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Abstract

Pretrained language models require the use
of consistent segmentation (e.g., subword- or
character-level segmentation) in pretraining
and finetuning. In NLP, many tasks are mod-
eled by subword-level segmentation better than
by character-level segmentation. However, be-
cause of their format, several tasks require the
use of character-level segmentation. Thus, in
order to tackle both types of NLP tasks, lan-
guage models must be independently pretrained
for both subword and character-level segmen-
tation. However, this is an inefficient and
costly procedure. Instead, this paper proposes a
method for training a language model with uni-
fied segmentation. This means that the trained
model can be finetuned on both subword- and
character-level segmentation. The principle
of the method is to apply the subword reg-
ularization technique to generate a mixture
of subword- and character-level segmentation.
Through experiment on BERT models, we
demonstrate that our method can halve the com-
putational cost of pretraining.

1 Introduction

The use of large pretrained language models
(PLMs) has become the dominant approach for
tackling NLP tasks and applications (Devlin et al.,
2019; Bommasani et al., 2021; Kaneko et al., 2020;
Konno et al., 2021). One notable characteristic of
these models is that the segmentation algorithm
must be determined before pretraining the model.
Given a pretrained model, users are expected to
employ a consistent segmentation algorithm.

For example, a common convention is to use
a family of subword-level segmentation algo-
rithms (Sennrich et al., 2016; Kudo, 2018; Song
et al., 2021) with a sufficiently large vocabulary;
for example, 8k (Kiyono et al., 2019), 30k (De-
vlin et al., 2019), 50k (Radford et al., 2019), or
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Figure 1: Overview of punctuation restoration.
Character-level segmentation must be used to insert a
missing comma in a given input sentence.
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Figure 2: Overview of our method. Previously, subword-
and character-level pretraining were conducted indepen-
dently (left). Conversely, in our method, BPE-dropout
enables the training of the language model with unified
segmentation (right).

250k (Scao et al., 2022). The subword-level seg-
mentation is usually preferred over the character-
level segmentation, because subword models of-
ten outperform character models (Libovický et al.,
2022) and are more computationally efficient (Xue
et al., 2022).

However, such predetermined subword-level seg-
mentation may cause a segmentation incompatibil-
ity problem, depending on the target downstream
task. More specifically, this problem occurs when
the pretrained model uses subword-level segmen-
tation but the target task requires a character-level
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segmentation. A typical example of a character-
level task is punctuation restoration for Japanese
text. Punctuation restoration is a post-processing
module that is applied to the output of an auto-
matic speech recognition system to improve the
readability of transcripts (Tilk and Alumäe, 2016).
We present an overview of punctuation restoration
in Figure 1. Figure 1 shows that, because the po-
sitions of punctuation marks do not necessarily
correspond to the positions of subword-level seg-
mentations, character-level segmentation must be
employed to tackle this task. In addition, there
are several other Japanese tasks, including spelling
error correction and text normalization, that also
require the character-level segmentation.

A naive way to solve the segmentation incompat-
ibility problem is to independently pretrain lan-
guage models for both subword- and character-
level segmentations1. In fact, this is a common
practice in current Japanese language models. For
example, both subword-level BERT2 and character-
level BERT3 models are distributed and actively
used in the NLP community. Our organization
has also been following this practice for construct-
ing in-house BERT models. Specifically, we reg-
ularly pretrain both subword- and character-level
language models from scratch, on the latest Web
corpus, to keep them updated with news informa-
tion. However, pretraining is an extremely com-
putationally intensive process that requires very
large GPU clusters (Strubell et al., 2019). This fact
encouraged us to develop a means of training a
single language model with unified segmentation
(i.e., a model that can handle both subword and
character-level segmentations) and thereby elimi-
nate the need for independent pretraining on each
type of segmentation.

To achieve the goal of unified segmentation, we
use the subword regularization technique (Kudo,
2018; Provilkov et al., 2020) during the pretraining
(Figure 2). Subword regularization trains the model
with multiple segmentation candidates to improve
the model’s robustness and generalization. Instead,

1Technically, it is possible to finetune a subword-level
pretrained model on a character-level segmentation. However,
as we demonstrate using experimental results (Section 4.3), the
performance of such an approach is suboptimal compared with
the character-level finetuning of a character-level pretrained
model.

2https://huggingface.co/cl-tohoku/
bert-base-japanese-v2

3https://huggingface.co/cl-tohoku/
bert-base-japanese-char-v2

in this paper, we use it as a means of simultane-
ously incorporating subword- and character-level
segmentation into the pretraining. Our method
is extremely simple and it requires no additional
model parameters.

In our experiments, we demonstrate the effective-
ness of our method on the pretraining of BERT (De-
vlin et al., 2019), which is one of the most popu-
lar PLMs. Our experimental results indicate that
the BERT model with unified segmentation per-
forms on par with models that are pretrained only
on subword- or character-level segmentation, and
therefore the computational cost of pretraining can
be halved.

2 Background

As explained in Section 1, our method is based
on a subword segmentation algorithm and a cor-
responding regularization technique, namely, sub-
word regularization (Kudo, 2018). In this paper, we
employ byte pair encoding (BPE) (Sennrich et al.,
2016) and BPE-dropout (Provilkov et al., 2020) for
subword segmentation and subword regularization,
respectively4. This section briefly describes the
main ideas underlying both methods.

2.1 Byte Pair Encoding (BPE)

Byte Pair Encoding (BPE) (Sennrich et al., 2016) is
an algorithm for obtaining subword-level segmen-
tations of a given token.

BPE uses a table of merge rules to define the
segmentation procedure (Figure 3, left). Here, each
merge rule represents how two consecutive tokens
should be concatenated to form a longer subword.
In addition, each merge rule has a priority: a merge
rule that appears earlier in the table has a higher
priority than the later rules. To obtain the merge
rules, BPE counts the frequencies of all consecutive
token pairs of a given corpus, and the token pair
with the highest frequency is iteratively appended
at the very end of the merge rules. The construc-
tion of the merge rules ends when the number of
merge rules reaches a predefined size, which is a
hyperparameter.

Segmentation of a given token proceeds by itera-
tively applying the set of merge rules in a determin-
istic manner (Figure 3, right). First, a token is rep-

4Our method does not depend on BPE. That is, another
subword segmentation algorithm (e.g., BERT-WordPiece (De-
vlin et al., 2019; Song et al., 2021) or the unigram language
model (Kudo, 2018)) may be used as an alternative. Details
are discussed in Section 6.

https://huggingface.co/cl-tohoku/bert-base-japanese-v2
https://huggingface.co/cl-tohoku/bert-base-japanese-v2
https://huggingface.co/cl-tohoku/bert-base-japanese-char-v2
https://huggingface.co/cl-tohoku/bert-base-japanese-char-v2
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Figure 3: Example of BPE-based segmentation. A token
newest is first represented as a sequence of characters.
In (b) BPE-dropout, some merge rules are randomly
dropped with a probability of p. As a result, its final seg-
mentation ne w e st differs from that of (a) vanilla
BPE, ne west.

resented as a sequence of characters. Second, two
adjacent tokens are iteratively merged according
to the merge rules and their corresponding priority.
For example, in Figure 3, merge rule (1) has the
highest priority; therefore, this rule is applied at the
beginning of the process. These merge operations
are repeated until no applicable merge rules are
available.

2.2 Subword Regularization for BPE
Subword regularization (Kudo, 2018) is a tech-
nique for improving a model’s robustness to noise.
To achieve this, this technique incorporates multi-
ple segmentations of a given token into the training.
BPE-dropout (Provilkov et al., 2020) is a subword
regularization technique developed for BPE, which
enables BPE to obtain multiple segmentations from
a given token. The original BPE and BPE-dropout
are compared in Figure 3.

BPE-dropout randomly discards each merge rule
with a probability of p. Thus, for a given to-
ken, the segmentation results may be different for
each merge process. A higher value of p corre-
sponds to a more aggressive dropout. For exam-
ple, BPE-dropout with p = 1.0 discards the en-
tire set of merge rules, and the result is equiva-
lent to character-level segmentation. Conversely, if
p = 0.0, BPE-dropout is identical to the original
BPE, that is, segmentation is deterministic.

3 Method

Originally, BPE-dropout was developed for the pur-
pose of regularization, that is, to improve a model’s

robustness to noise and segmentation errors. Con-
versely, in this study, we used this technique as a
means of training a language model that is compati-
ble with both subword- and character-level segmen-
tations. Our idea originated from the characteristics
of the segmentation performed by BPE-dropout
(Figure 3 (b)), that is, a sequence of two subwords
ne west can be segmented as a sequence of both
characters and subwords ne w e st. We expect
that a model trained with such a mixed segmen-
tation can be compatible with both subword- and
character-level segmentation. As a result, the need
for independently pretraining language models for
dedicated types of segmentations can be eliminated,
and thus, the computational cost of pretraining can
be halved.

Our method is extremely straightforward: during
pretraining, we simply apply the off-the-shelf BPE-
dropout algorithm to the input. Thus, the method
requires neither modification of the model architec-
ture nor the addition of model parameters. Once
the model is pretrained, we set the dropout prob-
ability p according to the desirable segmentation,
and then perform finetuning. For example, if a task
of interest requires character-level segmentation,
we set p = 1.0 and then finetune the model.

4 Experiments

We demonstrate the effectiveness of unified seg-
mentation on pretrained BERT (Devlin et al., 2019)
models on Japanese benchmark datasets. Specif-
ically, we demonstrate that unified segmentation
achieves performance comparable to that of both
subword- and character-level BERT. It should be
noted that the aim of unified segmentation is neither
to achieve state-of-the-art performance on bench-
mark datasets, nor to outperform its counterparts
(i.e., BERT models pretrained on either subword-
or character-level segmentation alone). Instead, we
aim to achieve comparable performance. This is be-
cause, given such results, the independent training
of subword- and character-level BERT models can
be eliminated, thereby saving the computational
cost of pretraining.

4.1 Experimental Configuration

4.1.1 Pretraining Dataset
We pretrained the BERT-base model (Devlin et al.,
2019) on the Japanese Wikipedia corpus5. We

5We used a dump data as of October 2020.
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first tokenized the corpus using the MeCab tok-
enizer6 with UniDic dictionary v2.1.2. We then
performed subword tokenization using the BPE
algorithm with the SentencePiece toolkit (Kudo
and Richardson, 2018). We set the vocabulary size
and character coverage ratio to 32,000 and 0.9995,
respectively.

4.1.2 Finetuning Dataset

Subword Task: JGLUE To evaluate perfor-
mance in subword-level segmentation, we used
the public JGLUE dataset (Kurihara et al., 2022),
which is a Japanese version of the widely-used
GLUE benchmark (Wang et al., 2018). We used
this dataset in order to compare the unified BERT
model with its counterparts, namely, character-
level BERT and subword-level BERT. We report
the scores for three tasks: natural language infer-
ence (JNLI), sentiment analysis (MARC-ja), and
semantic textual similarity (JSTS). Because the
original JGLUE does not include an official test set,
we randomly split the official validation set into
two sets, which we use as a validation set and a test
set.

Character Task: Punctuation Restoration We
also conducted an experiment on the Japanese punc-
tuation restoration task, which restores missing
commas and periods in a given text. This task
requires the character-level segmentation of the in-
put text. We constructed the benchmark dataset
from the Japanese raw corpus as follows. First,
we randomly sampled 100k sentences from the
Japanese portion of the CC-100 corpus (Wenzek
et al., 2020; Conneau et al., 2020). Second, we
removed Japanese commas and periods from the
corpus. Third, we assigned a label for each charac-
ter, namely, no action, comma insertion, or period
insertion. Finally, we concatenated consecutive
sentences into a single sequence; each sequence
contains at most three sentences. For a given pre-
trained BERT model, we formulated this task as a
sequential labeling task, as described in Devlin et al.
(2019). Specifically, we fed the BERT model’s final
hidden layer output to a linear classifier to predict
the label.

4.1.3 Models

We compared the following three segmentation set-
tings.

6https://taku910.github.io/mecab/

Pretraining

Architecture BERT-base
Implementation Megatron-LM (Shoeybi et al.,

2019)
Optimizer Adam
Learning Rate Schedule Linear warmup and decay
Warmup Steps 12,500
Max Learning Rate 5e-4
Initial Learning Rate 1e-07
Dropout 0.1
Gradient Clipping 1.0
Weight Decay 0.01
Mini-batch Size 2,048
Number of Updates 250,000
Max Sequence Length 512
Vocabulary Size 32,000
BPE-dropout rate (p) 0.1

Finetuning

Optimizer Adam
Learning Rate Schedule Linear warmup and decay
Warmup Steps 5% of total gradient steps
Max Learning Rate 2e-5
Dropout 0.1
Gradient Clipping 1.0
Weight Decay 0.01
Mini-batch Size 32
Number of Epochs 10

Table 1: List of hyperparameters for pretraining and
finetuning.

• SUBWORD: An input text is deterministically
segmented into subwords, i.e., we set p = 0.0.

• CHARACTER: An input text is deterministi-
cally segmented into characters, i.e., we set
p = 1.0.

• BPE-DROPOUT: An input text is stochasti-
cally segmented using BPE-dropout.

The hyperparameters are listed in Table 1. We
used the Megatron-LM implementation (Shoeybi
et al., 2019) for the pretraining . The choice of
hyperparameters (e.g., large batch size and high
learning rate, etc) mostly follows recommendations
made in reports of previous studies (Liu et al., 2019;
Shoeybi et al., 2019; Mosbach et al., 2021; Zhang
et al., 2021).

4.2 Results in Subword Task: JGLUE

Table 2 shows the results on the JGLUE dataset.
The comparison of models (c) and (a) demonstrates
that the performance of SUBWORD derived from
BPE-DROPOUT (c) achieved performance compa-
rable with that of the SUBWORD-only model (a),
especially on the test set. In addition, with respect
to character-level segmentation, the CHARACTER

https://taku910.github.io/mecab/
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JNLI MARC-ja JSTS
Model ID Pretraining Finetuning Valid Test Valid Test Valid Test

(a) SUBWORD SUBWORD 88.55 89.43 95.74 95.19 85.09 87.71
(b) CHARACTER CHARACTER 85.54 86.91 94.65 95.08 82.97 84.75
(c)† BPE-DROPOUT SUBWORD 88.00 88.69 95.54 95.26 84.52 87.64
(d)† BPE-DROPOUT CHARACTER 87.37 88.93 95.21 95.39 82.91 86.26
(e) SUBWORD CHARACTER 86.50 87.78 94.38 94.69 80.04 82.36

Table 2: Performance in JGLUE tasks. We report the accuracy for JNLI and MARC-ja. We report the Spearman’s
rank correlation coefficient ρ for JSTS. All values are averages of three different random seeds. † indicates our
method.

Model ID Pretraining Finetuning Valid Test

(b) CHARACTER CHARACTER 80.86 81.13
(d)† BPE-DROPOUT CHARACTER 81.88 82.06
(e) SUBWORD CHARACTER 78.49 78.98

Table 3: Performance in the punctuation restoration task.
We report the micro-F1 score. All values are averages
of three different random seeds. † indicates our method.

finetuning of BPE-DROPOUT (d) outperformed the
CHARACTER-only model (b). These results demon-
strate that, with BPE-DROPOUT pretraining, we
can effectively train a model with unified segmen-
tation. It is worth noting that a naive CHARACTER

finetuning of a SUBWORD model was ineffective;
this is because the model (e) consistently under-
performed our model (d). That is, a pretraining
involving character-level segmentation is crucial
for CHARACTER finetuning to achieve high perfor-
mance.

4.3 Results in Character Task: Punctuation
Restoration

Table 3 shows the results on punctuation restoration
task. Similarly to the results on Table 2, CHAR-
ACTER finetuning of the BPE-DROPOUT model
(d) outperformed the pure CHARACTER model
(b), thereby demonstrating the effectiveness of our
method. We also conducted an experiment with
CHARACTER finetuning of the SUBWORD model
(e). However, model (e) consistently underper-
formed the other two models. Given the effective-
ness of BPE-DROPOUT in both the subword task
(Section 4.2) and the character task (Section 4.3),
we believe that BPE-DROPOUT can be used as a
drop-in replacement for the conventional indepen-
dent pretraining of the SUBWORD and CHARAC-
TER models.
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Figure 4: Comparison of validation perplexity curves
of subword and BPE-dropout models during BERT pre-
training. Both methods converged at a similar rate.

5 Analysis

Does BPE-dropout Require Longer Pretrain-
ing Time? As explained in Section 2.2, BPE-
dropout belongs to a family of regularization tech-
niques. A potential drawback of BPE-dropout is
that, when pretraining a model with it, it may take
longer for the model to converge. In the worst case,
BPE-dropout has no practical advantages over inde-
pendent training of subword and character models,
with respect to computational cost. To verify this,
we plotted a validation perplexity curve, as shown
in Figure 4. The figure demonstrates that the speed
of convergence is indeed the same for both the
subword and BPE-dropout models.

Effectiveness of BPE-dropout Probability In
the main experiment (Section 4), we set the BPE-
dropout probability p to 0.1, following the previ-
ous study (Provilkov et al., 2020). Here, we in-
vestigated the effectiveness of changing the BPE-
dropout probability p for the BERT pretraining.
Specifically, we report the performance of SUB-
WORD finetuning in subword tasks and CHARAC-
TER finetuning in a character task (punctuation
restoration).

Figure 5a-5c demonstrate that a higher dropout
probability consistently reduced subword-level per-
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Figure 5: Effectiveness of changing BPE-dropout probability p for pretraining. Note that p = 0.0 is equivalent to
BPE pretraining (i.e., SUBWORD).

formance. When the dropout probability was high,
BPE-dropout almost always segmented the sub-
word tokens into smaller units. This may have
caused an insufficient pretraining with subword
tokens that consist of many characters, leading
to performance degradation of SUBWORD finetun-
ing. Conversely, for a character task (Figure 5d),
a small dropout probability (0.1) could already
significantly improve the performance over the
SUBWORD pretraining. These results support our
choice of dropout probability p = 0.1 in the main
experiment.

6 Related Work

6.1 Subword Regularization

Subword regularization (Kudo, 2018) is a tech-
nique for improving the model’s robustness to cor-
pus noise and segmentation errors. The underlying
idea is to virtually augment the given training data
by generating multiple segmentation candidates.
Specifically, Kudo (2018) developed a subword al-
gorithm based on a unigram language model, and
performed sampling-based segmentation. In con-
trast to the subword regularization of Kudo (2018),
which samples subwords according to the likeli-
hood of a given sequence, Hiraoka et al. (2022) pro-
posed a method of re-sampling subwords according
to the length of each subword, to construct a more
robust model. Moreover, Takase et al. (2022) indi-
cated that using multiple segmentations improves
the performance during inference.

Originally, subword regularization was only
available for the subword algorithm based on un-
igram language model. Recently, several recent
follow-up studies have made the technique appli-
cable for other algorithms. For example, Provilkov

et al. (2020) proposed BPE-dropout for BPE. Simi-
larly, Hiraoka (2022) proposed MaxMatch-dropout
for BERT-WordPiece (Devlin et al., 2019; Song
et al., 2021)7.

In this study, we employed BPE to develop a
model with unified segmentation. This is because
BPE is the most popular subword algorithm in the
NLP literature. Because of the simplicity of our
method, it is technically applicable to other sub-
word algorithms; the only requirement is that the
algorithm has a corresponding subword regular-
ization method. However, such an exploration is
outside the scope of this paper.

6.2 Segmentation for Pretrained Language
Model

Currently, the use of subword segmentation is a
de facto standard for PLMs (Mielke et al., 2021).
However, the use of subword algorithms, which de-
termine the segmentation according to frequency,
poses several problems. First, these algorithms
do not take lexical or semantic information into
account. As a result, the segmentation aligns
poorly with morphology, and this misalignment
causes suboptimal performance in downstream
tasks (Bostrom and Durrett, 2020). Second, im-
balanced vocabulary allocation occurs when multi-
lingual subword models are constructed (Rust et al.,
2021; Scao et al., 2022).

To solve above problems, several studies have
proposed the use of character-level segmentation
for PLMs. Character BERT (El Boukkouri et al.,

7We use the name BERT-WordPiece to refer to the algo-
rithm that uses a greedy longest-match strategy for segmenta-
tion, to distinguish it from the original WordPiece algorithm,
which is a variant of BPE (Schuster and Nakajima, 2012; Wu
et al., 2016).
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2020) replaces the word embedding layer with a
character convolutional layer to construct an open-
vocabulary model. ByT5 (Xue et al., 2022) uses
byte-level sequences to eliminate the tokenization
procedure. In contrast to these approaches, our
method enables the model to be trained with uni-
fied segmentation, that is, the model can use both
character- and subword-level segmentations.

Some studies (Hiraoka et al., 2020, 2021) have
proposed methods to modify segmentations accord-
ing to their performance in downstream tasks. Be-
cause these methods can be combined with any
pretrained model, we can use these methods with
our proposed model to further improve the perfor-
mance.

6.3 Efficient Pretraining of Language Models

Several previous studies have focused on im-
proving the training efficiency of language mod-
els (Izsak et al., 2021; Geiping and Goldstein,
2022). For example, Izsak et al. (2021) proposed a
recipe for training a BERT model within 24 hours,
namely, 24h BERT. 24h BERT applies insightful
techniques, including an efficient implementation
and the use of a larger model for faster convergence.
Levine et al. (2021) proposed a sophisticated mask-
ing strategy for BERT, which is based on pointwise
mutual information (PMI-Masking). PMI-Masking
enables faster BERT training than the conventional
random masking strategy. These studies are all or-
thogonal to our study, that is, their findings can be
combined with our method to further reduce the
computational cost.

7 Conclusion

In this study, we investigated the effectiveness of
incorporating subword regularization as a means
of training a language model with unified segmen-
tation. Our method enables the pretraining of a sin-
gle model that is applicable to both subword- and
character-level segmentation. This can significantly
reduce the computational cost of pretraining. As a
future work, we will investigate the effectiveness
of this method to the pretraining of other language
models, such as the encoder-decoder model (Raf-
fel et al., 2020) and decoder-only model (Radford
et al., 2019).
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Jindřich Libovický, Helmut Schmid, and Alexander
Fraser. 2022. Why don’t people use character-level
machine translation? In Findings of the Associa-
tion for Computational Linguistics: ACL 2022, pages
2470–2485, Dublin, Ireland. Association for Compu-
tational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692.

Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky,
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja,
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JNLI MARC-ja JSTS
Model ID Pretraining Finetuning Valid Test Valid Test Valid Test

(a) SUBWORD SUBWORD 88.55 89.43 95.74 95.19 85.09 87.71
(b) CHARACTER CHARACTER 85.54 86.91 94.65 95.08 82.97 84.75
(c) BPE-DROPOUT SUBWORD 88.00 88.69 95.54 95.26 84.52 87.64
(d) BPE-DROPOUT CHARACTER 87.37 88.93 95.21 95.39 82.91 86.26
(e) RANDOMMIX SUBWORD 87.92 88.66 95.64 95.38 84.54 86.86
(f) RANDOMMIX CHARACTER 87.98 88.58 95.19 95.30 82.77 85.74

Table 4: Performance in JGLUE tasks. We report the accuracy for JNLI and MARC-ja. We report the Spearman’s
rank correlation coefficient ρ for JSTS. All values are average of three different random seeds.

A Appendix

A.1 Alternative Approach for Unified
Segmentation Model

Background In this paper, we used BPE-dropout
for training BERT with unified segmentation. The
goal was to simultaneously incorporate subword-
and character-level segmentation into pretraining.
There exists an alternative approach to achieve this
goal: instead of BPE-dropout, we can randomly
mix the subword-level segmentation with character-
level segmentation in the training data. We refer to
this approach as RandomMix.

A comparison of subword-level segmentation,
character-level segmentation, BPE-dropout, and
RandomMix is presented in Figure 6. The differ-
ence between RandomMix and BPE-dropout is that
BPE-dropout generates a mixture of character and
subword within a sequence, whereas RandomMix
always segments a given sequence into characters
or subwords. Here, we compare RandomMix with
BPE-dropout.

Result We pretrained a BERT model using Ran-
domMix (RANDOMMIX) and evaluated its per-
formance on JGLUE benchmark. For RANDOM-
MIX, we mixed subword-level segmentation and
character-level segmentation in a 1:1 ratio. The
experimental setup for pretraining and finetuning
was identical to that described in Section 4.

Table 4 presents the results. The table shows
that the RANDOMMIX models (e) and (f) achieved
almost comparable performance to the BPE-
DROPOUT models (c) and (d) in the JNLI and
MARC-ja tasks. However, in the JSTS task,
the RANDOMMIX model slightly underperformed
BPE-DROPOUT. Given this result, we decided to
use BPE-DROPOUT instead of RANDOMMIX.

Subword
Segmentation

1. ▁New–▁York
2. ▁Tokyo
3. ▁Germany
4. ▁France

Character
Segmentation

1. ▁–N–e–w–▁–Y–o–r–k
2. ▁–T–o–k–y–o
3. ▁–G–e–r–m–a–n–y
4. ▁–F–r–a–n–c–e

BPE-dropout

1. ▁Ne–w–▁Y–or–k
2. ▁–T–o–ky–o
3. ▁G–erm–a–n–y
4. ▁France

RandomMix

1. ▁–N–e–w–▁–Y–o–r–k
2. ▁Tokyo
3. ▁–G–e–r–m–a–n–y
4. ▁France

Figure 6: Comparison of four segmentation methods. A
dash “–” represents a segmentation boundary. In Ran-
domMix, a given text is always represented as either
a subword-level segmentation or a character-level seg-
mentation.


