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Abstract

The remarkable advancements in large lan-
guage models (LLMs) have brought about sig-
nificant improvements in Natural Language
Processing(NLP) tasks. This paper presents
a comprehensive review of in-context learn-
ing techniques, focusing on different types of
prompts, including discrete, continuous, few-
shot, and zero-shot, and their impact on LLM
performance. We explore various approaches
to prompt design, such as manual design, opti-
mization algorithms, and evaluation methods,
to optimize LLM performance across diverse
tasks. Our review covers key research studies
in prompt engineering, discussing their method-
ologies and contributions to the field. We also
delve into the challenges faced in evaluating
prompt performance, given the absence of a
single “’best” prompt and the importance of
considering multiple metrics. In conclusion,
the paper highlights the critical role of prompt
design in harnessing the full potential of LLMs
and provides insights into the combination of
manual design, optimization techniques, and
rigorous evaluation for more effective and effi-
cient use of LLMs in various NLP tasks.

1 Introduction

In recent years, transformer-based language models
(such as (Raffel et al., 2019), (Lewis et al., 2019),
(Brown et al., 2020), (Devlin et al., 2018)) have
emerged as a transformative force in the field of
artificial intelligence, revolutionizing Natural Lan-
guage Understanding(NLU) and Generation(NLG).
As model size and training data have evolved, the
GPT series has exhibited extraordinary capabilities
in a wide range of natural language tasks by rely-
ing on a paradigm known as in-context learning.
According to (Brown et al., 2020), in-context learn-
ing harnesses the context provided by input data to
generate appropriate responses or predictions, con-
trasting with traditional methods that necessitate
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explicit task-specific training and fine-tuning on
labeled datasets. In-context learning enables large
language models to capitalize on vast amounts of
data and adapt to various tasks in a flexible and
dynamic manner. There are several categories of
in-context learning, including zero-shot, one-shot,
and few-shot learning. In all types of in-context
learning, the key to success lies in effective prompt
design, which is occasionally referred to as an “art.”
This survey paper aims to categorize each type of
in-context learning, discuss the core principles, ex-
amine state-of-the-art design techniques, and ex-
plore recent advancements in in-context learning,
with a particular focus on zero-shot discrete in-
context learning.

2 Definition

Although there is no formal definition for prompt
design optimization, we follow the principle from
(Brown et al., 2020) and provide the definition in
(1) for prompt design in in-context learning:

pPr= arg maxy, yepS(fo( P z:) y:)] - (1)

Here, x; represents input sentences and features,
while y; denotes the target labels. 6 signifies the pa-
rameters for any Large Language Models (LLMs)
or Pretrained Language Models (PLMs), which re-
main frozen in the case of in-context learning. fy
represents the output from LLMs given input z; and
prompt P. S is a scoring function that measures the
performance of the model output in relation to the
ground truth label y;. The objective of in-context
learning (or prompt engineering) is to identify the
optimal prompt P* that maximizes the score .S in
the test distribution.

Based on the structure of P, in-context learning
can be further classified into discrete (hard) prompt
when P consists of a list of tokens or continuous
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Figure 1: Prompt categorization by prompt form

prompt (soft) where P represents an embedding
vector (see Figure 1). Additionally, for zero-shot in-
context learning, P is independent of x;, whereas
for one-shot or few-shot in-context learning, P can
be a function of z; (from training data). This sur-
vey focuses on zero-shot in-context learning with
discrete prompts and examines its application ex-
clusively in decoder-only LLMs, such as the GPTx
series.

3 Relevant Work

3.1 Prompts for Encoder-only Transformer
Models (BERT)

Before the advent of in-context learning, some re-
search efforts have been devoted to studying how
to design effective prompts to enhance the perfor-
mance of BERT models. As depicted in Figure 2,
prompts in BERT are usually combined with in-
put to form a cloze-style structure, while for trans-
former decoder-based models, prompts are more
flexible.

Numerous studies have investigated prompt de-
sign in BERT. In the work by (Jiang et al., 2020),
the authors proposed heuristic-based approaches
for designing discrete prompts. Dependency pars-
ing is employed to identify useful prompts from
Wikipedia. In (Gao et al., 2021), the authors
utilized TS5 as a prompt generator with a beam
search to create a set of diversified prompts. They
then used Dy, to select a single prompt with
the best performance. In (Shin et al., 2020), a
gradient-based prompt search approach was pro-
posed, wherein each prompt token is learned by
directly optimizing LMs on the downstream task.

In addition to prompt designing strategies, other
research work focuses on enriching the prompt can-
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didates and ensembling the output from multiple
prompts for the same input. To enrich prompts,
(Jiang et al., 2020) employed back-translation to
paraphrase prompts. Building on this work, (Ha-
viv et al., 2021) trained a separate BERT model
to rewrite prompts using the nearest BERT vector
embedding.

The concept of in-context learning originates
from the work by (Brown et al., 2020). However,
BERT models can also perform similar tasks by
using a single token as output. For example,

France’s capital is [MASK].

Only the output for the [MASK] position is used for
inference. This characteristic enables the ensem-
ble of answers from different prompts, although it
is not apparent for similar practices in GPT-style
models. In (Jiang et al., 2020), the authors pro-
posed rank-based ensemble and optimized ensem-
ble methods to aggregate answers generated from
different prompts.

Among the studies designing prompts for BERT
models, the majority focus on discrete prompts (i.e.,
hard prompts). To the best of our knowledge, we
did not find any work attempting to generate con-
tinuous prompts. In general, optimizing prompts
in BERT brings only marginal improvements to
the original model. Given the size and structure of
BERT, it is more favorable to fine-tune on down-
stream tasks.

3.2 Prompts for Decoder-only Transformer
(GPT)

3.2.1 Continuous Prompt

Another line of research has focused on optimizing
soft prompts, which eliminate the constraint that
prompts have to be natural language. Soft prompts
can be learned and optimized directly within the
same language model. The key difference between
soft prompt tuning and fine-tuning is that prompt
tuning typically fixes the weights of the language
model and only performs gradient updates on the
network that generates the prompt. Prefix-Tuning
(Li and Liang, 2021) is one of the early works that
tunes prompts on GPT-2 with a small amount of
data per task, achieving comparable performance
to the full data fine-tuning setting. Prefix-Tuning
does not use a separate network; instead, it utilizes
the same transformer network but only optimizes
the input embedding of the prompt. In P-Tuning
V1 (Liu et al., 2021b) and V2 (Liu et al., 2022),
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Figure 2: Prompt categorization by model types

the authors employ a separate LSTM network to
generate the input prompt for the language model.
While using soft prompts provides more flexibil-
ity in prompt design, it requires access to either
the weights of language models or the ability to
input vectors into language models. As recent lan-
guage models are hosted as cloud services and large
language models are difficult to access via vector
inputs, this practice becomes less feasible when
using GPT-3 or PaLM (Chowdhery et al., 2022).

3.2.2 Few-Shot Learning

In the GPT paper (Brown et al., 2020), few-
shot learning demonstrates strong NLP capabilities
across various benchmarks. As the title suggests,
Language Models are Few-Shot Learners. In the
few-shot setting, a task description along with a
few examples are presented to the model, which
is then asked to complete the task for an unseen
example. Numerous studies have been conducted
to optimize few-shot examples and prompts to en-
hance performance. In (Liu et al., 2021a), the au-
thors discovered that GPT-3 generally performs
better when in-context examples are similar to the
test examples. As a result, they proposed an in-
context example algorithm based on example sim-
ilarities. Similarity is measured using RoBERTa
embedding distance in Euclidean space or cosine
distance. Other works, such as (Rubin et al., 2021)
and (Gutierrez et al., 2022), have adopted similar
example selection logic and demonstrated better
performance over randomly selected examples. In
addition to example selection methods, research ef-
forts like (Wu et al., 2022) and (Kumar and Taluk-
dar, 2021) have been made to optimize the rank
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and order of retrieved examples.

While few-shot learning exhibits remarkable per-
formance, according to the no free lunch(NFL)
theorem (Wolpert and Macready, 1995, 1997),
providing examples inevitably introduces bias to
the prediction algorithm. In cases where out-of-
distribution samples occur, applying few-shot learn-
ing can hinder the inference process.

4 Zero-Shot Discrete Prompts

With the recent success of Large Language Models
such as GPTs, designing zero-shot discrete prompts
has become increasingly popular in practice. In
the experiments conducted by (Reynolds and Mc-
Donell, 2021), the authors demonstrate that care-
fully engineered zero-shot prompts can actually
outperform few-shot prompts. They argue that pro-
viding examples does not always help because ex-
amples tend to be interpreted as part of a narrative
rather than serving as categorical guidance.

On the other hand, the advantages of using zero-
shot discrete prompts can be listed as follows: (1)
zero-shot prompts are highly interpretable, (2) few
training data or examples are required, (3) the de-
signing process is more straightforward as we only
need to deal with task instructions, and (4) the
prompt structure is flexible, allowing us to insert
our input wherever needed. Zero-shot discrete
prompts are also known as task instructions. There
are two primary approaches to obtaining a good dis-
crete prompt. The first is heuristic-based manual
design, while the second relies on an optimization
algorithm to find the optimal prompt. In this sec-
tion, we focus on reviewing research on prompt



design for transformer decoder style models (e.g.,
GPT), which has been the focus of a majority of
research efforts.

4.1 Manual Design

In their work (Reynolds and McDonell, 2021), the
authors argue that GPT (or other LLLMs) resemble
a superposition of human authors. Therefore, it can
be helpful to ask GPT to pretend to be a character
in the prompt or use the prompt to signify a dia-
logue between people (i.e., task specification by
memetic proxy). The authors also discuss the idea
of MetaPrompts, which encapsulate a general in-
tention that will develop towards specific meanings
when additional information, such as a task ques-
tion, is provided. The example prompts they pro-
vide, such as “Let’s solve this problem by splitting
it into steps,” have been proven to be significantly
helpful by subsequent works.

In the work (Mishra et al., 2021), the authors
propose five principles for designing prompts for
GPT-3 based on their observations of GPT-3’s fail-
ures. These principles include: (1) using simple
patterns to specify expected output, (2) using bul-
leted lists and assertions, (3) breaking down com-
plex tasks into multiple simpler ones, (4) adding ex-
plicit textual statements of output constraints, and
(5) customizing the instructions so that the model
can directly output the results. These principles
can be a good starting point for manual design.

Another line of work focuses on improving the
reasoning capabilities of large language models
via prompt design. The work Chain-of-Thought
(CoT) (Wei et al., 2022) was initially proposed
in few-shot learning, where the reasoning steps
were presented as part of the solution for several
few-shot examples. The zero-shot version of CoT
was later proposed in (Kojima et al., 2022), which
demonstrates that inserting the single prompt “’let’s
think step by step” into the task instruction sig-
nificantly improves performance on mathematical
reasoning. The authors also experimented with dif-
ferent templates for prompts and found that instruc-
tive prompts help improve the model’s performance
in mathematical reasoning, while misleading or ir-
relevant prompts do not contribute to performance
enhancement.

4.2 Prompt Optimization

Finding the optimal prompt can also be treated as
an optimization process, where the goal is to op-
timize the performance of the target task. Similar
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to finding the best soft prompt or finding the opti-
mal examples for few-shot learning, algorithms can
be implemented to find the best zero-shot prompt.
However, such work typically requires a small
set of evaluation data to assess the prompt perfor-
mance. In the work by (Zhou et al., 2022), the au-
thors proposed Automatic Prompt Engineer (APE)
for zero-shot prompt design. A LLM is used to gen-
erate a group of prompts given the task example or
human description, and an iterative Monte Carlo
search method is used to search for the optimal
prompt given the objective function. In addition to
using Monte Carlo search for prompt optimization,
a gradient-free, edit-based search approach called
Gradientfree Instructional Prompt Search (GRIPS)
is introduced in (Prasad et al., 2022). GRIPS starts
from a manually designed instruction and itera-
tively searches among generated prompts from four
operations (delete, add, swap, paraphrase) to find
the optimal prompt for a target task.

Another line of research uses gradient-based
methods but to generate discrete zero-shot prompts.
The work FluentPrompt (Shi et al., 2022) follows
the idea from AutoPrompt (Shin et al., 2020), us-
ing a gradient-based method to generate discrete
prompts. They also use a fluency constraint to en-
courage human-readable prompt outcomes, which
helps improve performance. Another gradient-
based prompt generation method RLPROMPT is in-
troduced in (Deng et al., 2022). This work uses a re-
inforcement learning structure to generate prompts
that optimize the task-based reward function. The
prompts generated from this framework are often
incoherent gibberish but are claimed to achieve
significant performance improvement.

4.3 Evaluation

Evaluating prompt design is very challenging. As
there is no ground truth dataset for prompt gen-
eration, there is no ’best” prompt but only better
prompts. Therefore, the evaluation of the prompt
performance for in-context learning usually falls
into the following categories.

Conditional Probability (Likelihood): To eval-
uate the performance of a text generation model,
we can measure the probability of the generated
text. In our case, we can calculate the conditional
probability of ground truth(y) given prompt (p),
input(zx) or calculate the joint probability of z, y, p
averaging over the training data, as shown in (2)

Prob(y|z,p) (2)
z,yeX,Y



This is a simple strategy because the models for
in-context learning are generative language models
which will generate the joint probability (likeli-
hood) automatically. However, this metric some-
times fails to represent the actual performance of
the downstream task.

Execution Accuracy: A more direct method
to measure the performance of a prompt is to use
metrics from the target task (Zhou et al., 2022), as
ultimately the performance on the task is what we
care about. In addition to measuring the execution
accuracy directly on the entire training set, there
are ways to efficiently estimate the performance on
a subset of training data to save computational cost
(Zhou et al., 2022), (Li et al., 2022).

Prompt Transferability is another evaluation
metric reported in (Zhou et al., 2022), (Deng et al.,
2022) which is used to prove the quality of the
prompt generation methods. However, this metric
is more useful in selecting the prompt designing
method than evaluating the performance of a single
prompt.

General Metrics for Language Models should
be used when using large language models via zero-
shot in-context learning. It is also important to mea-
sure the performance from additional aspects. For
example, if we are to build a Question-Answering
system, we need to measure the risk of hallucina-
tion (Ji et al., 2022). If we are to build an email
generation system, we may need to measure the
toxicity and prevent generating any aggressive con-
tent. The work of Holistic Evaluation of Language
Models (HELM) (Liang et al., 2022) provides a
great example in evaluating the performance for
language models via in-context learning. Although
various metrics have been reported in HELM for
existing models, it is worth noting that the design
of our prompt will directly impact the models’ per-
formance.

5 Conclusion

The rapid development of large language models
(LLMs) has significantly influenced various NLP
tasks. Among the techniques to harness their ca-
pabilities, in-context learning with different types
of prompts—discrete, continuous, few-shot, and
zero-shot—has shown remarkable promise.
Discrete prompt engineering emphasizes human-
readable prompts that can enhance model perfor-
mance, while continuous prompt optimization in-
volves soft prompts that can be learned and opti-
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mized directly in the same language model. Few-
shot learning leverages a small number of examples
to guide the model in the right direction, whereas
zero-shot discrete prompts only require task in-
structions, offering a more straightforward design
process.

Manual design of prompts can be guided by prin-
ciples based on model behavior, and optimization
algorithms can be used to find optimal prompts.
Evaluating the performance of prompts is challeng-
ing, as there is no single best” prompt, and various
metrics need to be considered.

In conclusion, as LLMs continue to evolve,
prompt design remains a crucial factor in harness-
ing their full potential across a wide range of ap-
plications. A combination of manual design, opti-
mization techniques, and rigorous evaluation can
lead to more effective and efficient use of LLMs in
diverse NLP tasks.
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