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Abstract

This paper addresses the challenge of un-
certainty quantification in text classification
for medical purposes and provides a three-
fold approach to support robust and trustwor-
thy decision-making by medical practitioners.
Also, we address the challenge of imbalanced
datasets in the medical domain by utilizing the
Mondrian Conformal Predictor with a Naive
Bayes classifier. Our findings are expected to
complement the risk-aware decision-making
process in the medical field.

1 Introduction

This paper focuses on developing a novel method
based on a robust conformal framework for a
confidence-based classification for better decision-
making. Our project aims to develop methods for
uncertainty quantification in text classification for
risk-sensitive systems. Using medical transcription
data from Kaggle, we assign patients to specific
labels based on their medical history. With a better
understanding of the uncertainty associated with
our predictions, we aim to enable more reliable and
robust decision-making in the medical domain.

To address the limitations of traditional NLP
techniques in the medical domain, our paper pro-
poses a novel framework for uncertainty quantifica-
tion in text classification for risk-sensitive systems.
We highlight the existing problems in text classifi-
cation and why uncertainty quantification is essen-
tial for evaluating the models. We review the previ-
ous works on uncertainty quantification in ML and
emphasize the need for a reliable decision-making
framework. We propose a three-step methodology
that involves training and testing data sets, calibra-
tion sets, and classification engines. In the first step,
we use a medical transcription data set and obtain a
confusion matrix using the Naive Bayes classifier.
In the second step, we use conformal prediction
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with a calibration set and create another confusion
matrix to observe a decrease in error rate in most
cases. We assign p — values to labels based on
the confusion matrix output, which gives us the
confidence level and credibility score, decided by
the p — value. Our main novelty is the integration
of existing conformal prediction with text similar-
ity. Our proposed framework gives a classification
and provides two evaluation metrics, confidence
and credibility, which offer helpful insights instead
of just giving binary classification labels. In con-
clusion, our proposed framework can be used for
reliable decision-making in risk-sensitive systems
such as the medical domain.

2 Related Work

Text classification has been widely explored in the
field of NLP, and it has found applications in vari-
ous domains such as finance (Ablad et al., 2020),
military (Gunasekara et al., 2021), and medical (Le-
derman et al., 2022; Li et al., 2023), among others.
Most of the research in this field has focused on
developing algorithms that can improve accuracy
while keeping the computational cost low (Li et al.,
2022). However, achieving high accuracy alone
cannot ensure a reliable system in risk-sensitive
domains like medical applications. A framework
is required to address the uncertainty associated
with the predictions made by ML models to enable
trustworthy decision-making (Psaros et al., 2023).

Recently, there has been growing interest in de-
signing novel metrics for the medical applications
of Artificial Intelligence (AI) (Hicks et al., 2022;
Cheung et al., 2022). However, we still see a gap
in the practical realization and the applicability of
the metrics for confident decision-making for a text
classification system.

Kuleshov et al. (2018) suggests a technique
called “Calibrated Regression” to estimate uncer-
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tainty in Deep Learning models accurately. The
method involves training a regression model to pre-
dict the variance of the model’s output given the
input data. The regression model is trained on a
validation set to ensure it is well-calibrated, mean-
ing that the predicted variance values accurately
measure the model’s uncertainty. They show that
their approach can accurately estimate uncertainty
in various Deep Learning models, including those
used for Image Classification and NLP.

Another proposed method for estimating predic-
tive uncertainty in deep neural networks is called
“Deep Ensembles”, where multiple networks with
the same architecture but different random initial-
izations are trained to estimate uncertainty. The
authors demonstrate that their approach is simple,
scalable, and effective in estimating uncertainty in
various benchmark datasets, which can be utilized
to detect out-of-distribution examples and improve
model calibration (Lakshminarayanan et al., 2017).

In this paper, we overcome the above limitations,
and with the proposed method, we conclude multi-
fold benefits. We provide complementary metrics
to quantify the uncertainty and provide the out-
come to the decision maker to make a robust and
trustworthy decision.

3 Methodology

The methodology used in this study complements
the existing ML classification algorithms for NLP
techniques by incorporating Conformal Prediction
(CP) as an uncertainty quantifier to reduce the false
discovery rate and make the model robust and reli-
able.

Traditionally, classification algorithms for NLP
use descriptive text data (x) as input data to predict
the output label (y), such as positive or negative
sentiment. This prediction is made by feeding x
into a function f(x), which returns a label (y) based
on the features in z. In this paper, we take a step
further by incorporating CP into our approach.

3.1 Conformal Prediction

CP is a method that yields prediction intervals with
guaranteed coverage associated with a confidence
level, 1 — o, where « is a predetermined value
between 0 and 1 (Chernozhukov et al., 2021). The
algorithm aims to compose a function f that can
accurately predict the label y for a new feature
vector X in a given set of training data consisting
of feature vectors x; and their corresponding labels

Yi-

CP generates prediction sets I'(x) for each fea-
ture vector X, such that the probability of the true
label being in the prediction set is at least 1 — «
for all x and y. This framework can use different
algorithms, including the nonconformist and trans-
ductive conformal prediction methods. When the
predefined significance level cannot eliminate any
of the labels, CP has the potential to generate a
prediction set of multiple possible values, which
makes the predictions uncertain.

CP is a technique that can produce prediction
sets containing multiple possible labels, meaning
that the confusion matrix generated differs slightly
from the conventional confusion matrix. When
using CP for multi-label classification, we must
pay attention to the number of correctly predicted
examples containing all the correct labels and the
number of incorrectly predicted models where the
prediction set includes at least one incorrect label.
This helps to accurately assess the performance
of a conformal predictor in multi-label classifica-
tion while considering the possible labels of the
prediction sets.

The total number of empty prediction sets is
another crucial factor in evaluating a conformal
predictor for multi-label classification. This occurs
when no labels can be rejected at the predefined
significance level. In such cases, it is essential to
provide a single-point prediction by selecting the
labels with the highest p-values. However, this
approach can be more complicated to interpret in
multi-label classification than in binary classifica-
tion, as it does not provide information on the rel-
ative importance of each label. Hence, it is often
better to provide a prediction set or interval that
encompasses all the possible labels, along with a
measure of the uncertainty associated with each
label.

3.2 Proposed Framework

In Figure 1, we provide a broad outline of our so-
lution comprising three key components. As with
any ML-based approach, the initial stage involves
preprocessing the dataset. For this purpose, we
obtained medical transcriptions for diverse med-
ical specialties sourced from Kaggle. Accessing
medical data is challenging due to the privacy reg-
ulations imposed by HIPAA. However, this dataset
presents a viable alternative by providing medi-
cal transcription samples, which we utilized in our
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Figure 1: Proposed framework for uncertainty quantifi-
cation.

work.

The preprocessed dataset is input into the con-
formal inference engine, which outputs a set of
predictions based on the significance level rather
than a single-point prediction. Unlike the tradi-
tional approach of splitting a dataset into a train
and test set, our method divides the dataset into
training, calibration, and test sets. The training set
is utilized for training a base learning algorithm on
the dataset, resulting in an approach that is algo-
rithm agnostic. This implies that any ML classifier,
whether statistical or Deep Learning-based, can
be used with the conformal inference framework
acting as a wrapper over the base algorithm.

In the diagram, the base algorithm is labeled as
the “Model”. The conformal inference framework
can then be assigned as a wrapper over the base
algorithm, denoted as the Model in the diagram.
The non-conformity score is calculated for each
prediction, and a p-value is assigned based on the
significance level. The p-value indicates the prob-
ability that the prediction is correct and is used to
determine the guaranteed coverage for the predic-
tion. In a high-risk sensitive domain where even
a single incorrect decision is intolerable, the most
critical aspect of the solution is interpreting the
results.

We derive three different inferential use cases
based on conformal inference. The motive is to
quantify the uncertainty associated with each pre-
diction and reduce the False Discovery Rate (FDR)
for medical transcription data. Considering the de-
gree of risk, associated with the prediction, a signif-
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icance level is defined and applied to the p-values
of each label for the data point of -. This results in
a set prediction with all the labels, a combination of
labels, a single label, or a NULL set, indicating that
the model cannot output the prediction. Finally, we
calculate the confidence of each prediction and use
it to rank the severity of -. The purpose of ranking
is to prioritize which one to take action on first.

4 Experimental Framework

This section shows the experimental results of the
medical transcriptions dataset from Kaggle. The
experimental results with source code and dataset
are provided on GitHub !

4.1 Dataset

This section details the dataset used for our work,
the conducted experiments, and the results. The
dataset contains sample medical transcriptions
scraped from mtsamples”. It includes transcrip-
tions from various medical specialties and can be
used for classification tasks to identify the specialty
based on the transcription text.

Table 1 shows the column names and descrip-
tions for the medical transcription dataset obtained
from Kaggle®. The dataset includes sample med-
ical transcriptions for various medical specialties
and their titles, relevant keywords, and other rele-
vant information.

We split the dataset into training and test sets,
as shown in Table 2. Additionally, we used a cal-
ibration set for CP. To divide the data into these
three sets, a common practice is randomly split-
ting the available data into two sets using the
train_test_split function from the scikit-learn li-
brary. This function divides the data into two sets
based on a specified proportion. The first split cre-
ates a test set, typically containing around 20%
of the available data. The remaining data is then
combined into a training and calibration set.

Next, the training and calibration set is divided
into two subsets using train_test_split again. This
time, the calibration set typically contains around
20% of the available data, while the remaining data
is assigned to the training set. By splitting the com-
bined data again, we can obtain a dedicated subset
of data for model calibration that is not used for
training. Additionally, the random splitting process

"https://anonymous.4open.science/r/textconformal

Zhttps://mtsamples.com

3https://www.kaggle.com/datasets/tboyle10/medicaltranscri
ptions



should be repeated with different random seeds to
assess the robustness of the model’s performance
estimates.

The dataset split into a training, calibration, and
test set for medical specialty features is shown in
Table 2.

Column Name
Unnamed (ID)

Description

Unique identifier for
each transcription
Short description of
transcription

Medical specialty clas-
sification of transcrip-
tion

Transcription title

description

medical_specialty

sample_name

transcription Sample medical tran-
scriptions
keywords Relevant  keywords

from transcription

Table 1: Table description for the Kaggle medical tran-
scription dataset.

train cal test

Cardiovascular/Pulmonary 162 55 64
Consult History and Phy. 137 55 42

Others 1623 554 530
Gastroenterology 118 39 44
General Medicine 88 25 33
Neurology 102 26 40
Obstetrics/ Gynecology 89 22 24
Surgery 39 10 10
Count Total 2358 786 787

Table 2: Dataset split for medical specialty model input.

4.2 Experiments on Medical Transcription
Data

For the collected data set, we applied the noncon-
formist library to perform Inductive Conformal
Prediction (ICP) with a Naive Bayes model on
a dataset of patient descriptions. Our goal was
to predict the patient’s disease based on their de-
scription while calculating a prediction interval that
measures uncertainty associated with the predicted
output.

We selected medical specialty as the target vari-
able (y) for the medical transcription data set and
used the remaining columns as features (x). To pre-
process and analyze the data, we created five files,

one for each feature column, and set the target vari-
able (y) for each file as a medical specialty. Then,
we processed and analyzed these files to investigate
the features and target variables’ relationship. This
approach allows us to identify patterns or correla-
tions between the patients’ features and medical
specialty.

4.2.1 Preprocessing

First, we plotted a pie chart to visualize the fre-
quency distribution of medical specialties in the
dataset. Next, we removed rows containing miss-
ing values in the keywords column, as these sam-
ples would not provide helpful information for our
analysis. Then, we used the “LabelEncoder” func-
tion to convert the values in the medical specialty
column to integers as shown in Table Table 3, al-
lowing us to use this column as a feature in our
analysis. The LabelEncoder assigns a unique in-
teger code to each unique label in the input data.
So, if a medical record uses the Encoded Label and
the value assigned to a particular record is 4, the
record is related to the General Medicine specialty.
Similarly, a value of 3 would indicate a record re-
lated to Gastroenterology, and so on. After that,
we replaced values in the medical specialty column
that were greater than or equal to 8 with 8, rep-
resenting “others”. After cleaning and reducing
the number of categories in the medical specialty
column, we plotted a bar chart to visualize the fre-
quency distribution of medical specialties in the
cleaned dataset.

We defined a function that performed the fol-
lowing steps to preprocess the keywords column.
We first removed punctuation and digits - any non-
alphabetic characters from the keywords, such as
numbers, symbols, and punctuation marks. Next,
we converted all of the keywords to lowercase to
ensure consistency and to prevent duplication of
keywords that only differ in case. After that, we
removed stop-words unlikely to be useful for anal-
ysis, such as “the”, “and”, and “a” to reduce noise
in the data. Lastly, we used Stemming. This allows
us to group related words and reduce the number
of unique words in the dataset. We used the Porter
Stemmer algorithm to perform stemming on the
keywords. We then applied the text cleaning and
preprocessing function to the keywords column
and stored the cleaned keywords in a new column
called cleaned keywords. Finally, we saved the
cleaned dataset with the added cleaned keywords
column to a new C'SV file for a more straightfor-
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ward implementation.

Label Encoded Label
Cardiovascular/Pulmonary 0
Consult History and Phy. 1
Others 2
Gastroenterology 3
General Medicine 4
Neurology 5
Obstetrics/ Gynecology 6
Surgery 7

Table 3: Encoded labels.

5 Results Analysis
5.1 Baseline Model

We can choose any classification algorithm as a
baseline model because the framework we will
compare in Section 5.2 is model agnostics. Here,
we have used Multinomial Naive Bayes as a classi-
fier for classifying the various medical_specialities
mentioned in Table 3 and corresponding confusion
matrix as a performance metrics is shown in Table
4.

Multinomial Naive Bayes

0 1 2 3 4 5 6 7
0 57 O 1 1 0 0 1 3
1 0 28 2 o o0 o0 o0 2
2 32 7 404 22 18 17 30 15
30 0 0 3 0 0 2 O
4 0 O 2 0 32 0 0 1
5 1 1 5 0O 0 29 2 0
6 0 O 0 1 0 0 21 O
7 0 1 3 0O o0 0 o0 12

Table 4: Confusion matrix of the base model.

5.2 Conformal Inference

Table 5 is the confusion matrix for conformal in-
ference. One observation that can be seen here is
that the number of true positives in the confusion
matrix for the conformal inference, as shown in
Table 5, is lower than the number of true positives
in the confusion matrix for the Multinomial Naive
Bayes model as shown in Table 4. Conformal in-
ference is a method for estimating the reliability
of predictions made by a model, and it may result
in less confident predictions (based on the signifi-
cance level 1-alpha) compared to the Multinomial
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Naive Bayes model. As a result, the model may
make fewer optimistic predictions, leading to fewer
true positives in the confusion matrix.

Conformal Inference

0 1 2 3 4 5 6 7
0O 8 2 34 5 4 1 4 5
1 3 2 20 0 1 5 0 1
2 68 34 290 39 27 33 17 37
34 4 17 3 1 3 1 3
4 2 5 19 4 1 1 1 2
55 0 23 3 0 3 0 4
6 2 2 10 2 0 0 3 3
7 2 o0 11 1 1 0 0 1

Table 5: Confusion matrix of conformal inference.

This part shares the results in Table 6. Each
row represents seven test instances. The values
in columns named po, p1, p2, P3, P4, P5s P6> DT
represent the p-value columns of Cardiovascu-
lar/Pulmonary, Consult-History and Phy., Others,
Gastroenterology, General Medicine, Neurology,
Obstetrics/Gynecology, and Surgery. Algorithm
?? outlines the process for implementing p-values.
The p-value is a metric for measuring the confi-
dence of an ML model’s predictions. It represents
the model’s accuracy when making predictions for
new data. The p-value is calculated by comparing
the model’s prediction for a new piece of data with
its predictions for the data on which it was trained
through hypothesis testing.

Suppose the new data differs significantly from
the data seen during training. In that case, the
p-value will be low, indicating that the model’s
prediction for the new data may not be as reliable.
Therefore, caution must be exercised when inter-
preting model predictions with low p-values.

5.3 Performance Metrics

Precision and recall are helpful measures for evalu-
ating the accuracy of a classifier when the classes
are well-defined and there is no uncertainty about
the labels. However, in CP, there is always some
uncertainty about the labels, which needs to be
quantified as a prediction interval.

The significance level determines the frequency
at which the ML model produces inaccurate pre-
dictions. When the significance level is set to 0.05,
we expect the model to make errors 5%

From Table 6, we can infer that as conformal
predictors ensure validity, the main factor affect-



sig mean err
0.01  0.013977
0.05 0.053367

avg ¢ n correct
6.984752 776
6.129606 746

0.1 0.100381  3.97967 708
0.2 0.194409  1.03939 634
0.3 0.297332  0.867853 557
0.4 0.376112  0.757306 491
0.5 0.506989  0.604828 388
0.6 0.583227  0.505718 328
0.7 0.700127  0.371029 236
0.8 0.80432  0.251588 156
0.9 0.894536  0.115629 83

Table 6: Performance metrics of conformal inference.

ing their performance is efficiency, which refers
to the size of the label sets. Smaller sets are con-
sidered more informative. The performance of the
conformal predictor can be evaluated by measur-
ing AvgC as it is the measure that represents the
average number of class labels present in the pre-
diction sets. This directly indicates how well the
conformal predictor can reject inappropriate class
labels.

5.4 Risk Aware Ranking

The p-value of an ML model indicates the probabil-
ity of obtaining a similar outcome under the NULL
hypothesis, which determines the confidence level
in its prediction. A higher level of confidence indi-
cates greater accuracy.

This metric is defined as:

Confidence(z) = sup{l — e : [I'¢(x)|< 1}.

Credibility in models refers to the degree to which
we can trust the predictions made by a model. A
credible model is one that accurately reflects the
underlying data-generating process and produces
predictions that are reliable and accurate.
This metric is defined as:
Credibility(z) = max p;
Table 7 shows the confidence and credibility
score of the predicted labels. For example, in the
first test instance, the confidence score is, the credi-
bility score is, and the predicted label is 5. Here 5
represents the medical_specialty - ‘ Neurology'.
In CP, a NULL set refers to a situation where the
algorithm cannot confidently assign any label to a
new test instance based on the available training
data. This can occur when the new instance differs
from any instances seen during training or when

there is insufficient information to make a reliable
prediction.

One way to obtain a NULL set is to set the sig-
nificance level too high, which can make the algo-
rithm overly conservative and less likely to make
a prediction. For example, In the 8-label multi-
classification problem, the conformal prediction
algorithm is set with a significance level 0.05. Sup-
pose a new test instance differs from any instances
seen during training or has insufficient information.
In that case, the algorithm may return a NULL set,
indicating that it cannot make a confident predic-
tion for that instance.

Confidence Credibility y_pred
1 0.962 0.831 5
2 0.996 0.948 3
3 0.897 0.537 2
4 0914 0.672 4
5 0.894 0.496 3
6 0.863 0.358 2
7 0.999 0.997 0

Table 7: Adoption of confidence for risk-aware ranking.

train cal test
Cardiovascular/Pulmonary 162 55 64
Consult History and Phy. 137 55 42

Others 1623 554 530
Gastroenterology 118 39 44
General Medicine 88 25 33
Neurology 102 26 40
Obstetrics/ Gynecology 89 22 24
Surgery 39 10 10
Count Total 2358 786 787

Table 8: Dataset split for model input.

6 Conclusions

This paper introduced an algorithm-agnostic frame-
work that quantifies uncertainty associated with
new, unseen data points in the medical domain.
The proposed approach is evaluated on the medical
transcription dataset. We also showed how the risk-
aware ranking of the Labels could help prioritize
the treatment in a large-scale setting.
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