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Abstract

Detecting the user’s intent and finding the corre-
sponding slots among the utterance’s words are
important tasks in natural language understand-
ing. Their interconnected nature makes their
joint modeling a standard part of training such
models. Moreover, data scarceness and special-
ized vocabularies pose additional challenges.
Recently, the advances in pre-trained language
models, namely contextualized models such
as ELMo and BERT have revolutionized the
field by tapping the potential of training very
large models with just a few steps of fine-tuning
on a task-specific dataset. Here, we leverage
such models, and we design a novel architec-
ture on top of them. Moreover, we propose
an intent pooling attention mechanism, and we
reinforce the slot filling task by fusing intent
distributions, word features, and token repre-
sentations. The experimental results on stan-
dard datasets show that our model outperforms
both the current non-BERT state of the art as
well as stronger BERT-based baselines.

1 Introduction

With the proliferation of portable devices, smart
speakers, and the evolution of personal assistants,
such as Amazon Alexa, Apple Siri, Google Assis-
tant, a need for better natural language understand-
ing (NLU) has emerged. Moreover, many Web
platforms and applications that interact with the
users depend on the abilities of an internal NLU
component, e.g., customer service with social me-
dia (Huang et al., 2021), in dialogue systems in
general (Zeng et al., 2021), for web queries under-
standing (Tsur et al., 2016; Ye et al., 2016), and
general understanding of natural language interac-
tion (Vedula et al., 2020). The major challenges
such systems face are (i) finding the intention be-
hind the user’s request, and (ii) gathering the nec-
essary information to complete it via slot filling,
while (iii) engaging in a dialogue with the user.

Intent PlayMusic

Words play music from by justin broadrick

4 4 4 1
Slots O (0] (@) O B-artist I-artist

Table 1: Example from the SNIPS dataset with slots
encoded in the BIO format. The utterance’s intent is
PlayMusic, and the given slots are year and artist.

Table 1 shows a user request collected from a per-
sonal voice assistant. Here, the intent is to play
music by the artist Justin Broadrick from year 2005.
The slot filling task naturally arises as a sequence
tagging task. Conventional neural network archi-
tectures, such as RNNs or CNNs are appealing
approaches to tackle this problem. Various exten-
sions thereof can be found in previous work (Xu
and Sarikaya, 2013a; Goo et al., 2018; Hakkani-
Tiir et al., 2016; Liu and Lane, 2016; E et al., 2019;
Gangadharaiah and Narayanaswamy, 2019). More-
over, sequence tagging approaches such as Maxi-
mum Entropy Markov model (MEMM) (Toutanvoa
and Manning, 2000; McCallum et al., 2000) and
Conditional Random Fields (CRF) (Lafferty et al.,
2001; Jeong and Lee, 2008; Huang et al., 2015)
have been added on top to enforce better modeling
of the dependencies between the posteriors for the
slot filling task. Recent work has introduced other
methods such as hierarchical structured capsule
networks (Xia et al., 2018; Zhang et al., 2019), and
graph interactive networks (Qin et al., 2020).

In this work, we investigate the usefulness of
pre-trained models for the Natural Language Un-
derstanding (NLU). Our approach is based on
BERT (Devlin et al., 2019) and its successor
RoBERTa (Liu et al., 2019). That model offer two
main advantages over previous ones (Hakkani-Tiir
et al., 2016; Xu and Sarikaya, 2013a; Goo et al.,
2018; Gangadharaiah and Narayanaswamy, 2019;
Liu and Lane, 2016; E et al., 2019): (i) they are
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Figure 1: Model architectures for joint learning of intent and slot filling: (a) classical joint learning with
BERT/RoBERTa, and (b) proposed enhanced version of the model.

based on the Transformer architecture (Vaswani
et al.,, 2017), which allows them to use bi-
directional context when encoding the tokens in-
stead of left-to-right (as in RNNs) or limited win-
dows (as in CNNs), and (ii) the model is trained
on huge unlabeled text collections, which allows
it to leverage relations learned during pre-training,
e.g., that Justin Broadrick is connected to music or
that San Francisco is a city.

We further adapt the pre-trained models for the
NLU tasks. For the intent, we introduce a pooling
attention layer, which uses a weighted sum of the
token representations from the last language mod-
elling layer. Moreover, we reinforce the slot repre-
sentation with the predicted intent distribution, and
word features such as predicted word casing, and
named entities. To demonstrate its effectiveness,
we evaluate it on two publicly available datasets:
ATIS (Hemphill et al., 1990) and SNIPS (Coucke
etal., 2018).

Our contributions can be summarized as follows:

* We enrich a pre-trained language model, such
as BERT or RoBERTa, to jointly solve the
tasks of intent classification and slot filling.

* We introduce an additional pooling network
from the intent classification task, allowing
the model to obtain the hidden representation
from the entire sequence.

* We use the predicted user intent as an explicit
guide for the slot filling layer rather than just
depending on the language model

* We reinforce the slot learning with features
such as named entity and true casing.
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* We present exhaustive analysis of the task-
related knowledge in the pre-trained model,
for both datasets.

2 Transformer-NLU

We propose a joint approach for intent classifica-
tion and slot filling built on top of a pre-trained lan-
guage model. We further improve the base model
in three ways: (i) for intent detection, we obtain a
pooled representation from the last hidden states for
all tokens (Section 2.1), (if) we obtain predictions
for the word case and named entities for each to-
ken (word features), and (iii) we feed the predicted
intent distribution vector, BERT’s last hidden rep-
resentations, and word features into a slot filling
layer (see Section 2.2). The complete architecture
of the model is shown in Figure 1b.

2.1 Intent Pooling Attention

Here, the task is to jointly learn the two strongly
correlated tasks, i.e., intent detection and slot filling.
Hereby, using the pooled representation from the
[CLS] token can miss important information about
the slots’ tags when used as an input for predicting
the users’ intent. We hypothesise that using the
token-level representation obtained from the last
layer before the slot projection one can help the
model in learning the intent detection task, as these
representations contain important task-specific in-
formation.

Therefore, we introduce a pooling attention layer
to better model the relationship between the task-
specific representations for each token and for the
intent. We further adopt a global concat atten-
tion (Luong et al., 2015) as a throughput mech-
anism. Namely, we learn an alignment function to



predict the attention weights «;,,; for each token.
We obtain the latter by multiplying the outputs from
the language model H € R™V*? by a latent weight
matrix Wiy . € R4 where N is the number
of tokens in an example and dj, is the hidden size of
the Transformer. This is followed by a non-linear
tanh activation. In order to obtain importance logit
for each token, we multiply the latter by a projec-
tion vector v € R% (shown in Eq. 1). We further
normalize and scale (Vaswani et al., 2017) to obtain
the attention weights.

v-tanh(Wipee - HT)
Vdy

N
hint = tanh(z aénthfinc) (2)
i=1

Yint = Wintht, +bine  (3)

) (D)

Qint = softmax(

Finally, we gather a hidden representation h;,; as
a weighted sum of all attention inputs, and we pass
it through a tanh activation (see Eq. 2). For the
final prediction, we use a linear projection on top
of hin:. We apply dropouts on h;y;, and on the
attention weights (Vaswani et al., 2017).

2.2 Slots Modeling

The task of slot filling is closely related to tasks
such as part-of-speech (POS) tagging and named
entity recognition (NER). Also, it can benefit from
knowing the interesting entities in the text. There-
fore, we reinforce the slot filling with tags found by
a named entity recognizer (word features). Next,
we combine the intent prediction, the language
model’s hidden representations, and some extracted
word features into a single vector used for token
slot attribution. Details about all components are
discussed below.

Word Features A major shortcoming of having
free-form text as an input is that it tends not to
follow basic grammatical principles or style rules.
The casing of words can also guide the models
while filling the slots, i.e., upper-case words can
refer to names or to abbreviations. Also, knowing
the proper casing enabled the use of external NERs
or other tools that depend on the text quality.

As a first step, we improve the text casing us-
ing a TrueCase model from CoreNLP. The model
maps the words into the following classes: UP-
PER, LOWER, INIT_UPPER, and O, where O is
for mixed-case words such as McVey. With the text

re-cased, we further extract the named entities with
a NER annotator. Named entities are recognized
using a combination of three CRF sequence tag-
gers trained on various corpora. Numerical entities
are recognized using a rule-based system. Both
the truecaser and the NER model are part of the
Stanford CoreNLP toolkit (Manning et al., 2014).

Finally, we merge some entities ((job) title, ideol-
ogy, criminal charge) into a special category other
as they do not correlate directly to the domains of
either dataset. Moreover, we add a custom regex-
matching entry for airport_code, which are three-
letter abbreviations of the airports. The latter is
specially designed for the ATIS (Tur et al., 2010)
dataset. While, marking the proper terms, some
of the codes introduce noise, e.g., the proposition
for could be marked as an airport_code because
of FOR (Aeroporto Internacional Pinto Martins,
Fortaleza, CE, Brazil). In order to mitigate this
effect, we do a lookup in a dictionary of English
words, and if a match is found, we trigger the O
class for the token.

In order to allow the network to learn better fea-
ture representations for the named entities and the
casing, we pass them through a two-layer feed-
forward network. The first layer is shown in Eq. 5
followed by a non-linear PReLLU activation, where
W, € R23%32_ The second one is a linear projec-
tion fyoras (Eq. 6), where Wp,.; € R32%32,

= Wyners; cases] + by, (4)

Sw

h:, = max(0,s.) + a*min(0,st,) (5)

;T
Jwords(ners, cases) = Wyroiht,™ + bproj  (6)

Sub-word Alignment Modern NLP approaches
suggest the use of sub-word units (Sennrich et al.,
2016; Kudo and Richardson, 2018), which mitigate
the effects of rare words, while preserving the effi-
ciency of a full-word model. Although they are a
flexible framework for tokenization, sub-word units
require additional bookkeeping for the models in
order to maintain the original alignment between
words and their labels.

We first split the sentences into the original word-
tag pairs, we then disassemble each one into word
pieces (or BPE, in the case of RoBERTa). Next,
the original slot tag is assigned to the first word
piece, while each subsequent one is marked with
a special tag (X). Still, the word features from the
original token are copied to each unit. To align
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the predicted labels with the input tags, we keep a
binary vector for the active positions.

Slot Filling as Token Classification As in Devlin
et al. (2019), we treat the slot filling as token clas-
sification, and we apply a shared layer on top of
each token’s representations to predict the tags.

Furthermore, we assemble the feature vector for
the i slot by concatenating together the predicted
intent probabilities, the word features, and the con-
textual representation from the language model.
Afterwards, we add a dropout followed by a linear
projection to the proper number of slots:

yé = WS[SOftma’x(y’int); fqi;o'r‘ds; hZLM] + bS (7)

2.3 Interaction and Learning

To train the model, we use a joint loss function
L oint for the intent and for the slots. For both
tasks, we apply cross-entropy over a softmax ac-
tivation layer, except in the case of CRF tagging.
In those experiments, the slot loss Lg,; will be the
negative log-likelihood (NLL) loss. Moreover, we
introduce a new hyper-parameter +y to balance the
objectives of the two tasks. Finally, we propagate
the loss from all the non-masked positions in the se-
quence, including word pieces, and special tokens
([CLS], <s>, etc.). Note that we do not freeze any
weights during fine-tuning.

3 Experimental Setup

Dataset In our experiments, we use two pub-
licly available datasets, the Airline Travel Infor-
mation System (ATIS) (Hemphill et al., 1990), and
SNIPS (Coucke et al., 2018). The ATIS dataset
contains transcripts from audio recordings of flight
information requests, while the SNIPS dataset is
gathered by a custom intent engine for personal
voice assistants. Albeit both are widely used in
NLU benchmarks, ATIS is substantially smaller
— almost three times in terms of examples, and it
contains fifteen times less words. However, it has
a richer set of labels, 21 intents and 120 slot cat-
egories, as opposed to the 7 intents and 72 slots
in SNIPS. Another key difference is the diversity
of domains — ATIS has only utterances from the
flight domain, while SNIPS covers various subjects,
including entertainment, restaurant reservations,
weather forecasts, etc. (see Table 2) Furthermore,
ATIS allows multiple intent labels. As they only
form about 2% of the data, we do not extend our
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| ATIS | SNIPS
Vocab Size 722 11,241
Average Sentence Length | 11.28 | 9.05
#Intents 21 7
#Slots 120 72
#Training Samples 4,478 | 13,084
#Dev Samples 500 700
#Test Samples 893 700

Table 2: Statistics about the ATIS and SNIPS datasets.

model to multi-label classification. Yet, we add a
new intent category for combinations seen in the
training dataset, e.g., utterance with intents flight
and also airfare, would be marked as airfare#flight.
A comparison between the two datasets is shown
in Table 2.

Measures We evaluate our models with three
well-established evaluation metrics. The intent de-
tection performance is measured in terms of ac-
curacy. For the slot filling task, we use F1-score.
Finally, the joint model is evaluated using sentence-
level accuracy, i.e., proportion of examples in the
corpus, whose intent and slots are both correctly
predicted. Here, we must note that during evalua-
tion we consider only the predictions for aligned
words (we omit special tokens, e.g., [CLS], [SEP],
<s>, </s>) and word pieces).

Baselines For our baseline models, we use
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), which we fine-tune. Details about the
state-of-the-art model are shown in Appendix A.2.
The model’s architecture is shown in Figure 1a.

* BERT For training the model, we follow the
fine-tuning procedure proposed by Devlin et al.
(2019). We train a linear layer over the pooled
representation of the special [CLS] token to pre-
dict the utterance’s intent. The latter is optimized
during pre-training using the next sentence pre-
diction (NSP) loss to encode the whole sentence.
Moreover, we add a shared layer on top of the
last hidden representations of the tokens in order
to obtain a slot prediction. Both objectives are
optimized using a cross-entropy loss.

* RoBERTa This model follows the same training
procedure as BERT, but drops the NSP task dur-
ing pre-training. Still, the intent loss is attached
to the special start token <s>.



\ ATIS SNIPS
Model ‘Intent (Acc) Sent. (Acc) Slot (F1) Intent (Acc) Sent. (Acc) Slot (F1)
Joint Seq. (Hakkani-Tiir et al., 2016) 92.60 80.70 94.30 96.90 73.20 87.30
Atten.-Based (Liu and Lane, 2016) 91.10 78.90 94.20 96.70 74.10 87.80
Sloted-Gated (Goo et al., 2018) 95.41 83.73 95.42 96.86 76.43 89.27
Capsule-NLU (Zhang et al., 2019) 95.00 83.40 95.20 97.30 80.90 91.80
Interrelated SF-First (E et al., 2019) 97.76 86.79 95.75 97.43 80.57 91.43
Interrelated ID-First (E et al., 2019) 97.09 86.90 95.80 97.29 80.43 92.23
Stack-Propagation (Qin et al., 2019) 96.9 86.5 95.9 98.0 86.9 94.2
AGIF (Qin et al., 2020) 97.1 87.2 96.0 98.1 87.3 94.8
BERT-Joint 97.42 87.57 95.74 98.71 91.57 96.27
RoBERTa-Joint 97.42 87.23 95.32 98.71 90.71 95.85
Transformer-NLU:BERT 97.87 88.69 96.25 98.86 91.86 96.57
Transformer-NLU:RoBERTa 97.76 87.91 95.65 98.86 92.14 96.35
Transformer-NLU:BERT w/o Slot Features 97.87 88.35 95.97 98.86 91.57 96.25
Transformer-NLU:BERT w/ CRF 97.42 88.26 96.14 98.57 92.00 96.54

Table 3: Intent detection and slot filling results on the SNIPS and the ATIS datasets. The best results in each category
are in bold. Our models are in italic; the non-italic models on top come from the literature. Qin et al. (2019, 2020)

report single-precision results.

4 Experiments and Analysis

Evaluation Results Table 3 presents quantitative
evaluation results in terms of (i) intent accuracy,
(if) sentence accuracy, and (iii) slot F1.The first
part of the tables refers to previous work, whereas
the second part presents our experiments and is
separated with a double horizontal line.

While models become more accurate, the abso-
lute difference between two experiments becomes
smaller and smaller, thus a better measurement is
needed. Hereby, we introduce a fine-grained mea-
sure, i.e., Relative Error Reduction (RER) percent-
age, which is defined as the proportion of absolute
error reduced by a model, compared to modely,.

Errormoder,

RER=1- (8)

Errormode,

Table 4 shows the error reduction by our model
compared to the current SOTA (see Appx. A.2), and
to a BERT-based baselines (see Section 3). Since
there is no single best model from the SOTA, we
take the per-column maximum among all, albeit
they are not achieved in a single run. For the ATIS
dataset, we see a reduction of 11.64% (1.49 points
absolute) for sentence accuracy, and 6.25% (0.25
points absolute) for slot F1, but just 4.91% for in-
tent accuracy (see Table 3). Such a small gain can
be both due to the quality of the dataset and to its
size. For the SNIPS dataset, we see major increase
in all metrics and more than 35% error reduction.

In absolute terms, we have 0.76 for intent, 4.84
for sentence, and 1.77 for slots (see Table 3). This
effects cannot be only attributed to the better model
(discussed in the analysis below), but also to the
implicit information that BERT learned during
its extensive pre-training. This is especially use-
ful in the case of SNIPS, where fair amount of
the slots in categories like SearchCreativeWork,
SearchScreeningEvent, AddToPlaylist, PlayMusic
are names of movies, songs, artists, etc.

Transformer-NLU Analysis We dissect the pro-
posed model by adding or removing prominent
components to outline their contributions. The
results are shown in the second part of Table 3.
First, we compare the results of BERT-Joint and
the enriched model Transformer-NLU:BERT. We
can see a notable reduction of the intent classifi-
cation error by 17.44% and 11.63% for the ATIS
and the SNIPS dataset, respectively. Furthermore,
we see a 19.87% (ATIS) and 17.35% (SNIPS) er-
ror reduction in slot’s F1, and 11.43% (ATIS) and
11.63% (SNIPS) for sentence accuracy. We also try
RoBERTz2 as a backbone to our model: while we
still see the positive effect of the proposed archi-
tecture, the overall results are slightly worse. We
attribute this to the different set of pre-training data
(CommonCrawl vs. Wikipedia). We further focus
our analysis on BERT-based models, since they
performed better than ROBERTa-based ones. We
further report models’ variability in Appendix B.1.

484



Next, we remove the additional slot features — pre-
dicted intent, word casing, and named entities. The
results are shown as Transformer-NLU:BERT w/o
Slot Features. As expected, the intent accuracy re-
mains unchanged for both datasets, since we retain
the pooling attention layer, while the F1-score for
the slots decreases. For SNIPS, the model achieved
the same score as for BERT-Joint, while for ATIS
it was within 0.2 points absolute.

Finally, we added a CRF layer on top of the slot
network, since it had shown positive effects in ear-
lier studies (Xu and Sarikaya, 2013a; Huang et al.,
2015; Liu and Lane, 2016; E et al., 2019). We
denote the experiment as Transformer-NLU:BERT
w/ CRF. However, in our case it did not yield the
expected improvement. The results for slot filling
are close to the highest recorded, while a drastic
drop in intent detection accuracy is observed, i.e., -
17.44% for ATIS, and -20.28% for SNIPS. We at-
tribute this degradation to the large gradients from
the NLL loss. The effect is even stronger in the
case of smaller datasets, making the optimization
unstable for parameter-rich models such as BERT.
We tried to mitigate this issue by increasing the ~y
hyper-parameter, effectively reducing the contribu-
tion of the slot’s loss L, to the total, which in
turn harmed the slot’s F1. Moreover, the model
does swap interchangeable slots, rather than the B-
and /- prefixes, or slots unrelated to the intent.

BERT Knowledge Analysis As we start to un-
derstand better BERT-based large language mod-
els (Petroni et al., 2019; Rogers et al., 2020), we
also start to observe some interesting phenomena.
BERT is trained on Wiki articles, which allows it
to learn implicit information about the world in ad-
dition to learning knowledge about language itself.
Here, we evaluate how that former type of knowl-
edge reflects on the two NLU evaluation datasets.
As a first step, we extract all the slot phrases from
the training sets, i.e., all the words in the slot se-
quence. Next, we send the latter as a query to
Wikipedia and we collect the article titles. Then,
we try to match the phrase with an extracted title.
In order to reduce the false negatives, we normalize
both texts (strip punctuation, replace digits with ze-
ros, lower-case), allow difference of one character
between the two, and finally if the title starts with
the phrase, we count it as a match (e.g., Tampa vs.
Tampa, Florida). Overall, 66% of the slots in ATIS
and 69% in SNIPS matched a Wikipage title.

Metric ‘ Relative Error Reduction
ATIS

Intent (Acc) 4.91% 17.44%

Sent. (Acc) 11.64% 11.43%

Slot (F1) 6.25% 19.87%
SNIPS

Intent (Acc) 40.00% 11.63 %

Sent. (Acc) 3591% 6.76%

Slot (F1) 37.64% 17.35%

Transformer-NLU ‘ vs. SOTA vs. BERT

Table 4: Relative error reduction (Eq. 8) comparing
Transformer-NLU:BERT to the two baselines: i) current
SOTA for each measure, and ii) conventionally fine-
tuned BERT-Joint without the improvements.

Next, we evaluate how much of that information
is stored in the model by leveraging the standard
masking mechanism used during pre-training. In
particular, we split each slot in subwords, and then
we replace them one by one sequentially with the
special [MASK] token. We then sort the predic-
tions for that position by probability and we take
the rank of the true word. Finally, we calculate the
mean reciprocal rank (MRR) over all the aforemen-
tioned ranks: 0.46 for ATIS, and 0.36 for SNIPS.
We must note that the BERT’s dictionary contains
32K pieces, and the expected uniform MRR is
~1/16,000. Below, we present two examples to
illustrate both high- and low-ranked predictions.
High ranked: play the album jack takes the floor
by tom le [MASK] on netflix, here the model’s top
predictions are: [##threr, ##rner, ##mmon, ##hr,
##rman), and the correct token is ranked with the
highest probability.

Low ranked: play some hong jun [MASK], here
the model’s top guesses are mostly punctuation,
and general words such as [to, ;, ##s, and]. The
correct token ##yang is at position 3,036, which
indicates that this term is challenging.

In SNIPS types such as track, movie_name, en-
try_name, artist, album have very high MRR (0.33—
0.40), and ones that require numerical value, or
are not part of well-known named entities such as
object_part_of_series_type (OPST) are the lowest
(under 0.1). The same in ATIS for country_name
(8e-3), restriction_code (4e-3), meal (4e-3), in con-
trast to airline_code (0.45), transport_type (0.42),
etc. However, ATIS in general does not require
such task-specific knowledge, and its MRR is way
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higher in general, which is reflected by the overall
improvement compared to the baseline models.

Error Analysis Here, we discuss what errors
the proposed architecture solves compared to the
BERT model, and what types of errors are left
unsolved. First, we compare the performance
of our method (Transformer-NLU) to BERT-Joint
(BERT). In the intent detection task, the largest
improvement (over BERT) comes from examples
with slots, indicative for a given intent. This
suggests that the model successfully uses the
slot information gathered by the pooling atten-
tion layer. For the following groups, this is most
prominent: (i) examples with multi-label intents,
e.g., atis_airline#atis flight no — “i need flight
numbers and airlines ... ", where BERT predicted
atis_flight_no; (ii) examples containing distinc-
tive words for another intent class — “Give me
meal flights ...”, atis_flight — meal (BERT), “I
need a table ... when it is chiller”, GetWeather
— BookRestaurant (BERT). For all the aforemen-
tioned examples, both models filled the slots cor-
rectly, but only Transformer-NLU captured the
correct intent. Moreover, we see a positive ef-
fect in detecting SearchCreativeWork and Search-
ScreeningEvent, while BERT tends to wrongly fill
the slots, and thus swaps the two intents, e.g., “find
heat wave”, or “find now and forever”. Finally, we
see an additional improvement for AddToPlaylist
and atis_ground fare.

Next, we compare the performance of the two
models on slot filling. As expected, the newly
proposed model performs better, when the cu-
rated features capture some interesting phenomena.
We observe that, when filling code slots (airport,
meal, airfare) — “what does ... code bh mean”,
artists, albums, movies, object names — dwele, ny-
oil, turk (artist — entity_name (BERT)), locations —
“... between milwaukee and indiana’, state — city
(BERT); BERT confuses mango (city) with the fruit
(cuisine); “new york city area” O — city (BERT)
and time-related ones — afternoon, late night, a.m..

Finally, we discuss the errors of Transformer-NLU
in general. For the ATIS dataset, 50% of the wrong
intents come from multi-label cases (35% with
two labels, and 15% with three), 31% atis_flight
— “how many flights does .../have to/leave ...’
(— atis_quantity), 11% atis_city — list la (—
atis_abbreviation), and the others are mistakes in
atis_aircraft. For the slots, 50% of the errors come

i
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from tags that can have a fromloc/toloc prefix,
e.g., city, airport_code, airport_name, etc., another
20% are time-related (arrive_date, return_date),
and filled slots without tag 7%. The errors by the
model for the SNIPS datasets are as follows: mis-
labeled intents PlayMusic 11%, SearchCreative-
Work 22%, SearchScreeningEvent 67%, slots —
movie_name 19%, object_name 16%, playlist 9%,
track 9%, entity_name 5%, album 4%, timeRange
4%, served_dish 2%, filled slots without tag 19%.
The model misses 9% (ATIS) and 17% (SNIPS)
of all the slots that should be filled. This is ex-
pected since SNIPS’ slots have a larger dictio-
nary (11K words), with a large proportion of the
slots being names, and often including prepositions,
e.g., “...trailer of the multiversity”.

5 Related Work

5.1 Intent Classification

Several approaches have focused only on the ut-
terance intent, and have omitted slot information.
For example, Hu et al. (2009) mapped each in-
tent domain and user’s queries into a Wikipedia
representation space, Kim et al. (2017) and Xu
and Sarikaya (2013b) used log-linear models with
multiple-stages and word features. Ravuri and
Stolcke (2015) investigate word and character n-
gram language models based on Recurrent Neural
Networks and LSTMs (Hochreiter and Schmid-
huber, 1997), Xia et al. (2018) proposed a zero-
shot transfer thought Capsule Networks (Sabour
et al., 2017) and semantic features for detecting the
user intent, without labeled data. Moreover, some
work addressed the task in a multi-class multi-label
setup (Xu and Sarikaya, 2013b; Kim et al., 2017;
Gangadharaiah and Narayanaswamy, 2019).

5.2 Slot Filling

Before the rise of deep learning, sequential mod-
els such as Maximum Entropy Markov model
(MEMM) (Toutanvoa and Manning, 2000; McCal-
lum et al., 2000), and Conditional Random Fields
(CRF) (Lafferty et al., 2001; Jeong and Lee, 2008)
were the state-of-the-art choice. Recently, sev-
eral combinations thereof and different neural net-
work architecture were proposed (Xu and Sarikaya,
2013a; Huang et al., 2015; E et al., 2019). Zhu et al.
(2020b) explored label embeddings from slots fill-
ing and different kinds of prior knowledge such as:
atomic concepts, slot descriptions, and slot exem-
plars. Zhang et al. (2020) used time-delayed neural



networks achieving state-of-the-art performance.
Siddique et al. (2021) investigated zero-shot trans-
fer of the slot filling knowledge between different
tasks. However, a steer away from sequential mod-
els is observed in favor of self-attentive ones such
as the Transformer (Vaswani et al., 2017; Radford
et al., 2018; Devlin et al., 2019; Liu et al., 2019;
Radford et al., 2019; Raffel et al., 2020; Lewis
et al., 2020). They compose a contextualized repre-
sentation of both a sentence, and each of its words,
through a sequence of intermediate non-linear hid-
den layers, usually followed by a projection layer,
in order to obtain per-token tags. Such models
were successfully applied to closely related tasks,
e.g., named entity recognition (NER) (Devlin et al.,
2019), part-of-speech (POS) tagging (Tsai et al.,
2019), etc.

Approaches modeling the intent or the slot as in-
dependent of each other suffer from uncertainty
propagation due the absence of shared knowledge
between the tasks. To overcome this limitation, we
learn both tasks using a joint model.

5.3 Joint Models

Given the correlation between the intent and word-
level slot tags, it is natural to train them jointly. Re-
cent surveys covered different aspects of joint and
individual modeling of the slot and the intent (Lou-
van and Magnini, 2020; Weld et al., 2021).

Xu and Sarikaya (2013a) introduced a shared intent
and slot hidden state Convolutional Neural Net-
work (CNN), followed by a globally normalized
CREF (TriCRF) for sequence tagging. Since then,
Recurrent Neural Networks have been dominating,
e.g., Hakkani-Tiir et al. (2016) used bidirectional
LSTMs for slot filling and the last hidden state
for intent classification, Liu and Lane (2016) in-
troduced shared attention weights between the slot
and the intent layer. Goo et al. (2018) integrated
the intent via a gating mechanism into the context
vector of LSTM cells used for slot filling.

Qin et al. (2019) used an self-attentive bidirectional
LSTM encoder for the input utterances and a dual
decoder for the intents and the slots, and they ap-
plied both at the token-level. E et al. (2019) intro-
duced a bidirectional interrelated model, using an
iterative mechanism to correct the predicted intent
and the slot by multiple step refinement. Zhang
et al. (2019) tried to exploit the semantic hierar-
chical relationship between words, slots, and in-

tent via a dynamic routing-by-agreement schema
in Capsule Networks (Sabour et al., 2017). Qin
et al. (2020) proposed an adaptive graph-interactive
framework using BiLSTMs and graph attention net-
works (GAT) (Velickovic et al., 2018) to model the
interaction between intents and slots at the token
level. Recently, Qin et al. (2021) introduced a co-
interactive Transformer that mixes the slot and the
intent information by building a bidirectional con-
nection between them. However, scaling to larger
model sizes requires the adopting more efficient
approaches (Ren et al., 2019; Zhu et al., 2020a;
Kim et al., 2020; Lesci et al., 2023).

Here, we use a pre-trained Transformer, and in-
stead of depending only on the language model’s
hidden state to learn the interaction between the
slot and the intent, we fuse the two tasks together.
Namely, we guide the slot filling by the predicted
intent, and we use a pooled representation from
the task-specific outputs of BERT for intent de-
tection. Moreover, we leverage information from
external sources: (i) from explicit NER and true
case annotations, and (ii) from implicit information
learned by the language model during its extensive
pre-training.

6 Conclusion

We studied the two main challenges in natural lan-
guage understanding, i.e., intent detection and slot
filling. Addressing these tasks is important in a
number of scenarios arising on Web platforms and
Web-based applications such as customer service
in social media, dialogue systems, web queries un-
derstanding, and general understanding of natural
language interaction with the user.

In particular, we proposed an enriched pre-
trained language model to jointly model the
two tasks (i.e., intent detection and slot filling),
i.e., Transformer-NLU. We designed a pooling at-
tention layer in order to obtain intent representation
beyond just the pooled one from the special start
token. Further, we reinforced the slot filling with
word-specific features, and the predicted intent dis-
tribution. Our experiments on two standard datasets
showed that Transformer-NLU outperforms other
alternatives for all standard measures used to evalu-
ate NLU tasks. We found that the use of RoOBERTa
and adding a CRF layer on top of the slot filling
network did not help.
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Our intent pooling mechanism, as well as the fea-
tures we introduced, are potentially applicable to
other semantic parsing and sequence labeling tasks.
They increase the model’s size by just few tens of
thousands of parameters, which is very efficient in
comparison to modern NLP models, which have
millions or even billions of parameters.

Biases

On the down side, we would like to warn about the
potential biases in the data used for training Trans-
formers such as BERT and RoBERTa, as well as
in the ATIS and the SNIPS datasets. Moreover, the
use of large-scale Transformers and GPUs could
contribute to global warming.

Environmental Impact

Finally, we would also like to warn that the use
of large-scale Transformers requires a lot of com-
putations and the use of GPUs/TPUs for training,
which contributes to global warming. This is a bit
less of an issue in our case, as we do not train such
models from scratch; rather, we fine-tune them on
relatively small datasets. Moreover, running on a
CPU for inference, once the model has been fine-
tuned, is perfectly feasible, and CPUs contribute
much less to global warming.
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Appendix

“Enriched Pre-trained Transformers
for Joint Slot Filling and Intent Detection”

A Experimental Setup

A.1 Model Details

We use the PyTorch implementation of BERT from
the Transformers library of (Wolf et al., 2020) as a
base for our models. We fine-tune all models for 50
epochs with hyper-parameters set as follows: batch
size of 64 examples, maximum sequence length of
50 word pieces, dropout set to 0.1 (for both atten-
tions and hidden layers), and weight decay of 0.01.
For optimization, we use Adam with a learning
rate of 8e-05, 51 0.9, B3 0.999, € 1e-06, and warm-
up proportion of 0.1. Finally, in order to balance
between the intent and the slot losses, we set the
parameter v to 0.6, we test the range 0.4-0.8 with
0.1 increment. All the models use the same pre-
processing, post-processing, and the standard for
these tasks metrics. In order to tackle the problem
with random fluctuations for BERT/RoBERTa, we
ran the experiments three times and we used the
best-performing model on the development set. We
define the latter as the highest sum from all three
measures described in Appendix 3. All the above-
mentioned hyper-parameter values were tuned on
the development set, and then used for the final
model on the test set. All models were trained on a
single K80 GPU instance for around an hour.

A.2 State-of-the-art Models

We further compare our approach to some other
benchmark models. Here, we must note that we
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include models that do not use embeddings from
large pre-trained Transformers such as BERT in or-
der to measure the improvements that come solely
from the pre-training procedure (see Section 4):

* Joint Seq. (Hakkani-Tiir et al., 2016) uses a
Recurrent Neural Network (RNN) to obtain
hidden states for each token in the sequence
for slot filling, and uses the last state to predict
the intent.

¢ Atten.-Based (Liu and Lane, 2016) treats the
slot filling task as a generative one, applying
sequence-to-sequence RNN to label the input.
Further, an attention weighted sum over the
encoder’s hidden states is used to detect the
intent.

* Slotted-Gated (Goo et al., 2018) introduces
a special gated mechanism to an LSTM net-
work, thus reinforcing the slot filling with the
hidden representation used for the intent de-
tection.

* Capsule-NLU (Zhang et al., 2019) adopts Cap-
sule Networks to exploit the semantic hierar-
chy between words, slots, and intents using
dynamic routing-by-agreement schema.

¢ Interrelated (E et al., 2019) uses a Bidirec-
tional LSTM with attentive sub-networks for
the slot and the intent modeling, and an inter-
related mechanism to establish a direct con-
nection between the two. SF (slot), and ID
(intent) prefixes indicate which sub-network
to execute first.

* Stack-Propagation (Qin et al., 2019) consists
of a self-attentive BiLSTM encoder for the
utterance and two decoders, one for the intent-
detection task that performs a token-level in-
tent detection, and one for the slot filling task.

* AGIF (Qin et al., 2019) uses Adaptive Graph-
Interactive Framework to jointly model intent
detection and slot filling with an intent-slot
graph interaction layer applied to each token
adaptively.

Chen et al. (2019) used BERT with a token clas-
sification pipeline to jointly model the slot and
the intent, with an additional CRF layer on top.!

'In terms of micro-average F1 for slot filling, Chen et al.
(2019) reported 96.1 on ATIS and 96.27 on SNIPS (per-token).
For comparison, for our joint model, these scores are 98.1 and
97.9 (per-token); however, the correct scores for our model
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However, they evaluated the slot filling task using
per-token F1-score (micro averaging), rather than
per-slot entry, as is standard, which in turn artifi-
cially inflated their results. As their results are not
comparable to the rest, we do not include them in
our comparisons.

B Model Analysis
B.1 Variability Analysis

In addition to the results discused in Section 4,
we also report the Transformer-NLU:BERT’s (and
BERT’s) i and o, 95% confidence internals over
all runs: ATIS — Intent 98.04+0.17 (BERT 97.13 +
0.26), Sentence 88.6 + 0.23 (BERT 87.8 4-0), Slot
96.3 4+ 0.06 (BERT 96.0 £ 0.14); SNIPS — Intent
98.6 + 0.14 (BERT 98.42 + 0), Sentence 92.0 +
0.17 (BERT 91.8 + 0.19), Slot 96.2 + 0.05 (BERT
96.140.06). The aforementioned results show that
the mean scores of the models in the slot filling task
are close, but the variance in Transformer-NLU is
lower. Further, we must note that these values are
calculated over the best runs from each model re-
training, and they are not achieved in a single run.

B.2 Intent Pooling Attention Visualization

Next, we visualize the learned attention weights
on Figure 2a. It presents a request from the ATIS
dataset: i want fly from baltimore to dallas round
trip. The utterance’s intent is marked as atis_flight,
and we can see that the attention successfully
picked the key tokens, i.e., I, want, fly, from, and to,
whereas supplementary words such as names, loca-
tions, dates, etc. have less contribution. Moreover,
when trained on the ATIS dataset, the layer tends
to set the weights in the two extremes — equally
high for important tokens, and towards zero for the
rest. We attribute this to the limited domain and
vocabulary.

Another example, from the SNIPS dataset, is shown
on Figure 2b. Here, the intent is to add a song to
a playlist (AddToPlaylist). In this example, we see
a more diverse spread of attention weights. The
model again assigns the highest weight to the most
relevant tokens add, to, the, and play. Also, the
model learned that the first wordpiece has the high-
est contribution, while the subsequent ones are sup-
plementary.

Finally, we let the pooling attention layer consider
the special tokens marking the start and the end

are actually 95.7 and 96.3 (per-slot).
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([CLS], and [SEP]) of a sequence, since they are
expected to learn semantic sentence-level repre-
sentations from the penultimate layer. The model
assigns high attention weights to both.
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[SEP]
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[SEP]

(a) atis_flight (ATIS). (b) AddToPlaylist (SNIPS).

Figure 2: Intent pooling attention weight for one example per dataset. The thicker the line, the higher the attention

weight.
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