method of context awareness.
The current implementation uses the SpaCy-
ContextualSpellCheck pipeline. While it already
improves upon standard autocorrect algorithms, the
overall performance is still not substantial enough
to be reliably used. Our team researched using the
Viterbi algorithm to improve SpaCy by better de-
termining the best corrections using part-of-speech
tagging and hidden Markov models. We can further
enhance SpaCy by directly implementing a BERT
model step into the pipeline, allowing for more ac-
curate predictions. Despite MT results in this work
underperforming, we are looking to merge the se-
quencing capabilities of the attention-based neural
network and the purely linguistic nature of the sta-
tistical approach to improve translation quality. Our
future work seeks to leverage these approaches into

a confidence-driven hybrid approach - justifying
NMT outputs and resolving tokens estimated to
have high uncertainty through SMT (Wang et al.,
2016).

Acknowledgments

The authors thank the CSULB College of Engi-
neering and the CSULB Department of Computer
Engineering and Computer Science for their sup-
port.

References
Mikko Aulamo, Sami Virpioja, Yves Scherrer, and Jörg

Tiedemann. 2021. Boosting neural machine transla-
tion from Finnish to Northern Sámi with rule-based
backtranslation. In Proceedings of the 23rd Nordic
Conference on Computational Linguistics (NoDaL-
iDa), pages 351–356, Reykjavik, Iceland (Online).
Linköping University Electronic Press, Sweden.

Jason Brownlee. 2019. A gentle introduction to neural
machine translation. Machine Learning Mastery.

Isaac Caswell and Bowen Liang. 2020. Recent advances
in google translate. Google AI Blog.

Enea Ceolini, Charlotte Frenkel, Sumit Bam Shrestha,
Gemma Taverni, Lyes Khacef, Melika Payvand, and
Elisa Donati. 2020. Hand-gesture recognition based
on emg and event-based camera sensor fusion: A
benchmark in neuromorphic computing. Frontiers.

Andrea D’Agostino. 2021. Nlp - how does an autocor-
rect model work? Medium.

Rajat Goel. 2020. Contextual spell check · spacy uni-
verse.

GWICKS. 2018. Dictionary dataset.

Manolis Kellis. 2021. The needleman-wunsch algo-
rithm. Biology LibreTexts.

Nico Klingler. 2021. Why computer vision is difficult
to implement? (and how to overcome).

Susan Lacke. 2020. Do all deaf people use sign lan-
guage? Accessibility.com: Empowering digital ac-
cessibility for businesses.

Eric Martin, Samuel Kaski, Fei Zheng, Geoffrey I.
Webb, Xiaojin Zhu, Ion Muslea, Kai Ming Ting,
Michail Vlachos, Risto Miikkulainen, Alan Fern, and
et al. 2011. Statistical machine translation. Encyclo-
pedia of Machine Learning, page 912–915.

Ethan Nam. 2019. Understanding the levenshtein dis-
tance equation for beginners. Medium.

NIDCD. 2021. Quick statistics about hearing. National
Institute of Deafness and Other Communication Dis-
orders.

https://aclanthology.org/2021.nodalida-main.37
https://aclanthology.org/2021.nodalida-main.37
https://aclanthology.org/2021.nodalida-main.37
https://machinelearningmastery.com/introduction-neural-machine-translation/
https://machinelearningmastery.com/introduction-neural-machine-translation/
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://doi.org/10.3389/fnins.2020.00637
https://doi.org/10.3389/fnins.2020.00637
https://doi.org/10.3389/fnins.2020.00637
https://medium.com/mlearning-ai/nlp-how-does-an-autocorrect-model-work-2951774f86c9
https://medium.com/mlearning-ai/nlp-how-does-an-autocorrect-model-work-2951774f86c9
https://spacy.io/universe/project/contextualSpellCheck
https://spacy.io/universe/project/contextualSpellCheck
http://www.gwicks.net/dictionaries.htm
https://bio.libretexts.org/Bookshelves/Computational_Biology/Book%3A_Computational_Biology_-_Genomes_Networks_and_Evolution_(Kellis_et_al.)/02%3A_Sequence_Alignment_and_Dynamic_Programming/2.05%3A_The_Needleman-Wunsch_Algorithm
https://bio.libretexts.org/Bookshelves/Computational_Biology/Book%3A_Computational_Biology_-_Genomes_Networks_and_Evolution_(Kellis_et_al.)/02%3A_Sequence_Alignment_and_Dynamic_Programming/2.05%3A_The_Needleman-Wunsch_Algorithm
https://viso.ai/computer-vision/why-computer-vision-is-difficult/
https://viso.ai/computer-vision/why-computer-vision-is-difficult/
https://www.accessibility.com/blog/do-all-deaf-people-use-sign-language
https://www.accessibility.com/blog/do-all-deaf-people-use-sign-language
https://doi.org/10.1007/978-0-387-30164-8_783
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://www.nidcd.nih.gov/health/statistics/quick-statistics-hearing


665

Kristina Popovic. 2023. Spelling correction in python
with textblob. StackAbuse.

Rachael Tatman. 2017. English word frequency. Kag-
gle.

Tatoeba. 2006. Collection of sentences and translations.

Anki Tatoeba. 2023. Tab-delimited bilingual sentence
pairs these are selected sentence pairs from the
tatoeba project.

TextBlob. 2013. Simplified text processing.

Daniel Torregrosa, Nivranshu Pasricha, Maraim Ma-
soud, Bharathi Raja Chakravarthi, Juan Alonso, Noe
Casas, and Mihael Arcan. 2019. Leveraging rule-
based machine translation knowledge for under-
resourced neural machine translation models. In
Proceedings of Machine Translation Summit XVII:
Translator, Project and User Tracks, pages 125–133,
Dublin, Ireland. European Association for Machine
Translation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv.org.

Xing Wang, Zhengdong Lu, Zhaopeng Tu, Hang Li,
Deyi Xiong, and Min Zhang. 2016. Neural machine
translation advised by statistical machine translation.
arXiv.org.

WHO. 2023. Deafness and hearing loss. World Health
Organization.

Nicola Wood. 2014. Autocorrect awareness: Catego-
rizing autocorrect changes and measuring authorial
perceptions. Florida State University.

Chunchun Zhao and Sartaj Sahni. 2019. String correc-
tion using the damerau-levenshtein distance. BMC
Bioinformatics, 20(S11).

https://stackabuse.com/spelling-correction-in-python-with-textblob/
https://stackabuse.com/spelling-correction-in-python-with-textblob/
https://www.kaggle.com/datasets/rtatman/english-word-frequency
https://tatoeba.org/en
http://www.manythings.org/anki/
http://www.manythings.org/anki/
http://www.manythings.org/anki/
https://textblob.readthedocs.io/en/dev/
https://aclanthology.org/W19-6725
https://aclanthology.org/W19-6725
https://aclanthology.org/W19-6725
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1610.05150
https://arxiv.org/abs/1610.05150
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://diginole.lib.fsu.edu/islandora
https://diginole.lib.fsu.edu/islandora
https://diginole.lib.fsu.edu/islandora
https://doi.org/10.1186/s12859-019-2819-0
https://doi.org/10.1186/s12859-019-2819-0

