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Abstract

Pre-trained models (PTMs) based on the Trans-
formers architecture are trained on massive
amounts of data and can capture nuances and
complexities in linguistic expressions, making
them a powerful tool for many natural language
processing tasks. In this paper, we present
SSSD (Semantic Similarity Stance Detection),
a semi-supervised method for stance detection
on Twitter that automatically labels a large,
domain-related corpus for training a stance clas-
sification model. The method assumes as input
a domain set of tweets about a given target and
a labeled query set of tweets of representative
arguments related to the stances. It scales the
automatic labeling of a large number of tweets,
and improves classification accuracy by lever-
aging the power of PTMs and semantic search
to capture context and meaning. We largely out-
performed all baselines in experiments using
the Semeval benchmark.

1 Introduction

Stance Detection (SD) is the task that automatically
determines whether the author of a text is in favor
of, against or does not manifest about a given target.
Targets can be companies, movements, people or
ideas (Mohammad et al., 2016b). It was initially
applied to the analysis of political debates in online
forums and has become very attractive to measure
public opinion on social networks (Aldayel and
Magdy, 2019).

SD on social media can be categorized based
on different criteria, including the type of target,
the type of stance (i.e., in favor, against, or neu-
tral), and the level of analysis (i.e., post level or
network level). The features used for classifica-
tion vary according to the analysis level: textual
features only (post level) or user-related attributes
and behaviors such as mentions and the number
of followers (network level) to improve the model
accuracy (ALDayel and Magdy, 2021).

The state-of-the-art methods for SD (Al-Ghadir
et al., 2021; Lai et al., 2017) are based on Machine
Learning (ML) and have shown to be effective
in various scenarios (Aldayel and Magdy, 2019).
However, they rely on manual and complex fea-
ture engineering, particularly when applied at the
network level. On the other hand, Deep Learning
(DL) based methods for SD (Siddiqua et al., 2019;
Li and Caragea, 2019) do not require feature engi-
neering, but they can easily overfit if not trained
with enough labeled data, due to their high number
of parameters (Han et al., 2021). Unfortunately,
labeling data is an expensive and time-consuming
task, leading to small labeled datasets for specific
domains (Al-Ghadir et al., 2021).

Transfer learning (Zhang et al., 2020; Giorgioni
et al., 2020) and unsupervised approaches (Dar-
wish et al., 2020; Rashed et al., 2021; Wei et al.,
2019) are promising directions for SD, but they
still face challenges in achieving comparable re-
sults to supervised machine learning approaches,
especially in highly polarized environments such
as Twitter. This is due to the difficulty of detecting
stances in a noisy and polarized platform such as
Twitter, where people express their opinions in nu-
anced and complex ways. Despite these challenges,
researchers continue to explore new approaches to
improve the accuracy of SD in various contexts
(Rashed et al., 2021).

Using pre-trained models (PTMs) based on the
Transformers architecture (Vaswani et al., 2017),
such as BERT (Devlin et al., 2018) and GPT (Rad-
ford et al., 2019), researchers can address the chal-
lenge of data scarcity and the variability and noise
inherent in Twitter, while capturing the relevant
semantic and contextual information needed to
classify stances accurately. PTMs are trained on
massive amounts of data and can capture nuances
and complexities in linguistic expressions, making
them a powerful tool for detecting stances. By fine-
tuning these models on smaller labeled datasets,
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they can learn specific patterns of stances in dif-
ferent contexts, which can help overcome the chal-
lenges of variability and noise on Twitter. Addi-
tionally, PTMs can be used to search or compare
tweets with similar stances through cosine simi-
larity (Han et al., 2021), aiding the task of stance
detection. PTMs represent a promising approach
to improving the accuracy of DS on Twitter.

In this paper, we propose SSSD (Semantic Simi-
larity SD), a semi-supervised method for stance de-
tection on Twitter that leverages PTMs and seman-
tic search to automatically label a large, domain-
related corpus for training a stance classification
model. The method assumes as input a domain
set of tweets about a given target and a labeled
query set of tweets of representative arguments re-
lated to the stances. The tweets of the domain and
query sets are converted into a contextual represen-
tation using a PTM, such that a similarity function
can identify the semantic proximity of the tweets
of both sets. For each tweet of the query-set, the
search function selects the k most similar tweets
from the domain set, assigning them the respective
stance label. This set of labeled tweets is then used
to train an SD classification model using some ML
classification algorithm. The remaining unlabeled
tweets can be classified using this model. SSDS im-
proves stance classification performance by lever-
aging the power of PTMs and semantic search to
capture the context and meaning of tweets in a spe-
cific domain, addressing the complexity of stance
labeling. It reduces the need for manual annotation,
an expensive and time-consuming task, enabling
the accurate automatic label of a large volume of
tweets with minimal computational costs.

Our experimental setting involved three classifi-
cation algorithms and the SD benchmark datasets
and metrics (Mohammad et al., 2016b), which in-
cludes six targets. SSSD outperformed the base-
lines (Al-Ghadir et al., 2021) by 13.9 percentage
points (pp) and (Lai et al., 2017) by 11.2 pp in
the overall averaged f-measure metric. We also
assessed the influence of the value of k on the simi-
larity of retrieved tweets, number of labeled tweets
and stance classification performance.

The main contributions of our study can be sum-
marized as follows:
- a semi-supervised SD method that leverages
PTMs and semantic search to automatically label
data and train an SD classifier. By leveraging PTM
and semantic search, it achieves superior perfor-
mance compared to unsupervised/semi-supervised
solutions (Gómez-Suta et al., 2023; Aldayel and

Magdy, 2019) and outperforms state-of-the-art su-
pervised systems (Al-Ghadir et al., 2021; Lai et al.,
2017). The method is not dependent on a specific
PTM or ML classification algorithm, nor requires
a large, domain set of labeled data.
- A complete experimental assessment using
datasets and metrics of a benchmark for stance
detection (Mohammad et al., 2016b), demonstrat-
ing its effectiveness and robustness. Our approach
is reproducible, and all the code is available in a
public repository.

The remaining of this work is structured as fol-
lows. Section 2 presents the related work. Section
3 details the proposed semi-supervised SD method.
Section 4 describes the experiments. Section 5
outlines conclusions and future work.

2 Related Work

Stance detection is a complex form of subjectivity
analysis that focuses on identifying the attitude or
perspective that a speaker or writer has towards a
particular topic or issue. Unlike sentiment analysis
(i.e., positive, negative), SD attempts to identify
more subtle variations in the speaker’s position,
such as whether they are in favor of or against a
particular policy or support or oppose a particular
political candidate (ALDayel and Magdy, 2021).

The task of SD gained significant popularity fol-
lowing the launch of a competition on Twitter dur-
ing Semeval 2016. Two tasks were proposed: super-
vised approaches (Task A) and unsupervised/semi-
supervised approaches (Task B). The competition
provided labeled data encompassing different tar-
gets and a well-defined methodology to assess the
solutions, with a common evaluation metric (Mo-
hammad et al., 2016a). Most studies in SD for
the English language rely on SemEval datasets and
evaluation methodology as a benchmark, which are
limited in scope and size. The SemEval datasets
cover only a specific set of domains and targets, and
their small size may not capture the full complexity
of the task, leading to overfitting or generalization
issues. Therefore, it is important to create new
datasets that can expand the scope of research in
stance detection to other domains, languages, and
targets (ALDayel and Magdy, 2021).

As a reflection of the scarcity of labeled data,
state-of-the-art SD methods heavily rely on com-
plex feature engineering techniques, making their
reproduction a challenging tasks. For example, the
leading SD system (Al-Ghadir et al., 2021) uti-
lizes sentiment lexical dictionaries and ranked lists
of TF-IDF weighted words to train K-NN classi-
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fiers, but its operational details are unclear, hinder-
ing its reproducibility (Gómez-Suta et al., 2023).
Other studies (Aldayel and Magdy, 2019; Lynn
et al., 2019; Darwish et al., 2018) leverage network
information (e.g., hashtags, retweets) to enhance
classifier performance. However, these approaches
require additional user behavior data, which limits
their applicability beyond social media platforms.

Recent studies have focused on developing un-
supervised SD models using clustering techniques.
The system in (Trabelsi and Zaiane, 2018) used
clustering at the author and topic levels, leverag-
ing both the content and interaction networks of
the users. Clustering was leveraged in (Darwish
et al., 2020) to create an initial set of stance par-
titions for annotation and showed that retweets
as a feature provided the best performance score
upon implementing the clustering algorithm. The
work in (Rashed et al., 2021) introduced embed-
ding representations of users’ tweets to enhance
the SD model using hierarchical clustering to an-
alyze fine-grained polarization between groups of
tweets related to the Turkish election. While un-
supervised methods are useful for minimizing the
need for manual labeling, they generally perform
worse than supervised methods when labeled data
is available. Some unsupervised approaches (Dar-
wish et al., 2020; Wei et al., 2019) still require some
level of human supervision or adjustment, but this
can be done more quickly than the manual labeling
of large datasets.

To address the limited availability of labeled
data for SD tasks, some studies (Zhang et al.,
2020; Kawintiranon and Singh, 2021) have incor-
porated transfer learning techniques. These works
involve fine-tuning a pre-trained language model
on the source target data to learn a target-specific
semantic-emotion representation. The resulting
representation is then used to train a classifier for
stance detection on the target with limited labeled
data. By leveraging the transferred representation,
which encodes information about the semantic and
emotional characteristics of the target, the classifier
can be trained with a smaller number of labeled
examples (Han et al., 2021). The transfer learning
approaches CrossNet and TextCNN-E were pro-
posed in (Zhang et al., 2020) for enhancing SD
across multiple targets. However, this approach
requires a large labeled dataset and falls short of
surpassing current state-of-the-art systems in SD.

Works as (Giorgioni et al., 2020; Ferreira and
Vlachos, 2019) have proposed Transformer-based
architectures combined with data augmentation and

fine-tuning. They trained specific sentence classi-
fiers based on UmBERTo using auxiliary datasets
from tasks like sentiment analysis, irony detec-
tion, and hate-speech detection. The resulting la-
bels were then augmented as new sentences in the
SardiStance dataset. This training dataset was ex-
panded by labeling additional tweets using distant
supervision based on specific hashtags. Similarly,
(Hanawa et al., 2019) utilized Wikipedia articles to
extract knowledge for each topic in a seven-themed
dataset. These studies incorporated the concept of
transfer learning by utilizing new datasets beyond
the SemEval stance task.

In summary, complex feature engineering tech-
niques and network information can improve the
performance of SD classifiers, but they are difficult
to reproduce and not practical for use in contexts
other than social media. Unsupervised methods can
minimize the need for manual labeling but gener-
ally perform worse than supervised methods when
labeled data is available. Transfer learning tech-
niques are useful for addressing the limited avail-
ability of labeled data and can be used with smaller
labeled examples, but some approaches require a
large labeled dataset.

We contribute to the field by proposing a novel
semi-supervised method that leverages the PTMs
and semantic search to automatically label a large
domain-related corpus and train an accurate stance
classification model. This approach reduces the
need for manual and costly annotation efforts, en-
abling labeling a large volume of tweets with mini-
mal computational costs.

3 SSSD Overview

SSSD is a novel approach to conducting SD on
Twitter using PTMs and semantic search. It ex-
plores PTMs to capture the semantic and contex-
tual meaning of tweets, taking advantage of the
strengths of deep learning-based approaches. By
leveraging the power of PTMs and semantic search,
we aim to automatically label a domain corpus for
training SD models. PTMs are pre-trained on ex-
tensive text data to acquire general language repre-
sentations that can be further fine-tuned for specific
tasks such as SD on Twitter.

SSSD is semi-supervised: it relies on a set of
labeled queries as input to the semantic search al-
gorithm that automatically labels a larger corpus of
domain-related tweets, which is then used to train a
stance classification model. This reduces the effort
required to label a large volume of tweets, while
still achieving good classification performance.
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By using semantic search to identify the most
relevant tweets for each query, SSSD can focus
on the most important posts for the stance classifi-
cation problem while ignoring irrelevant or noisy
data. This is an advantage compared to unsuper-
vised approaches, which may struggle to identify
the most relevant data, especially in noisy and com-
plex datasets like Twitter.

The remaining of this section describes the input
data required by SSDS, and the semantic stance
detection process.

3.1 Input Data

SSSD requires two inputs: a set of tweets represent-
ing the domain (domain-set) and a set of labeled
tweets with representative arguments used to ex-
press a stance (query-set). The domain-sets are
unlabeled tweets about the target, and we aim to
label them. The query-sets are a sample of tweets
manually annotated with stance labels, typically in
favor, against, and none. They are used to automat-
ically label tweets of the domain-set, to compose
a training set, i.e. a set of labeled tweets used as
input to some classification algorithm.

Domain-set tweets can be collected using the
Twitter API. Typically, tweets are filtered within a
period of interest, and keywords representative of
the target. Hashtags can be a useful strategy as they
tend to capture the homophily and social influence
related to the target (Darwish et al., 2020). Rele-
vant hashtags can be found in Twitter’s top trends
section. They also serve as seeds in a snowballing
process that identify other related hashtags based
on co-occurrence. It is crucial to define an appro-
priate search period to avoid bias. For instance,
when detecting stances regarding the candidates
of an election, the search period should be care-
fully chosen to represent the stances as the election
campaign progresses.

The critical task in our approach is the definition
of a proper set of seeds to compose the query-set. In
case labeled data does not exist, and the knowledge
about the data is limited, a possible approach is
to use advanced topic modeling methods such as
BERTopic (Grootendorst, 2022) to gain a global
understanding of the corpus and identify tweets
representing different stances. An advantage of this
particular method is that it uses semantic similarity
and density-based clustering, and hence topics are
dense regions of similar tweets. It also provides
visualization and interpretation features to explore
and understand the topics and select representative
documents from each topic. For instance, (Ebeling

et al., 2022) identifies the representative arguments
and political bias in anti/pro-vaccination stances
using BERTopic.

Standard pre-processing techniques should be
applied to improve the quality and effectiveness of
semantic search in tweets. These include the re-
moval of punctuation marks, case conversion, and
elimination of irrelevant characters (e.g., hashtags,
links, and numbers), among others.

A labeled validation set is necessary to evaluate
the performance of the trained stance classification
model, using traditional metrics such as accuracy
or F-measure. This can be a separate input set,
but our method assumes (part of) the query-set can
also be used for this purpose. To avoid bias, we
included a maximum similarity threshold in the
semantic search, as explained in the next section.

3.2 Semantic Stance Detection

Capturing contextual information and nuances in
language can be crucial for accurate stance detec-
tion. SSSD uses a chosen PTM to transform tweets
into embedding to capture the semantic meaning
of the text and enable effective comparison and
retrieval of similar tweets. This process requires a
search function f(q, k), which returns the k tweets
from the domain-set with the highest similarity
scores concerning the argument q.

We performed two adaptations to this search
function. First, we assume q is a pair
<tweet,stance> belonging to the query-set, to en-
able the automatic labeling of the k most similar
tweets. We also introduced an additional parameter
to filter the retrieved tweets based on a maximum
similarity threshold. This threshold ensures that
tweets from the query sets are not included in the
labeled training tweets, thus avoiding potential bi-
ases in model evaluation.

We divided our method into two steps, Semantic
Labeling, and Stance Detection, detailed below.
(a) Semantic Labeling: This step is responsi-
ble for automatically labeling tweets to compose
a training set, given a domain-set and a query-set.
The output is a set of labeled tweets (training-set),
which is used in the next step to train a stance clas-
sification model using a supervised ML algorithm.
Table 1 presents the pseudo algorithm.

First, both the query-sets and domain-sets are
converted into embeddings using a chosen PTM
(e.g. BERT, GPT) or similar models (Step 1). Af-
ter obtaining the embeddings, a search function is
used to compare each element q of the query-set
with the domain-set tweets. This comparison is
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Function: perform semantic labeling(query set, domain set, k, similarity threshold)
Input:

query set: Labeled tweets with stance labels
domain set: Unlabeled tweets
k: Number of similar tweets to select
similarity threshold: Maximum similarity threshold

Output: training-set (Labeled tweets from domain-set)
Step 1: Convert query-sets and domain-sets into embeddings using a chosen PTM

training set = []
query embeddings = convert to embeddings(query set)
domain embeddings = convert to embeddings(domain set)

Steps 2-5: Loop over each query in query set
for q in query set do

Step 2: Calculate similarity scores between query embeddings[q] and domain embeddings
similarity scores = get scores(query embeddings[q], domain embeddings)

Step 3: Select the top-k tweets with the highest similarity scores
top k tweets = select top k tweets(similarity scores, k, similarity threshold)

Step 4: Assign the corresponding stance labels from query set[q] to top k tweets
labeled tweets = assign stance labels(top k tweets, stance(q))

Step 5: Add to training set, handle ties using similarity
training set = append and handle ties (training set, labeled tweets)

end for
Return: training set

Table 1: Pseudo Code for the Semantic Labeling of SSSD

done by calculating similarity scores between the
embeddings of query q and the embeddings of the
domain-set tweets (Step 2). The similarity score
can be computed using various methods, such as
cosine similarity. Then, using the input k, the top-k
tweets with the highest scores are selected (Step 3).
There are situations where the same tweet can be
present in both the labeled data and the query-sets.
To avoid any biases, particularly when using part of
the query-sets for performance validation, it is rec-
ommended to set a maximum similarity threshold
smaller than 1 (e.g., 0.95).

The selected top-k tweets are assigned the cor-
responding stance label for q (Step 4). Finally, the
labeled tweets are included in the training set (Step
5). It is possible that a given tweet of the domain-
set is similar to different queries from the query-set.
If ties occur, we select the stance associated with
the highest similarity score. Notice that the higher
the value of k, the higher the likelihood of ties.
Therefore, it is advisable to choose an appropri-
ate value for k to minimize ties and ensure more
consistent labeling results.

This process enables to scale the labeling of
tweets in the domain-set that have a similar stance
to the ones in query-set, facilitating effective stance
detection on Twitter. The number of labeled tweets
in the training set depends on both the value of k
and the size of the query-set. Increasing the value
of k results in more labeled tweets, but it is impor-
tant to find a balance between the number of labeled
tweets and maintaining high similarity scores. The
size of the domain-sets also affects the maximum

number of labeled tweets that can be obtained. If
the domain-sets are smaller, there will be a limit on
the number of tweets that can be labeled.

Experimentation is key to determine the optimal
value of k for effective stance detection on Twitter.
The ideal value can be identified by varying the
value of k and assessing the results using metrics
such as F1-score. This iterative process of adjust-
ing k and analyzing performance metrics leads to
improved accuracy and effectiveness in the stance
detection task.

(b) Stance Detection: The process described
above is effective in SD, but it does have limitations.
Increasing k can expand the coverage of labeled
data, but it also increases the risk of more incorrect
classifications due to degraded similarity scores.
Training classification models using labeled data
generated in the previous step is recommended to
enhance accuracy and generalization. Then, the
remaining unlabeled tweets of the domain-set can
be assigned a label using this model.

There are various supervised machine-learning
models suitable for this task, including Logistic
Regression, Decision Trees, Support Vector Ma-
chines, RNNs, CNNs, and LSTMs. The choice
of model and feature extraction method depends
on the specific task, dataset, and available compu-
tational resources. In some cases, using the em-
beddings generated in the previous step as input
features can be a more efficient and effective ap-
proach. The performance of the SD model can be
assessed using the validation set.
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4 Experiments

Our experiments were designed to assess the per-
formance of SSSD against baseline systems and
the influence of the value of k in our results. In this
section we describe the data and chosen baselines,
and detail the experiments. All our experiments are
reproducible, and the code and tools used in their
development are available in a public repository1.

4.1 Data

We developed our experiments using the Semeval
datasets (Mohammad et al., 2016b) for tasks A and
B. Task A included five different targets: ”Atheism
(Ath)”, ”Climate Change is a real concern (Cls)”,
”Feminism (Fmn)”, ”Abortion (Abt)”, and ”Hillary
Clinton (Hlr)”. The training dataset for Task A
consisted of 2,914 labeled tweets, while the testing
dataset had 1,246 labeled tweets. Task B focused
on an unsupervised approach with the target ”Don-
ald Trump (Trp)”. The evaluation for Task B in-
volved a dataset of 707 labeled tweets and 78,000
unlabeled tweets. The documentation provides fur-
ther information on the period and the hashtags
used for collecting this datasets2.

We constructed the domain-sets for each target
from scratch, using the Twitter API. We parameter-
ized each search to use the same period as Semeval
(January 1 to December 31, 2016), and the same
keywords. For the creation of the query-sets, for
each target of Task A we combined the training
and testing sets. For the target of Task B, we used
the validation set. Each instance in a query-set
includes a tweet and a stance label, indicating sup-
port, opposition, or neutrality toward the target. A
summary of the distribution of tweets across the
data sets is shown in Table 2. These datasets were
pre-processed as described in Section 3.1.

To evaluate the performance of the trained model
for all targets, we used the respective Semeval
test/validation tests. To avoid biases, we introduced
a similarity threshold of 0.95. Consequently, any
query result with a similarity score above 0.95 was
deemed dissimilar to the original query, guarantee-
ing the integrity and fairness of the labeling process
while mitigating potential biases in the similarity
of training and test sets.

4.2 Evaluation Metrics and Baselines

The evaluation metric used for both tasks was the
macro-average F1-score, which was computed for

1https://github.com/mediote/stance-detection
2www.saifmohammad.com/WebPages/StanceDataset.htm

SemEval’s ”Favor” and ”Against” classes for all
five targets in Task A and for the single target ”Don-
ald Trump” in Task B. This metric regards the class
“None” as of no interest, i.e. a negative class in
terms of Information Retrieval (IR) (Mohammad
et al., 2016b). As baselines, we chose (Al-Ghadir
et al., 2021) for Task A, and (Lai et al., 2017) for
Task B. To the best of our knowledge, these are
the state-of-the-art systems for these tasks, with
F1-avg of 76.4% and 79.7%, respectively.

4.3 Experimental Setup

SDDD can be configured according to several com-
ponents, and our choices are detailed below:

1. PTMs: We selected the ”all-MiniLM-L6-v2”
model (Wang et al., 2020). It provides compara-
ble quality to models like MPNET (Ahmed et al.,
2020) but with significantly faster performance.

2. Classification Algorithms: To assess if the
choice of algorithm influenced the results, and if
any model exhibited overfitting for specific tar-
gets, we experimented with multiple classifica-
tion algorithms. We report here the results of the
ones that yielded the best performance, namely
Logistic Regression (SSSD-RL), Support Vec-
tor Machines (SSSD-SVM) and Random Forest
(SSSD-RF).

3. Feature Extraction: to extract features from
labeled tweets, we employed TF-IDF and bi-
grams. These techniques capture important in-
formation from the text and serve as inputs to
the classification models.

4. Parameter k: We conducted experiments with a
range of k values, experimenting 20 values for
k, starting from 5 and incrementing by 5 in each
iteration. This iterative process is akin to tradi-
tional K-NN models, allowing us to determine
an optimal k value that enhances classification
performance.

For each target (6) and classification algorithm
(3), we performed a total of 20 iterations (values of
k), resulting in the creation of 60 models per target.

4.4 Experiment 1: Method Perfomance

The goal of this experiment is to compare the per-
formance of SSSD against the chosen baselines.
The best results for each Semeval task are presented
in Tables 3 and 4, together with the respective k.

In Task A, our method significantly outper-
formed the baseline (Al-Ghadir et al., 2021), which
achieved an F-score of 76.4% for overall stance
detection (Favg). In contrast, SSSD-RL achieved
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Ath Abt Clc Fmn Hlr Trp Total
query-sets 804 882 564 959 929 707 4.845

domain-sets 688.854 225.889 249.656 121.049 1.481.868 598.991 3.366.307

Table 2: Summary of tweets the representing targets

Systems Overall Ath Abt Clc Fmn Hlr
Ffavor Fagainst Favg Favg Favg Favg Favg Favg

Baseline
Al-Ghadir 84.4% 68.3% 76.4% 73.5% 74.7% 73.4% 72.9% 75.0%

Our systems
SSSD-LR 87.3% 93.5% 90.4% 89.1%75 82.0%75 89.3%55 78.5%40 80.1%55

SSSD-SVM 86.3% 92.7% 89.5% 88.5%80 80.0%20 88.2%80 77.2%20 81.2%85

SSSD-RF 80.0% 87.8% 84.3% 80.0%85 74.9%80 79.6%35 70.1%80 71.5%70

Table 3: Results on Task A datasets

Systems Overall Trp
Ffavor Fagainst Favg Favg

Baseline
Lai el al. 79.7% 62.9% 79.4% 75.0%

Our systems
SSSD-LR 87.4% 93.2% 90.3% 84.7%85

SSSD-SVM 88.0% 93.2% 90.6% 85.2%40

SSSD-RF 80.6% 86.3% 83.4% 75.1%65

Table 4: Results on Task B datasets

an impressive Favg of 90.3%, representing a sub-
stantial increase of 13.9 pp (percentage points).
Similarly, SSSD-SVM achieved an Fav) of 90.6%,
outperforming the baseline by 14.2 pp. SSSD-RF
presented a slightly inferior performance compared
to SSSD-RL and SSSD-SVM, but it outperformed
the baseline by 7 pp. When considering individ-
ual targets, the performance differences were also
remarkable. For instance, the SSSD-LR model
showed performance differences ranging from 5.1
pp in the Hlr dataset to 15.9 pp in the Clc dataset.

Table 4 shows that all our systems outperformed
the baseline for Task B proposed by (Lai et al.,
2017) in terms of overall Favg, Ffavor, Fagainst,
and Favg Trp. The best results were yielded
by SSSD-SVM, which outperformed the baseline
Overall Favg in 11.2 pp, due to an improvement in
both Ffavor (8.3 pp) and Fagainst (30.3 pp). The
worst results were achieved by SSSD-RF, and de-
spite that, it also outperformed the baseline. Our so-
lutions outperformed all metrics, in improvements
that range from 0.1 pp (SSSD-RF Favg Trp) to 30.3
pp (SSSD-SVM overall Favg).

Our approach has demonstrated remarkable per-
formance in both Task A and Task B of SemEval,
positioning us as the new state-of-the-art in Stance
Detection. In Task A, we achieved a substantial
increase of 18.5 pp compared to the baseline pro-
posed by (Al-Ghadir et al., 2021). This signifi-
cant improvement showcases the effectiveness of
our method in accurately detecting stances across
different datasets. Similarly, in Task B, our sys-

tems outperformed the baseline proposed by (Lai
et al., 2017) by approximately 14.1 pp, highlighting
our advancements in stance detection for this task.
These impressive results not only demonstrate the
superiority of our approach but also solidify our
position as the leading solution in the field.

4.5 Experiment 2: Influence of K

The value for k plays a crucial role in balancing the
similarity scores and the number of labeled tweets,
thereby influencing the performance of our method.
We assessed its impact on three variables: the num-
ber of labeled tweets, similarity scores of retrieved
tweets, and the classification performance.

Figure 1 displays the results of the relationship
between k and the number of labeled tweets and
the similarity. In Figure 1.(a) we can observe, as
expected, a linear growth of the number of labeled
tweets as the value of k increases. It is interesting
to note that, for all datasets, a significant number
of tweets are labeled even with a low k value (e.g.,
about 20k tweets for k = 25). Figure 1.(b) displays
the mean similarity value according to the value
of k. It is possible to observe the degradation of
similarity scores as the value of k increases.

Figure 2 illustrates a consistent pattern in the
relationship between overall Favg metric (average
F-score) and k across all datasets and classification
algorithms. As k increases, Favg also increases
until it reaches a point of stability, where there is a
concentration of similar Favg values on the graph.
However, as k approaches 100, very often the Favg
values start to decline, indicating a degradation
in scores. This pattern is particularly evident in
the Trump, Atheism, and Hillary datasets. This
observation is further supported by the findings
presented in Figure 1.(a).

Although most of our best results were achieved
with k = 60, establishing a fixed value for all cases
is not an adequate solution. Considering the results
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(a) k and number of labeled tweets

(b) k and cosine similarity

Figure 1: Relationship between k, labeled tweets, and
similarity scores.

Figure 2: Relationship between K and Favg

in Tables 3 and 4, we see that for each dataset and
classification algorithm, there is a specific k that
provides the best trade-off between k and Favg.

The correlation matrix in Figure 3 summarizes
all the points discussed so far. Higher k values
positively impact the number of labeled tweets,
negatively impacts the similarity, with a minor im-
pact on Favg. We also notice a negative impact
caused by high similarities concerning Favg and
number of labeled tweets, confirming the need for
a balance between these variables for good results.

5 Conclusions

In this work, we proposed SSSD, a semi-supervised
method for SD on Twitter based on semantic search.
We leverage PTMs in combination with a top-
k function to retrieve and label domain-specific
tweets, which are then used the automatic label a

Figure 3: Correlation matrix

dataset to train a supervised classification model. It
reduces the dependence on large annotated datasets
while significant improving classification perfor-
mance. We largely outperformed state-of-the-art
supervised systems using the Semeval stance detec-
tion benchmark.

In our evaluation, we tested different k values,
assessing their impact on performance with various
datasets and classifiers. The results showed that
our method is robust and has a high degree of gen-
eralization. We also found that the optimal k varied
based on the specific scenario, with a trade-off be-
tween similarity scores and the number of labeled
tweets to maximize ranking performance. Overall,
our findings indicate that our method is effective
for various SD scenarios, but the value of k needs
to be identified experimentally.

We have shown that by leveraging PTM and se-
mantic search, our method handled the nuances
and complexities of stance automatic labeling. Our
approach is simple, computationally inexpensive,
and the encouraging results motivates us to further
investigate it in other text classification tasks, mak-
ing it a valuable contribution to the field of NLP by
addressing the challenge of labeled data scarcity.

As future work, we intend to qualitatively eval-
uate our method regarding some challenges faced
when analyzing social phenomena on Twitter. One
of them is the bias introduced in the interpretation
of topics due to hashtags to represent the objects
of study. A common example is false positives,
where a tweet is falsely inserted in the context of
a hashtag by refuting the idea represented by it,
usually through replies. There is also the scenario
where a hashtag is purposefully linked to events
(e.g. games, famous artists) outside of its context
to increase its relevance and impact artificially.
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Manuela Gómez-Suta, Julián Echeverry-Correa, and
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