
Proceedings of Recent Advances in Natural Language Processing, pages 301–309
Varna, Sep 4–6, 2023

https://doi.org/10.26615/978-954-452-092-2_034

301

Source Code Plagiarism Detection with Pre-Trained Model Embeddings
and Automated Machine Learning

Fahad Ebrahim
University of Warwick, UK

Fahad.Ebrahim@warwick.ac.uk

Mike Joy
University of Warwick, UK

M.S.Joy@warwick.ac.uk

Abstract

Source code plagiarism is a critical ethical issue
in computer science education where students
use someone else’s work as their own. It can
be treated as a binary classification problem
where the output can be either ‘yes’ (plagiarism
found) or ‘no’ (plagiarism not found).

In this research, we have taken the open-source
dataset ‘SOCO’, which contains two program-
ming languages (PLs), namely Java and C/C++
(although our method could be applied to any
PL). Source codes should be converted to vec-
tor representations that capture both the syntax
and semantics of the text, known as contextual
embeddings. These embeddings would be gen-
erated using source code pre-trained models
(CodePTMs). The cosine similarity scores of
three different CodePTMs were selected as fea-
tures. The classifier selection and parameter
tuning were conducted with the assistance of
Automated Machine Learning (AutoML). The
selected classifiers were tested, initially on Java,
and the proposed approach produced average
to high results compared to other published re-
search, and surpassed the baseline (the JPlag
plagiarism detection tool). For C/C++, the ap-
proach outperformed other research work and
produced the highest ranking score.

1 Introduction

Plagiarism is the ethical and educational issue of
taking ideas from other sources and representing
them as your own without acknowledgement. Pla-
giarism can be divided into text and source code.
Academic source code plagiarism can be defined
as “Source-code plagiarism in programming assign-
ments can occur when a student reuses source code
authored by someone else and, intentionally or un-
intentionally, fails to acknowledge it adequately,
thus submitting it as his/her own work. This in-
volves obtaining the source-code, either with or
without the permission of the original author and

reusing the source code produced as part of another
assessment (in which academic credit was gained)
without adequate acknowledgement” (Cosma and
Joy, 2008). The words reuse, obtain, and acknowl-
edge may also be defined on the basis of the aca-
demic requirements.

The detection of plagiarism is a lengthy and
demanding process, so new technologies such as
Artificial Intelligence (AI) might be used effec-
tively. Plagiarism can be treated as a classification
problem as the output can be considered a class
of discrete values: ‘yes’ (plagiarised), ‘no’ (non-
plagiarised), or potentially ‘partial’. Source code
plagiarism can be also considered to be an applica-
tion of a source code similarity measurement task
(Zakeri-Nasrabadi et al., 2023).

There are several ways to represent source codes
(Hrkút et al., 2023) such as graphs, trees and to-
kens. The source codes must be converted into
vectors known as embeddings before being fed into
a classifier. Contextualized embeddings not only
consider syntax but also the semantics of source
codes. These embeddings can be created using
pre-trained models. The emergence of pre-trained
models has revolutionized the field of Natural Lan-
guage Processing (NLP) and are being known for
their robustness. They can be utilised in various
ways such as re-training, fine-tuning and inference.
Also, some domain-specific models have been cre-
ated for certain areas and tasks.

This work inspects the robustness of the embed-
dings generated by source code pre-trained models
(CodePTMs) for the task of source code plagiarism
detection. Contextual embeddings are extracted
using these CodePTMs and a classifier built on top
of the embeddings. For classification, this work
utilises the concept of Auto Machine Learning (Au-
toML) to determine the best classifier given certain
training data. The training, testing, and evalua-
tion are based on the SOurce COde reuse dataset

302

(SOCO) (Flores et al., 2014).
The paper is organized as follows: section 2 cov-

ers related work, section 3 covers the methodology,
section 4 presents the results, and section 5 covers
the conclusion and future work.

2 Related work

Several software tools have been used as source
code plagiarism detectors. Novak compared sev-
eral such tools, namely JPlag, MOSS, SIM, Splat,
Marble, Plaggie, and Sherlock Warwick in his re-
view paper (Novak, 2016).

Engels et al. introduced the idea of neural net-
works in source code plagiarism detection and
reused the output of MOSS on a dataset containing
20,706 C++ introductory course assignments. The
evaluation was performed on the basis of the clas-
sification evaluation metrics (precision, recall, and
F1 scores) (Engels et al., 2007).

Ljubovic and Pajic tackled the issue of external
plagiarism by using a cloud and applying an Arti-
ficial Neural Network (ANN) based on the output
of the SIM’s software and repository monitoring
on a dataset containing 3,655 submissions from an
introductory C course (Ljubovic and Pajic, 2020).
Their setup was compared to JPlag, MOSS and
SIM.

Abstract Syntax Trees (ASTs) along with code
disassembly have been used by Viuginov et al. who
considered the lexical, syntactic, layout, and struc-
tural characteristics of the source code on a dataset
containing 90,000 C++ solutions (Viuginov et al.,
2020). For the evaluation, they calculated the F1-
score.

Manahi et al. used a combination of Siamese
networks, Bidirectional Long Short-Term Memory
(BLSTM), and character embeddings on a dataset
including 16,800 introductory course C assign-
ments (Manahi et al., 2022). Siamese networks
are multiple similar neural networks with the same
configurations and weights. They are mainly used
for similarity detection. For their evaluation, they
calculated the classification evaluation metrics.

Humayoun et al. used the concepts of tokeniza-
tion, AST, and upsampling on their public dataset
of 60 introductory C++ programming assignments
(Humayoun et al., 2022). The features tested
were N-gram overlap, Longest Common Substring
(LCS), and greedy string tilling. Eight classifiers
were implemented using Weka and the authors’
model was evaluated based on the classification

evaluation metrics.
In the first part of his master’s thesis (Heres,

2017), Heres proposed a system using N-grams,
term frequency–inverse document frequency (TF-
IDF), and cosine similarity. The dataset used was
the SOCO Java set and their own private dataset
having 16,954 files. The evaluation was based on
the average precision score.

Deep learning using char-Recurrent Neural Net-
work (char-RNN) and Long Short-Term Memory
(LSTM) was the basis of Katta’s approach, which
used general deep features that could be applied to
any dataset (Katta, 2018). The dataset covered an
introductory C course with a total of 4,700 submis-
sions. The model was evaluated using classification
evaluation metrics.

2.1 SOCO related works

This work uses the SOCO dataset and the approach
followed will be compared to the other approaches
based on the same dataset.

Garcia et al. used an approach (UAEM) con-
sisting of four phases (Garcıa-Hernández and
Lendeneva, 2014). The first phase was related to
pre-processing, which was the tokenization of the
source code, and the second phase was the similar-
ity measurement, which was based on the longest
common substrings. The third phase was related
to extracting different parameters such as distance,
ranking, gap, and relative difference, and the final
phase was decision-making by using the obtained
parameters.

Ramırez et al. in their approach (UAM-C) ap-
plied three different views to the source code: a
lexical view utilising 3-grams, a structural view that
utilizes the methods headers, and a stylistic view
covering features such as the number of spaces
and the number of uppercase or lowercase letters
(Ramırez-de-la Cruz et al., 2014).

Ganguly and John developed an Information
Retrieval (IR) model (DCU)(Ganguly and Jones,
2014). They built a Language Model (LM) based
only on the Java dataset. A Java parser was uti-
lized as a bag of words scheme, and an AST was
constructed to capture the structure of the code.

Ganguly et al. proposed an improvement over
DCU (Ganguly et al., 2018), where a supervised
classifier (random forest) was added to an IR model
based only on the Java dataset. The approach had
three models: an IR Language Model (LM), LM
with AST (LM AST), and LM AST with different

303

index fields (FLM AST).
Flores et al. used a text comparison approach

(Flores et al., 2014). They searched for matching
lines between two source codes and calculated the
ratio between the number of these lines and the
larger number of lines of the two files. The deci-
sion was based on a threshold value. Furthermore,
Apoorv worked in a similar manner, but the deci-
sion was based on the maximum similarity value
(ratio of matching lines).

We refer to JPlag (Prechelt et al., 2002) as “Base-
line1”. JPlag is a well-known tool used for source
code plagiarism detection. Source codes are con-
verted into tokens, and the similarity between these
tokens is estimated using the ‘greedy string tilling’
algorithm (Wise, 1993).

The work of Flores et al. is referred to as “Base-
line2” (Flores et al., 2011), which divides the ac-
tivity into three stages: pre-processing, feature ex-
traction, and similarity measurement. Spaces, line
breaks, and tabs are eliminated. The features are
based on 3-grams and term frequencies, and cosine
similarity is used to measure the similarity of two
source codes.

The recent work of Setoodeh et al. has developed
a four-phased approach (Setoodeh et al., 2021).
The first phase is pre-processing, such as removing
comments and unnecessary code, and the second
phase involves generating a sequence to capture the
structure of the source codes. The third phase is
similarity measurement by applying multiple meth-
ods such as comparing the sequence strings, trees,
and edges. The final phase is related to the eval-
uation including the calculation of the precision,
recall, and F1 score, and a comparison with other
SOCO-related works.

The approach taken in this paper differs from
existing approaches in three respects. Firstly,
the dataset used is open source, accessible, and
adequate in size containing two PLs (Java and
C/C++). Secondly, the approach is language-
independent and does not depend on tokenizers
or specific language syntax, so could be applied to
any PL. Thirdly, the approach utilises the state-of-
art CodePTM contextualized embeddings.

3 Methodology

This work follows the typical process of applying
supervised ML to a classification problem, as men-
tioned in (Schlegel and Sattler, 2023). The cycle
starts with data collection and feature engineering,

followed by model selection. The model needed
to be trained and tested. Enhancements with pa-
rameter tuning could be applied, prior to the model
being evaluated.

3.1 Dataset

There is a lack of a proper dataset related to source
code plagiarism due to potential legal or social is-
sues, and it was therefore difficult to have an open-
source academic dataset of students’ data which
could be used for this research. Possible solutions
included using a privately created dataset (as sug-
gested by several related works) or applying a code
reuse dataset such as SOCO.

The SOCO dataset contains training and testing
data written in C++ and Java. The training set in
C++ included 79 files with 26 reuse cases, while
there were 259 files with 84 reuse cases written in
Java. For the testing set, in C++, there were 19,895
files with 322 reuse cases, while in Java, there were
12,080 files with 222 reuse cases. There were six
different scenarios per language, labelled A1, A2,
B1, B2, C1, and C2.

There were a few assumptions in this dataset.
First, the reuse occurred within the same program-
ming language, therefore multi-programming reuse
was not covered. Second, reuse occurred in the
same scenario without overlapping the testing set.
One challenge in the SOCO dataset was that the
training set was smaller than the testing set. An-
other challenge was that the testing data were
severely imbalanced, while the training set was
less imbalanced.

3.2 Data Pre-processing and Encoding

The source code was written in different files and
had to be arranged into a suitable data structure.
Then, the code needed to be converted into a clean
format that could be fed into a classifier that ac-
cepts only numbers. Embeddings are vector repre-
sentations of source code that can be created with
pre-trained models. The embeddings are created us-
ing Sentence Transformers (Reimers and Gurevych,
2019) with mean pooling.

3.2.1 Selection of Source Code Pre-Trained
Models

Multiple surveys have been written for CodePTMs
as in (Niu et al., 2022, 2023; Zeng et al., 2022; Xu
and Zhu, 2022). CodePTMs are models trained on
a large corpus of code.

304

The suitable models in this work would be se-
lected based on the following criteria.

• The model should be accessible and could be
found in Huggingface1 for ease of use. The
models available in Huggingface are Code-
Bert (Feng et al., 2020), GraphCodeBert (Guo
et al., 2020), UnixCoder (Guo et al., 2022),
CodeT5 (Wang et al., 2021), CodeGPT (Lu
et al., 2021), PLBART (Ahmad et al., 2021),
and CodeBERTa (Wolf et al., 2019).

• The model should pass a simple test. It will be
given a pair of totally different source codes.
For instance, the first Java program prints
’Hello World’ and the other contains a func-
tion that calculates the average of two num-
bers. Then, the similarity of the generated
embeddings will be calculated. If the score is
above 0.8, it would not be used. Otherwise,
the model passes this test. As these two pro-
grams are totally different, the similarity score
should be low. If it is high, then the source
code is not represented adequately. For ex-
ample, the model GraphCodeBert generates
a similarity score of 0.94 if given this pair of
code fragments. Further experiments on this
test results can be seen in Table 1.

Pre-Trained Model Similarity Score
PLBART 0.0257
Unixcoder 0.2988

CodeBERTa 0.7868
CodeGPT 0.8899

GraphCodeBert 0.9442
CodeBert 0.9918

Table 1: Cosine Similarity Scores

The three pre-trained models that yielded ac-
ceptable similarity scores were UnixCoder,
PLBART and CodeBERTa. Each of these
captures different aspects of source codes,
as UniXcoder considers AST and code com-
ments in addition to the source code, while
PLBART captures the style and data flow. The
similarity being referred to is the cosine simi-
larity which will be explained in the following
subsection.

1https://huggingface.co/

3.3 Similarity Measure and Feature Selection

Cosine similarity is a common measurement of
similarity used in NLP. It represents the angle be-
tween two vectors, and the angle (θ) is equal to
the dot product of the two vectors (A and B) over
the product of their norms, as shown in Equation
1. The higher the similarity score, the more similar
the vectors are.

Cosine Similarity = cos(θ) =
A.B

||A||.||B||
(1)

The three features of the model would be the co-
sine similarity scores between the three generated
embeddings per source code. Using each model
embeddings separately achieved acceptable results.
However, the combination of the three of them
would add more data to train at the expense of
complexity. The classifier would figure out which
combination of these three features would be better
in terms of evaluation.

3.4 Classification Model Selection

The concept of AutoML utilises several algorithms
and selects the best-performing models for certain
training data automatically. The main reason be-
hind using AutoML in this work is to reduce time
consumption. The testing dataset is large and test-
ing different classifiers and comparing them would
take a substantial amount of time. Thus, AutoML
would search for the most appropriate classifier
in less time. The library selected for this work
is AutoSklearn (Feurer et al., 2015, 2022) which
chooses the leading algorithm given specific train-
ing data and certain time intervals. AutoSkLearn
handles both the model selection and parameter tun-
ing. There are other AutoML libraries surveyed by
Elshawi et al. (Elshawi et al., 2019). AutoSklearn
is selected for its familiar syntax to Sklearn2 and
simplicity.

The inputs of the classifiers were the three cosine
similarity values between three different CodePTM
embeddings. The parameters configured for Au-
toSklearn were the duration of 30 minutes with
10-fold cross-validation. The best classification
model selected for Java with the configured param-
eters and Java training set was extra trees, while
for C/C++, the best classification model selected
was gradient boosting. These two classifiers are
relevant in this task as both of them are ensemble

2https://scikit-learn.org/

305

techniques based on decision trees. They perform
well in case of imbalanced data as in the SOCO
dataset. Also, both methods are known for their
high performance in Kaggle3 competitions. Ensem-
ble methods are known for potential lower loss and
less over-fitting.

For testing, the similarity scores are fed to the se-
lected algorithms to create prediction probabilities
that are compared to a dynamic threshold determin-
ing whether the files are plagiarised or not. Once
pairs of plagiarism files are available, the models
are evaluated per the next subsection.

3.5 Evaluation

Classification could be evaluated with several met-
rics (Joshi, 2020). The fundamental metrics were
true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). TP is to predict the
positive value correctly, and FP is to mispredict
a positive value. FN is to mispredict a negative
value, while TN correctly predicts a negative value.
Applied to plagiarism, positive could indicate that
plagiarism was found, and negative could indicate
that plagiarism was not found. Some other met-
rics that use TP, FP, and FN in their calculation
are as follows: precision, recall, and F1 score, as
presented in equations 2, 3, 3, respectively (Joshi,
2020).

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

f1score = 2 ∗ precision ∗ recall
precision+ recall

(4)

Furthermore, for the SOCO dataset evaluation
(Flores et al., 2014), these three metrics, namely
recall, precision, and F1 score, were utilized as a
part of the model’s standard evaluation, while for
the ranking of the model, only the F1 score was
used.

The detailed technical methodology illustrated
in this section is represented in Figure 1. Following
are the simplified summarized steps.

1. Extracting contextualised embeddings using
three different CodePTMs using sentence
transformers with mean pooling.

3https://www.kaggle.com/

2. Calculating the cosine similarity scores be-
tween pair of embeddings of the source codes.
These scores form the input to the automated
machine-learning process.

3. Selecting the leading classifier using AutoML
during the training phase.

4. Generating the prediction probabilities with
the selected classifier.

5. Decision-making based on whether the proba-
bilities are larger than a dynamic threshold.

6. Evaluating the model and calculating the clas-
sification accuracy metrics including the F1
score.

4 Results

4.1 Results and Discussion
The results of the Java scenarios are presented in
Table 2. For the scenario of C2 of identical pla-
giarism files, the metrics values were 1. Scenarios
B1 and B2 produced high metric values, but for
scenarios A1 and A2, the scores are lower as the
file sizes and number of files are high.

Parameter F1 Precision Recall
C2 1 1 1
B1 0.724 0.977 0.957
B2 0.772 0.957 0.647
A1 0.643 0.9 0.5
A2 0.623 0.8 0.511

Table 2: Java metrics

The results of the C/C++ scenarios are presented
in Table 3. For C1, the scores were high. While for
other scenarios, the metrics were similar, falling in
a similar range.

Parameter F1 Precision Recall
C1 0.8 0.857 0.75
B1 0.458 0.4 0.535
B2 0.473 0.44 0.512
A1 0.521 0.491 0.556
A2 0.47 0.389 0.593

Table 3: C/C++ evaluation metrics

The overall results of the Java files are repre-
sented in Table 4. For the proposed work, the F1
score was 0.69, the precision was 0.908, and the

306

Figure 1: Detailed Methodology

recall was 0.559. For the F1 score, the minimum
score was 0.031, the average was 0.54, and the
maximum was 0.855. For the precision score, the
minimum score was 0.016, the average score was
0.46, and the maximum score was 0.951. For the
recall, the minimum score was 0.293, the average
was 0.882, and the maximum score was 1. In our
approach, the precision and F1 scores were be-
tween the average and the maximum values. The
recall value was lower than the average value. The
approach exceeded both baselines and ranked ap-
proximately third after Shiraz and UAM-C along-
side DCU, LM AST and FLM AST in terms of F1
score and ranked second after Shiraz in terms of
precision. The high value of precision indicates
having fewer false positives, which means non-
plagiarized cases are not detected as plagiarized.
As the task of plagiarism is sensitive, then higher
precision is more suitable. The lower value of re-
call means that some actual plagiarism cases were
not detected. The main reason is due to having
severely imbalanced data which can be fixed in fu-
ture work. Therefore, the results related to the Java
dataset were average to high.

The overall results of the C/C++ files can be seen
in Table 5. The F1 score of our work was around
0.493, the precision was 0.443, and the recall was
0.561. For the F1 score, the minimum score was
0.01, the average was 0.2, and the maximum was
0.38. For the precision score, the minimum score
was 0.005, the average score was 0.192, and the
maximum score was 0.35. For the recall, the min-
imum score was 0.13, the average was 0.59, and
the maximum score was 1. The approach taken
in this work yielded the highest F1 and precision
scores and outperformed both baselines. Recall
was around the average values. Therefore, the re-

Run F1 P R
Our work 1 0.69 0.908 0.559
Shiraz 1 0.751 0.951 0.621

2 0.855 0.884 0.828
3 0.836 0.831 0.842

UAEM 1 0.556 0.385 1
2 0.273 0.158 1
3 0.273 0.158 1

UAM-C 1 0.517 0.349 1
2 0.037 0.019 0.928
3 0.807 0.691 0.968

DCU 1 0.602 0.432 0.995
2 0.692 0.53 0.995
3 0.68 0.515 1

Baseline 1 1 0.38 0.542 0.293
Baseline 2 1 0.556 0.457 0.712
APoorv 1 0.031 0.016 0.855
LM 1 0.602 0.432 0.995
LM AST 1 0.692 0.53 0.995
FLM AST 1 0.68 0.515 1
Rajat 1 0.447 0.32 0.732

Table 4: Comparison with SOCO Java related works

sults on the C/C++ dataset were competitive.

The F1 score in C/C++ is lower than in Java
(0.493 compared to 0.69) but compared to other
works it is high. This is due to Java having more
training data and a higher κ value than C/C++
which implies that the Java training set is more
representative (Flores et al., 2014). The main limi-
tation of this approach is the maximum input length
to the pre-trained models, which is 512. If the input
is larger than 512, it would be truncated. So, for
larger files, the end of the files may not be captured.
Therefore, if plagiarism occurs at the end of the

307

Run F1 P R
Our work 1 0.493 0.443 0.561
Shiraz 1 0.332 0.33 0.335

2 0.278 0.251 0.313
3 0.332 0.344 0.322

UAEM 1 0.38 0.306 0.5
2 0.38 0.306 0.5
3 0.342 0.26 0.5

UAM-C 1 0.013 0.006 1
2 0.01 0.005 0.95
3 0.013 0.006 0.977

Baseline 1 1 0.19 0.35 0.13
Baseline 2 1 0.295 0.258 0.345
Apoorv 1 0.014 0.007 0.903
Rajat 1 0.126 0.068 0.927

Table 5: Comparison with SOCO C/C++ related works

code files, it would not be captured.
The usage of contextual embeddings generated

by CodePTMs is efficient in the task of source code
plagiarism detection producing highly competitive
results in the SOCO dataset.

5 Conclusion

Plagiarism in programming assignments is a criti-
cal issue in the field of computer science education.
It can be treated as a machine learning binary clas-
sification problem. So, this research introduced a
simple yet effective approach to the task of source
code plagiarism detection. It started by selecting
the open-source SOCO dataset with two PLs (Java
and C/C++). Source code files were converted to
embeddings to be part of any machine learning
classifier. Three different CodePTMs (PLBART,
UnixCoder, and CodeBERTa) were used to gener-
ate their own embeddings. Cosine similarity scores
between these three models were calculated and
considered to be the selected features. The clas-
sification models were selected using the concept
of AutoML and the library AutoSklearn. The ini-
tial testing was conducted on Java, and the pro-
posed model produced high metrics as compared
to other approaches and exceeded both baselines.
For C/C++, the model produced the highest F1 and
precision scores as compared to other approaches
and outperformed both baselines.

Exploring other CodePTMs that are not available
on HuggingFace for source code plagiarism detec-
tion is an idea for future work, along with increas-
ing the training time for AutoSklearn. The dataset

is severely imbalanced, hence, different techniques
could be used to tackle such issues. Also, chunking
can be used to overcome the limited input size of
the pre-trained models.

Acknowledgments

We wish to acknowledge the generous financial
support from the Kuwait Foundation for the Ad-
vancement of Sciences (KFAS) to present this pa-
per at the conference under the Research Capacity
Building/Scientific Missions program.

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi

Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. arXiv
preprint arXiv:2103.06333.

Georgina Cosma and Mike Joy. 2008. Towards a defini-
tion of source-code plagiarism. IEEE Transactions
on Education, 51(2):195–200.

Aarón Ramırez-de-la Cruz, Gabriela Ramırez-de-la
Rosa, Christian Sánchez-Sánchez, Wulfrano Arturo
Luna-Ramırez, Héctor Jiménez-Salazar, and Carlos
Rodrıguez-Lucatero. 2014. UAM@ SOCO 2014:
Detection of source code reuse by means of combin-
ing different types of representations. FIRE [4].

Radwa Elshawi, Mohamed Maher, and Sherif Sakr.
2019. Automated machine learning: State-of-
the-art and open challenges. arXiv preprint
arXiv:1906.02287.

Steve Engels, Vivek Lakshmanan, and Michelle Craig.
2007. Plagiarism detection using feature-based neu-
ral networks. In Proceedings of the 38th SIGCSE
technical symposium on Computer science education,
pages 34–38.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Matthias Feurer, Katharina Eggensperger, Stefan
Falkner, Marius Lindauer, and Frank Hutter. 2022.
Auto-sklearn 2.0: Hands-free automl via meta-
learning. The Journal of Machine Learning Research,
23(1):11936–11996.

Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Springenberg, Manuel Blum, and Frank Hut-
ter. 2015. Efficient and robust automated machine
learning. Advances in neural information processing
systems, 28.

Enrique Flores, Alberto Barrón-Cedeno, Paolo Rosso,
and Lidia Moreno. 2011. Towards the detection of

https://doi.org/10.48550/arXiv.2103.06333
https://doi.org/10.48550/arXiv.2103.06333
https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.48550/arXiv.1906.02287
https://doi.org/10.48550/arXiv.1906.02287
https://doi.org/10.1145/1227310.1227324
https://doi.org/10.1145/1227310.1227324
https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.1007/978-3-642-22327-3_31

308

cross-language source code reuse. In International
Conference on Application of Natural Language to
Information Systems, pages 250–253. Springer.

Enrique Flores, Paolo Rosso, Lidia Moreno, and Esaú
Villatoro-Tello. 2014. On the detection of source
code re-use. In Proceedings of the Forum for Infor-
mation Retrieval Evaluation, pages 21–30.

Debasis Ganguly and Gareth JF Jones. 2014. DCU@
FIRE-2014: An information retrieval approach for
source code plagiarism detection. In Proceedings
of the Forum for Information Retrieval Evaluation,
pages 39–42.

Debasis Ganguly, Gareth JF Jones, Aarón Ramı́rez-De-
La-Cruz, Gabriela Ramı́rez-De-La-Rosa, and Esaú
Villatoro-Tello. 2018. Retrieving and classifying in-
stances of source code plagiarism. Information Re-
trieval Journal, 21(1):1–23.

René Garcıa-Hernández and Yulia Lendeneva. 2014.
Identification of similar source codes based on
longest common substrings. FIRE [4].

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Daniël Heres. 2017. Source code plagiarism detection
using machine learning. Master’s thesis, Utrecht
University.

Patrik Hrkút, Michal Ďuračı́k, Štefan Toth, and Matej
Meško. 2023. Current trends in the search for similar-
ities in source codes with an application in the field
of plagiarism and clone detection. In 2023 33rd Con-
ference of Open Innovations Association (FRUCT),
pages 77–84. IEEE.

Muhammad Humayoun, Muhammad Adnan Hashmi,
and Ali Hanzala Khan. 2022. Measuring plagiarism
in introductory programming course assignments. In
2022 8th International Conference on Information
Technology Trends (ITT), pages 80–87. IEEE.

Ameet V Joshi. 2020. Machine learning and artificial
intelligence. Springer.

Jitendra Yasaswi Bharadwaj Katta. 2018. Machine
learning for source-code plagiarism detection. Ph.D.
thesis, International Institute of Information Technol-
ogy Hyderabad, University of Science and Technol-
ogy.

Vedran Ljubovic and Enil Pajic. 2020. Plagiarism de-
tection in computer programming using feature ex-
traction from ultra-fine-grained repositories. IEEE
Access, 8:96505–96514.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Mohammed Manahi, Suriani Sulaiman, and Normi
Sham Awang Abu Bakar. 2022. Source code pla-
giarism detection using Siamese BLSTM network
and embedding models. In Proceedings of the 8th
International Conference on Computational Science
and Technology, pages 397–409. Springer.

Changan Niu, Chuanyi Li, Bin Luo, and Vincent Ng.
2022. Deep learning meets software engineering: A
survey on pre-trained models of source code. arXiv
preprint arXiv:2205.11739.

Changan Niu, Chuanyi Li, Vincent Ng, Dongxiao Chen,
Jidong Ge, and Bin Luo. 2023. An empirical com-
parison of pre-trained models of source code. arXiv
preprint arXiv:2302.04026.

Matija Novak. 2016. Review of source-code plagiarism
detection in academia. In 2016 39th International
convention on information and communication tech-
nology, electronics and microelectronics (MIPRO),
pages 796–801. IEEE.

Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al.
2002. Finding plagiarisms among a set of programs
with JPlag. J. Univers. Comput. Sci., 8(11):1016.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Marius Schlegel and Kai-Uwe Sattler. 2023. Manage-
ment of machine learning lifecycle artifacts: A sur-
vey. ACM SIGMOD Record, 51(4):18–35.

Zahra Setoodeh, Mohammad Reza Moosavi, Mostafa
Fakhrahmad, and Mohammad Bidoki. 2021. A pro-
posed model for source code reuse detection in com-
puter programs. Iranian Journal of Science and
Technology, Transactions of Electrical Engineering,
45(3):1001–1014.

Nickolay Viuginov, Petr Grachev, and Andrey
Filchenkov. 2020. A machine learning based pla-
giarism detection in source code. In 2020 3rd Inter-
national Conference on Algorithms, Computing and
Artificial Intelligence, pages 1–6.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Michael J Wise. 1993. String similarity via greedy
string tiling and running Karp-Rabin matching. On-
line Preprint, Dec, 119(1):1–17.

https://doi.org/10.1007/978-3-642-22327-3_31
https://doi.org/10.1145/2824864.2824878
https://doi.org/10.1145/2824864.2824878
https://doi.org/10.1145/2824864.2824887
https://doi.org/10.1145/2824864.2824887
https://doi.org/10.1145/2824864.2824887
https://doi.org/10.1007/s10791-017-9313-y
https://doi.org/10.1007/s10791-017-9313-y
https://doi.org/10.48550/arXiv.2203.03850
https://doi.org/10.48550/arXiv.2203.03850
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.23919/FRUCT58615.2023.10143064
https://doi.org/10.23919/FRUCT58615.2023.10143064
https://doi.org/10.23919/FRUCT58615.2023.10143064
https://doi.org/10.1109/ITT56123.2022.9863961
https://doi.org/10.1109/ITT56123.2022.9863961
https://doi.org/10.1007/978-3-030-26622-6
https://doi.org/10.1007/978-3-030-26622-6
https://doi.org/10.1109/ACCESS.2020.2996146
https://doi.org/10.1109/ACCESS.2020.2996146
https://doi.org/10.1109/ACCESS.2020.2996146
https://doi.org/10.48550/arXiv.2102.04664
https://doi.org/10.48550/arXiv.2102.04664
https://doi.org/10.1007/978-981-16-8515-6_31
https://doi.org/10.1007/978-981-16-8515-6_31
https://doi.org/10.1007/978-981-16-8515-6_31
https://doi.org/10.48550/arXiv.2205.11739
https://doi.org/10.48550/arXiv.2205.11739
https://doi.org/10.48550/arXiv.2302.04026
https://doi.org/10.48550/arXiv.2302.04026
https://doi.org/10.1109/MIPRO.2016.7522248
https://doi.org/10.1109/MIPRO.2016.7522248
https://doi.org/10.48550/arXiv.1908.10084
https://doi.org/10.48550/arXiv.1908.10084
https://doi.org/10.1145/3582302.3582306
https://doi.org/10.1145/3582302.3582306
https://doi.org/10.1145/3582302.3582306
https://doi.org/10.1007/s40998-020-00403-8
https://doi.org/10.1007/s40998-020-00403-8
https://doi.org/10.1007/s40998-020-00403-8
https://doi.org/10.1145/3446132.3446420
https://doi.org/10.1145/3446132.3446420
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859

309

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Yichen Xu and Yanqiao Zhu. 2022. A survey on pre-
trained language models for neural code intelligence.
arXiv preprint arXiv:2212.10079.

Morteza Zakeri-Nasrabadi, Saeed Parsa, Mohammad
Ramezani, Chanchal Roy, and Masoud Ekhtiarzadeh.
2023. A systematic literature review on source code
similarity measurement and clone detection: Tech-
niques, applications, and challenges. Journal of Sys-
tems and Software, page 111796.

Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing
Li, Yuqun Zhang, and Lingming Zhang. 2022. An
extensive study on pre-trained models for program
understanding and generation. In Proceedings of
the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 39–51.

https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.2212.10079
https://doi.org/10.48550/arXiv.2212.10079
https://doi.org/10.1016/j.jss.2023.111796
https://doi.org/10.1016/j.jss.2023.111796
https://doi.org/10.1016/j.jss.2023.111796
https://doi.org/10.1145/3533767.3534390
https://doi.org/10.1145/3533767.3534390
https://doi.org/10.1145/3533767.3534390

