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Abstract

Internet Memes remain a challenging form
of user-generated content for automated senti-
ment classification. The availability of labelled
memes is a barrier to developing sentiment clas-
sifiers of multimodal memes. To address the
shortage of labelled memes, we propose to sup-
plement the training of a multimodal meme
classifier with unimodal (image-only and text-
only) data. In this work, we present a novel
variant of supervised intermediate training that
uses relatively abundant sentiment-labelled uni-
modal data. Our results show a statistically
significant performance improvement from the
incorporation of unimodal text data. Further-
more, we show that the training set of labelled
memes can be reduced by 40% without reduc-
ing the performance of the downstream model.

1 Introduction

As Internet Memes (or just “memes”) become in-
creasingly popular and commonplace across digital
communities worldwide, research interest to ex-
tend natural language classification tasks, such as
sentiment classification, hate speech detection, and
sarcasm detection, to these multimodal units of
expression has increased. However, state-of-the-
art multimodal meme sentiment classifiers signifi-
cantly underperform contemporary text sentiment
classifiers and image sentiment classifiers. Without
accurate and reliable methods to identify the senti-
ment of multimodal memes, social media sentiment
analysis methods must either ignore or inaccurately
infer opinions expressed via memes. As memes
continue to be a mainstay in online discourse, our
ability to infer the meaning they convey becomes
increasingly pertinent (Sharma et al., 2020; Mishra
et al., 2023).

Achieving similar levels of sentiment classifica-
tion performance on memes as on unimodal con-
tent remains a challenge. In addition to its multi-

modal nature, multimodal meme classifiers must
discern sentiment from culturally specific inputs
that comprise brief texts, cultural references, and vi-
sual symbolism (Nissenbaum and Shifman, 2017).
Although various approaches have been used to
extract information from each modality (text and
image) recent works have highlighted that meme
classifiers must also recognise the various forms
of interactions between these two modalities (Zhu,
2020; Shang et al., 2021; Hazman et al., 2023).

Current approaches to training meme classifiers
are dependent on datasets of labelled memes (Kiela
et al., 2020; Sharma et al., 2020; Suryawanshi
et al., 2020; Patwa et al., 2022; Mishra et al., 2023)
containing sufficient samples to train classifiers to
extract relevant features from each modality and
relevant cross-modal interactions. Relative to the
complexity of the task, the current availability of
labelled memes still poses a problem, as many cur-
rent works call for more data (Zhu, 2020; Kiela
et al., 2020; Sharma et al., 2022).

Worse still, memes are hard to label. The
complexity and culture dependence of memes
(Gal et al., 2016) cause the Subjective Perception
Problem (Sharma et al., 2020), where varying fa-
miliarity and emotional reaction to the contents
of a meme from each annotator causes different
ground-truth labels. Second, memes often con-
tain copyright-protected visual elements taken from
other popular media (Laineste and Voolaid, 2017),
raising concerns when publishing datasets. This
required Kiela et al. (2020) to manually reconstruct
each meme in their dataset using licenced images,
significantly increasing the annotation effort. Fur-
thermore, the visual elements that comprise a given
meme often emerge as a sudden trend that rapidly
spreads through online communities (Bauckhage,
2011; Shifman, 2014), quickly introducing new se-
mantically rich visual symbols into the common
meme parlance, which carried little meaning before
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(Segev et al., 2015). Taken together, these charac-
teristics make the labelling of memes particularly
challenging and costly.

In seeking more data-efficient methods to train
meme sentiment classifiers, our work attempts
to leverage the relatively abundant unimodal
sentiment-labelled data, i.e. sentiment analy-
sis datasets with image-only and text-only sam-
ples. We do so using Phang et al.’s (2019)
Supplementary Training on Intermediate Labeled-
data Tasks (STILT) which addresses the low per-
formance often encountered when finetuning pre-
trained text encoders to data-scarce Natural Lan-
guage Understanding (NLU) tasks. Phang et al.’s
STILT approach entails three steps:

1. Load pretrained weights into a classifier
model.

2. Finetune the model on a supervised learning
task for which data is easily available (the
intermediate task).

3. Finetune the model on a data-scarce task (the
target task) that is distinct to the intermediate
task.

STILT has been shown to improve the perfor-
mance of various models in a variety of text-only
target tasks (Poth et al., 2021; Wang et al., 2019).
Furthermore, Pruksachatkun et al. (2020) observed
that STILT is particularly effective in target tasks in
NLU with smaller datasets, e.g. WiC (Pilehvar and
Camacho-Collados, 2019) and BoolQ (Clark et al.,
2019). However, they also showed that the perfor-
mance benefits of this approach are inconsistent
and depend on choosing appropriate intermediate
tasks for any given target task. In some cases, in-
termediate training was found to be detrimental
to target task performance; which Pruksachatkun
et al. (2020) attributed to differences between the
required “syntactic and semantic skills” needed
for each intermediate and target task pair. However,
STILT has not yet been tested in a configuration in
which intermediate and target tasks have different
input modalities.

Although only considering the text or image of a
meme in isolation does not convey its entire mean-
ing (Kiela et al., 2020), we suspect that unimodal
sentiment data may help incorporate skills relevant
to discern the sentiment of memes. By propos-
ing a novel variant of STILT that uses unimodal
sentiment analysis data as an intermediate task in
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Figure 1: Training tasks in Baseline, Phang et al.’s
(2019) STILT, and our proposed Image-STILT and Text-
STILT approaches.

training a multimodal meme sentiment classifier,
we answer the following questions:

RQ1: Does supplementing the training of a mul-
timodal meme classifier with unimodal sentiment
data significantly improve its performance?

We separately tested our proposed approach with
image-only and text-only 3-class sentiment data
(creating Image-STILT and Text-STILT, respec-
tively) as illustrated in Figure 1). If either proves
effective, we additionally answer:

RQ2: With unimodal STILT, to what extent can
we reduce the amount of labelled memes whilst
preserving the performance of a meme sentiment
classifier?

2 Related Works

2.1 Meme Affective Classifiers

Meme sentiment classifiers fall within the broader
category of meme affective classifiers, which can
be defined as multimodal deep learning models
trained to classify memes by a given affect di-
mension, including sentiment polarity, offensive-
ness, motivationality, sarcasm (Sharma et al., 2020;
Patwa et al., 2022; Mishra et al., 2023), hate
speech (Kiela et al., 2020), and trolling behaviour
(Suryawanshi et al., 2020). Based on the majority
of state-of-the-art meme classifiers, the current lit-
erature suggests that these different tasks do not
require architecturally distinct solutions (Hazman
et al., 2023). Broadly, two general architectural
approaches exist among multimodal meme affec-
tive classifiers: first, multi-encoder models that use
multiple pretrained unimodal encoders which are
then fused prior to classification – numerous ex-
amples are summarised by Sharma et al. (2020)
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(a) Meme (b) Image (c) Text
(i) (ii) (iii) (i) (ii) (i) (ii)

Input
Image – –

Input
Text

they talk
about you
all the

time i know
thats why i
sent you

when the
boss asks
how youre
doing
halfway

through the
dinner rush

i hate when
some

website
asks me are
you human
no im mango

– –

I tried a
new place.
I can’t
wait to

return and
try more.

My wife was
disappointed.

Label Positive Neutral Negative Positive Negative Positive Negative

Table 1: Sample (a) multimodal memes (Ramamoorthy et al., 2022), (b) unimodal images (CrowdFlower, 2016),
and (c) unimodal text (Potts et al., 2021) from the datasets used. Unimodal images and texts of neutral sentiment
not pictured here.

and Patwa et al. (2022). These models use both a
text encoder and an image encoder that were each
trained in unimodal self-supervised and unsuper-
vised tasks such as BERT or SentenceTransformer
for text, and VGG-19 or RESNET50 for images.
In contrast, single-encoder models are based on a
pretrained multimodal vision-and-language model,
most often a transformer that has been pretrained
on multimodal tasks and accepts both modalities as
a single input. The single-encoder approach (Muen-
nighoff, 2020; Zhu, 2020) reuses models that have
been pretrained on multimodal tasks such as VL-
BERT, UNITER, ERNIE-ViL, DeVLBERT and
VisualBERT. There is little empirical evidence to
show that one architectural approach consistently
outperforms the other in the various meme classifi-
cation tasks.

Typically, both multi- and single-encoder archi-
tectures use transfer learning by finetuning pre-
trained models on a dataset of labelled memes.
While pretraining is often assumed to yield per-
formance benefits for meme classification tasks,
this has not been exhaustively proven, especially
when viewed relative to studies in image- and text-
only tasks (Jiang et al., 2022). Multimodally pre-
trained baseline models for the Hateful Memes
dataset (Kiela et al., 2020) outperformed their uni-
modally pretrained counterparts. Suryawanshi et al.
(2020) showed that the use of pretrained weights
did not consistently provide performance benefits
to their image-only classifiers of trolling behaviour
in Tamil code-mixed memes. Although the use
of pretrained encoders is common amongst meme
sentiment classifiers (Sharma et al., 2022; Bucur
et al., 2022; Pramanick et al., 2021a; Sharma et al.,
2020; Patwa et al., 2022), there is little evidence as

to whether pretrained representations are suitable
for the downstream task or if an encoder’s perfor-
mance in classifying unimodal input transfers to
classifying multimodal memes.

Beyond using pretrained image and text en-
coders, several recent works have attempted to
incorporate external knowledge into meme clas-
sifiers. Some employed additional encoders to aug-
ment the image modality representation such as
human faces (Zhu, 2020; Hazman et al., 2023),
while others have incorporated image attributes (in-
cluding entity recognition via a large knowledge
base) (Pramanick et al., 2021b), cross-modal po-
sitional information (Shang et al., 2021; Hazman
et al., 2023), social media interactions (Shang et al.,
2021), and image captioning (Blaier et al., 2021).
To our knowledge, no published attempts have been
made to directly incorporate unimodal sentiment
analysis data into a multimodal meme classifier.

2.2 Supplementary Training of Meme
Classifiers

Several recent works addressed the lack of labelled
multimodal memes by incorporating additional
non-meme data. Sharma et al. (2022) presents two
self-supervised representation learning approaches
to learn the “semantically rich cross-modal fea-
ture[s]” needed in various meme affective clas-
sification tasks. They finetuned an image and a
text encoder on image-with-caption tweets before
fitting these representations on to several multi-
modal meme classification tasks including senti-
ment, sarcasm, humour, offence, motivationality,
and hate speech. These approaches showed per-
formance improvement on some, but not all, tasks.
In some cases, their approach underperfomed in



497

comparison to the more typical supervised finetun-
ing approaches. Crucially, since the authors did
not compare their performance to that of the same
architecture without the self-supervised step, iso-
lating performance gains directly attributable to
this step is challenging. Furthermore, while the au-
thors reported multiple tasks where their approach
performed best while training on only 1% of the
available memes, their included training curves im-
ply that these performance figures were selected at
the point of maximum performance on the testing
set during training. This differs from the typical ap-
proach of early stopping based on performance on
a separately defined validation set, which hinders
direct comparisons to competing solutions.

Bucur et al. (2022) proposed a multitask learning
approach that simultaneously trained a classifier
on different meme classification tasks – sentiment,
sarcasm, humour, offence, motivationality – for
the same meme inputs. Their results showed that
multitask learning underperformed in the binary
detection of humour, sarcasm, and offensiveness.
This approach was found to be only effective in pre-
dicting the intensity of sarcasm and offensiveness
of a meme. However, in sentiment classification,
this multitask approach showed inconsistent results.
Although multitask learning did not improve the
performance of their text-only classifier, their mul-
titask multimodal classifier offers the best reported
results on the Memotion 2.0 sentiment classifica-
tion task to date.

To the best of our knowledge, only one previous
work used unimodal inputs to supplement train-
ing of multimodal meme classifiers. Suryawan-
shi et al.’s (2020) initial benchmarking of the
TamilMemes dataset showed that the inclusion of
unimodal images improved the performance of
their ResNet-based image-only model in detecting
trolling behaviour in Tamil memes. The authors
augmented their dataset of memes with images col-
lected from Flickr; by assigning these images as
not containing trolling language. They found that
this augmentation with 1,000 non-meme images
decreased the performance of their classifier. With
30,000 images, their classifier performed identi-
cally to one that only used pretrained weights and
supervised training on memes; both were outper-
formed by their model that did not use either pre-
trained weights or data augmentations.

Existing supplementary approaches to improve
meme classification performance have shown
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Figure 2: Our model architecture. Source: Adapted
from (Hazman et al., 2023).

mixed results. Notably, the observations made in
these works were measured only once and were
not accompanied by statistical significance tests,
necessitating caution when drawing conclusions on
their effectiveness.

3 Methodology

To address our research questions, we chose the
3-class sentiment polarity of multimodal memes as
our target task as defined by Ramamoorthy et al.
(2022) for our chosen dataset. Our experimental ap-
proach revolves around comparing the performance
of a multimodal classifier trained only on memes
(our Baseline) and those trained first on unimodal
image or text data (our Image-STILT and Text-
STILT models, respectively) before being trained
on memes. These models are architecturally identi-
cal to each other, all trained in the Memotion 2.0
training set and tested against the Memotion 2.0
testing set to isolate the effect of unimodal inter-
mediate training on meme sentiment classification
performance. The results of the performance of the
model are measured using the weighted F1-score,
as defined by the authors of the selected meme
dataset (Sharma et al., 2022). A detailed descrip-
tion of this metric is available in Appendix B.

3.1 Model Architecture
As this work does not seek to propose a new meme
classifier architecture, we heavily base our model
on one found in literature: the Baseline model
proposed by Hazman et al. (2023). Per this previ-
ous work, we also use the image and text encoders
from OpenAI CLIP (Radford et al., 2021) to rep-
resent each modality, respectively, and the same
modality fusion weighting mechanism they had
used. However, we added dropout and batch nor-
malisation after encoding each modality and the
fusion of these encodings, which were helpful in
preventing overfitting. Figure 2 illustrates our ar-
chitecture and a detailed description is presented in
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Appendix C.

3.2 Datasets
Multimodal Memes: This work uses sentiment-
labelled multimodal memes from the Memotion 2.0
(Ramamoorthy et al., 2022) benchmark dataset as
our target task. We did not use the earlier (Sharma
et al., 2020) and later (Mishra et al., 2023) itera-
tions of this dataset as the former did not provide a
validation set and the latter focused on code-mixed
languages. Each sample in this meme dataset com-
prises a meme collected from the web that was then
labelled by multiple annotators as conveying either
a Positive, Negative or Neutral sentiment. For each
meme sample, the dataset presents an image file
and a string of the text that was extracted using
OCR with manual validation.

To assess the effectiveness of our approach on
various amounts of labelled memes available for
training, that is, to answer RQ2, we defined frac-
tional training datasets by randomly sampling the
memes training set at the following fractions: 5, 10,
20, 30, 40, 50, 60, 70, and 80%. For each random
restart, we repeat this sampling to account for vari-
ance in model performance attributable to training
data selection. Where matched pairs are needed for
hypothesis testing (see Section 3.4.RQ2 below), we
do not resample between training Baseline, Image-
STILT and Text-STILT models. To prevent the
models from converging into a model that predicts
only the most prevalent class in the training set, we
balance the classes in these fractional datasets by
applying weights inverse of the class distribution
during sampling without replacement.

Unimodal Images and Texts: For unimodal in-
termediate training, we used two unimodal datasets:
Crowdflower (CrowdFlower, 2016) for unimodal
images, and DynaSent (Potts et al., 2021) for uni-
modal text. Both datasets comprise crowdsourced
samples collected from social networking sites,

Dataset Samples
Pos Neu Neg Total

Memotion 2.0
Train 1,517 584 172 7,000
Val 325 975 200 1,500
Test 78 971 451 1,500

Crowdflower 5,313 1,259 1,227 7,799
DynaSent 6,038 5,782 4,579 16,399

Table 2: Meme, Image and Text sample counts in the
Memotion 2.0 (Ramamoorthy et al., 2022), Crowd-
flower (CrowdFlower, 2016), DynaSent (Potts et al.,
2021), respectively.

and both contain crowd-annotated 3-class senti-
ment labels1. We included all images from the
CrowdFlower dataset that we were able to fetch via
the provided URLs; not all samples were retriev-
able. The summaries of, and examples from, these
datasets are presented in Tables 2 and 1, respec-
tively.

3.3 Training

Baseline: For each run, the model is initialised by
loading pretrained weights for the encoders and ran-
domly initialising the weights in the fusion mech-
anism. For our Baseline approach, the model is
trained on the Memotion 2.0 training set, with early
stopping at the point of minimum loss on the vali-
dation set, and evaluated against the testing set. We
maintain the dataset splits defined by Ramamoor-
thy et al. (2022).

Unimodal STILTs – Image-STILT and Text-
STILT: In our proposed approaches, the initial-
isation of the model is the same as for Baseline
and is followed by training the model on a selected
unimodal dataset while freezing the encoder of the
other modality, that is, the text encoder is frozen
while training on unimodal images in Image-STILT
and vice versa. Unimodal training ends with early
stopping based on the model’s performance on the
Memotion 2.0 validation set. This model is then
trained and tested on the Memotion 2.0 training
and testing sets, respectively, as was done in the
Baseline approach. Hyperparameters used when
training on the Memotion 2.0 dataset are kept con-
stant across all models (see Appendix A).

3.4 Experimental Approach

RQ1: To establish whether Image-STILT or
Text-STILT offers a statistically significant perfor-
mance improvement over Baseline, we employ the
Wilcoxon Signed-Rank test. The null hypothesis
in each case is that there is no significant perfor-
mance difference between our Baseline approach
and Image-STILT or Text-STILT, respectively. We
ran 10 random-restarts for each approach: Baseline,
Image-STILT, and Text-STILT. All models were
trained on all memes from the Memotion 2.0 (Ra-
mamoorthy et al., 2022) training set. Separate tests
were conducted for (1) Baseline vs. Image-STILT
and (2) Baseline vs. Text-STILT; resulting in a total
of 10 pairs each for hypothesis testing.

1CrowdFlower’s Highly Negative and Highly
Positive are treated as Negative and Positive.
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Image Meme
(a) (b) (c) (d)

Sentiment Positive Negative Positive Negative

Table 3: Example unimodal images and multimodal memes showing distinct visual symbols.

RQ2: To characterise the performance bene-
fits of Image-STILT or Text-STILT with limited
availability of labelled memes, we train Baseline,
Image-STILT and Text-STILT on varying amounts
of training memes. For each approach and at each
of the training set sizes, we ran five random-restarts,
resulting in 45 observations for each Baseline vs.
Image-STILT and Baseline vs. Text-STILT, sepa-
rately. For each random restart, we resample the
training set, we define a matched pair (as required
by Wilcoxon Signed-Rank test assumptions) as the
performance of two models having been trained on
the same set of memes. We performed a Wilcoxon
Signed-Rank test across the entire range of labelled
meme availability, but separately for Baseline vs.
Image-STILT and Baseline vs. Text-STILT.

4 Results

4.1 RQ1: Performance Improvement

Text-STILT was found to outperform Baseline, at
a level of statistical significance. Figure 3 and Ta-
ble 4 show the performance distribution of each
approach, with 10 random restarts each. The
Wilcoxon Signed-Rank test resulted in p-values
of 0.193 and 0.0273 for Baseline vs. Image-STILT
and Baseline vs. Text-STILT, respectively.

To our knowledge, Text-STILT is the first ap-

Approach F1 Prec Rec p-value
vs. Baseline

Baseline 51.19
(0.00393)

54.86
(0.0112)

56.37
(0.00662) -

Image-STILT 51.45
(0.00485)

54.96
(0.0149)

58.78
(0.0142) 0.193

Text-STILT 51.78
(0.00659)

56.58
(0.0131)

57.66
(0.00950) 0.0273

Table 4: Mean of Weighted F1-score, Precision and
Recall and their standard deviation (in parantheses) for
Baseline, Image-STILT & Text-STILT, across 10 runs
each.

Figure 3: Performance of the Baseline, Image-STILT,
and Text-STILT. Box-plots indicate the 2nd - 3rd quar-
tile range and indicates mean performance.

proach to successfully incorporate supplementary
unimodal data into the training of multimodal
meme classifiers showing a statistically significant
performance improvement. However, our results
do not indicate why Text-STILT was effective. We
posit that while each meme’s semantics rely on
both the image and text modalities, memes that
contain longer texts and/or a textual structure that
hints at the meme’s overall sentiment are more ac-
curately classified by Text-STILT (see examples in
Table 5). Consider the meme in Table 5(b): While
the negative component is represented visually, that
is, the bottom image segment, the structure of
the text “what people think... what
it really is like...” strongly suggests
a negative inversion of something normally consid-
ered to be positive. Thus, its negative sentiment
could be inferred largely from text alone. More
rigorous investigation of the relationship between
text and meme sentiment analysis is warranted.

Although Text-STILT significantly outper-
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Figure 4: Baseline, Image-STILT, and Text-STILT performance across varying amount of memes available; 5
random restarts each.

formed Baseline, Image-STILT did not. Although
Image-STILT shows higher mean, maximum, and
minimum performance than Baseline, the distri-
bution (see the violin plot in Figure 3) indicates
that the two performed similarly. This could be
attributed to the distinct role of visual symbols in
memes, which derive their meaning from popular
usage rather than literal connotations. Consider the
memes in Table 3, each made using highly popu-
lar meme templates: Success Kid 2 and Bad Luck
Brian 3, respectively. These have come to symbol-
ise specific meanings through online usage, which
is distinct from what is literally shown. In the
case of Bad Luck Brian, see Table 3(d), a teenage
boy smiling in a portrait does not inherently con-
vey tragedy, or misfortune, but this connotation
stemmed from the template’s usage in online dis-
course.

In contrast, the unimodal images in Table 3 show
a visual language that is less culturally specific,
i.e. a serene beach has positive connotations and
a disfigured zombie-esque head conveys negative
ones. The cultural specificity of visual symbols in
memes likely contributed to Image-STILT’s lack of
significant performance improvement. These may
explain similar observations by Suryawanshi et al.
(2020), as discussed in Section 2.2, and would sug-
gest that the transfer of visual sentiment skills from
unimodal images to multimodal meme classifiers
may be inherently limited.

2https://knowyourmeme.com/memes/
success-kid-i-hate-sandcastles. Accessed: 11
Jun 2023.

3https://knowyourmeme.com/memes/
bad-luck-brian. Accessed: 11 Jun 2023.

4.2 RQ2: Limited Labelled Memes

We found that Text-STILT significantly improves
performance over Baseline across varying amounts
of labelled meme availability between 50% and
80% (shown in Figure 4b). Within this range, while
both intermediate training approaches consistently
showed higher mean performance than Baseline,
only Text-STILT showed a significant performance
improvement and Image-STILT did not; p-values
were 0.000109 for Baseline vs. Text-STILT and
0.0723 for Baseline vs. Image-STILT, respectively.

Based on these measurements, we found that
Text-STILT was still able to outperform Baseline
while using only 60% of the available labelled
memes. Figure 5 shows the performance distri-
bution of Baseline with 100% memes available and
Text-STILT with 50% and 60% memes available.

We also noted that neither Image-STILT nor
Text-STILT was found to significantly improve per-

(a) (b)

Sentiment Negative Negative
Predicted
– Baseline Positive Neutral
– Text-STILT Negative Negative

Table 5: Example memes which were correctly labelled
by Text-STILT but not by Baseline.

https://knowyourmeme.com/memes/success-kid-i-hate-sandcastles
https://knowyourmeme.com/memes/success-kid-i-hate-sandcastles
https://knowyourmeme.com/memes/bad-luck-brian
https://knowyourmeme.com/memes/bad-luck-brian
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Figure 5: Performance of Baseline trained on 100%
of memes available and Text-STILT trained on [50%,
60%] of memes available.

formance over Baseline across the entire range of
availability of labelled memes from 5% to 80%.
Figure 4 shows the mean performance and stan-
dard deviation of Baseline, Image-STILT, and Text-
STILT across this range. When hypothesis testing
is applied across the entire range, neither Image-
STILT nor Text-STILT showed statistically signifi-
cant improvements over Baseline, with p-values of
0.667 and 0.985, respectively.

Although Text-STILT performed better than
Baseline, the difference is small. Contemporary
approaches show similar small differences in per-
formance (see Appendix D). Furthermore, 41% of
memes in the testing set were not correctly clas-
sified by either Text-STILT and Baseline (see Ap-
pendix E). This suggests that a significant portion
of memes remain a challenge to classify. This
challenge might be addressed by combining Text-
STILT with other supplementary training steps.

5 Limitations and Future Works

To generate comparable results between Baseline
and Text-STILT, we kept many hyperparameters
constant. Additional work would be required to
determine the maximum achievable performance
of Text-STILT on the chosen task.

Despite the efficacy of Text-STILT over Image-
STILT, these results do not suggest that only the
text modality is significant in classifying multi-
modal memes. Previous works have performed
modality ablation studies in this problem space (Bu-
cur et al., 2022; Pramanick et al., 2021b; Keswani
et al., 2020) with multimodal architectures remain-

ing the apparent state of the practise. All models in
this work are similarly multimodal. In the future,
we plan to reformulate Image-STILT with respect
to the approach and data used to isolate the cause
of its non-performance on the downstream task.
Furthermore, we did not test Text-STILT on classi-
fiers that represent the image modality of a meme
in textual forms, as others did (Singh et al., 2022;
Pramanick et al., 2021b).

Notwithstanding our results, Text-STILT may
not benefit all multimodal meme classifiers. Phang
et al. (2019) showed that STILT offers varying de-
grees of benefit depending on the encoders chosen.
Future work is needed to verify if these observa-
tions hold across the wide range of pretrained en-
coders commonly used in meme classifiers. In par-
ticular, some modifications to unimodal STILTs are
needed to be applied to single-stream multimodal
encoders, as those used in other works.

Furthermore, Pruksachatkun et al. (2020)
showed that intermediate training benefits various
text-only tasks differently. We have yet to identify
other meme classification tasks that would benefit
from unimodal STILTs. Thus, we plan to conduct
more extensive experimentation to validate the ef-
fectiveness of Text-STILT on other meme classifi-
cation tasks, e.g. pairing hate-speech detection in
text (Toraman et al., 2022) as an intermediate task
for hateful meme detection (Kiela et al., 2020).

6 Conclusion

In this work, we addressed the challenge of training
multimodal meme sentiment classifiers on a lim-
ited number of labelled memes by incorporating
unimodal sentiment analysis data. We did so by
proposing the first instance of STILT that applies
unimodal intermediate tasks to a multimodal tar-
get task. Specifically, we tested image-only and
text-only sentiment classification as intermediate
tasks in training a meme sentiment classifier. We
showed that this approach worked – unimodal text
improved meme classification performance to a sta-
tistically significant degree. This novel approach al-
lowed us to train a meme classifier that outperforms
meme-only finetuning with only 60% as many la-
belled meme samples. As possible explanations
for our observations, we discuss apparent similari-
ties and differences in the roles of image and text
modalities between unimodal and multimodal sen-
timent analysis tasks.
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A Hyperparameters and Settings

Input
Memes Unimodal

LR Scheduling Cosine Annealing
Loss Negative Log-Likelihood

Learning Rate
1.5e−5 to
5e−5

5e−6 to
1e−5

Max Epochs 40 60
Optimizer AdamW
Betas [0.5 , 0.9]
Weight Decay 0.9
AMSGrad False
Dropout Rate 0.2

Early-Stopping
(per Meme Validation set) Min Loss

Max Wei.
F1

Table 6: Hyperparameter values and settings used dur-
ing model training by input type.

B Metric: Weighted F1-Score

The performance of our models are measured
by Weighted F1-Score, inline with the reporting
set by the authors of the Memotion 2.0 dataset
(Patwa et al., 2022). The F1-Score is the har-
monic mean of precision and recall, equally rep-
resenting both. “Weighted” here denotes that the
F1-score is first computed per-class and then av-
eraged while weighted by the proportion of oc-
currences of each class in the ground truth labels.
We compute this using PyTorch’s implementation
multiclass f1 score. Class-wise F1-scores,
F1c where c ∈ [1, 2, 3], are computed as:

precisionc =
TPc

TPc + FPc

recallc =
TPc

TPc + FNc

F1c = 2× (precisionc × recallc)

(precisionc + recallc)

(1)

Where TPc, FPc, FNc are the count of true pos-
itives, false positives and false negatives, respec-
tively. The Weighted F1-score is computed as the
weighted average of F1c:

wc =
Nc∑C
c=0Nc

F1 =

∑C
c=0wcF1c

C

(2)

Where Nc is the number of samples with the ground
truth label c in the testing set. The Weighted F1 is
often used when the classes are imbalanced – the
training, validation and testing sets of Memotion
2.0 show significant and varying class imblance
– as it takes into account the relative importance
of each class. Note that this weighted averaging
could result in an F1-score that is not between the
Precision and Recall scores.

C Architectural Details

Our models are based on the Baseline model pro-
posed by Hazman et al. (2023) and we similarly
utilise the Image and Text Encoders from the pre-
trained ViT–B/16 CLIP model to generate repre-
sentations of each modality.

FI = ImageEncoder(Image)

FT = TextEncoder(Text)
(3)

Where each FI and FT is a 512-digit embedding
of the image and text modalities, respectively, from
CLIP’s embedding space that aligns images with
their corresponding text captions (Radford et al.,
2021).

For unimodal inputs, the encoder for the missing
modality is fed a blank input, i.e. when finetuning
on unimodal images, the text input is defined as a
string containing no characters i.e. “”:

FI = ImageEncoder(Image)

FT = TextEncoder(“”)
(4)

Conversely, when finetuning on unimodal texts, the
image input is defined as a 3× 224× 224 matrix
of zeros, or equivalently, JPEG file with all pixels
set to black.

FI = ImageEncoder(O3×224×224)

FT = TextEncoder(Text)
(5)

For each modality, we added dropout and nor-
malisation:

fI = Norm(Dropout(FI))

fT = Norm(Dropout(FT ))
(6)

where Norm() is PyTorch’s BatchNorm1D and
Dropout has a rate of 0.2. These modality repre-
sentations fI and fT are then placed into an atten-
tive fusion mechanism proposed by Gu et al. (2018)
and used by Pramanick et al. (2021a; 2021b) and
Hazman et al. (2023). The embedding representa-
tion for each modality is passed through four dense
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layers of reducing sizes [256, 64, 8, 1], Densei and
Denset for the image and text modalities, respec-
tively. Then, softmax is applied on the output of
each stack is to generate a weighted score for each
modality. Per (Gu et al., 2018):

Di = Densei(fI)

Dt = Denset(fT )

[si, st] = softmax(Wf [Di, Dt] + bf )

Si = (1 + si)

St = (1 + st)

FMM = tanh(Wr[Si(fI), St(fT )] + br)

(7)

We added a dropout and normalisation step onto
the fused multimodal representation, FMM :

fMM = Norm(Dropout(FMM )) (8)

The predicted logits of each class is given by
passing fMM a dense network of GeLU-activated
layers with sizes [1024, 256,3]:

XMM = tanh(Wmm(Wx(fMM ) + bx) + bmm)

logits = Wl(XMM ) + bl
(9)

The model is fitted by minimising the mean mul-
ticlass Cross Entropy Loss per PyTorch’s defini-
tion:

ln = −wyn log
exp(xn,yn)∑C
i=1 exp(xn,c)

ẏn

L =

N∑
n=1

1∑N
n=1wyn

ln

(10)

Where xn,yn is the logits for each class and yn is the
target label of a given sample n of total N samples
in a minibatch; c is the class in [Negative, Neutral
and Positive] and C is the number of classes. The
loss for each sample is weighted by:

wyn = 1− Nyn∑C
yn=0Nyn

(11)

Where N0, N1, N2 are the number of training
samples labelled with Negative, Neutral and Posi-
tive sentiment, respectively.

D Performance Benchmarking

Current competing approaches show a small spread
of Weigthed F1-scores (see Table 7) and the per-
formance improvement offered by Text-STILT is
similarly small. This small range of performances
in contemporary approaches suggests that there is
still a significant portion of memes that remain a
challenge to classify.

Solution Weighted F1 (%)
Bucur et al. (2022) 53.18
Text-STILT w/ 60% (Max) 53.15
Duan and Zhu (2022) 52.55
Text-STILT w/ 60% (Mean) 52.45
Our Baseline (Max) 51.70
Our Baseline (Mean) 51.19
Zhuang and Zhang (2022) 50.88
Phan et al. (2022) 50.81
Greeny (via Patwa et al., 2022) 50.37
Hazman et al. (2023) 50.35
Lee and Shen (2022) 50.25
Nguyen et al. (2022) 49.95

Table 7: The mean and maximum Weighted F1-scores
from our Baseline and Text-STILT approaches against
various SOTA solutions.

E Contingency Table: Baseline vs.
Text-STILT

Baseline
Correct Wrong

Text-
STILT

Correct 610 146
Wrong 136 608

Table 8: Contingency Table between similarly perform-
ing Text-STILT (trained with 60% memes) and Baseline
(trained with 100% memes).

Table 8 shows the contingency table – as one
would prepare for a McNemar’s Test between two
classifiers (McNemar, 1947) – between the model
trained with Text-STILT on 60% Memes and Base-
line trained on 100% Memes available which had
the most similar performance. While the two mod-
els performed similarly in terms of Weighted F1-
scores, Text-STILT correctly classified a notable
number of memes that Baseline did not and vice
versa. Examples of such memes are discussed in
Section 4.1. Furthermore, approximately 40% of
memes in the testing set were incorrectly classified
by both models. This suggests that these memes
convey sentiment in a way that cannot be reliably
predicted by either approach.


