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Abstract

One of the many advantages of pre-trained
language models (PLMs) such as BERT and
RoBERTa is their flexibility and contextual na-
ture. These features give PLMs strong capabil-
ities for representing lexical semantics. How-
ever, PLMs seem incapable of capturing high-
level semantics in terms of compositionality.
We show that when augmented with the rele-
vant semantic knowledge, PMLs learn to cap-
ture a higher degree of lexical compositional-
ity. We annotate a large dataset from Wikidata
highlighting a type of semantic inference that
is easy for humans to understand but difficult
for PLMs, like the correlation between age and
date of birth. We use this resource for fine-
tuning DistilBERT, BERT large and RoBERTa.
Our results show that the performance of PLMs
against the test data continuously improves
when augmented with such a rich resource.
Our results are corroborated by a consistent
improvement over most GLUE benchmark nat-
ural language understanding tasks.

1 Introduction

Given their recent success in various natural lan-
guage processing (NLP) tasks, there has been in-
creasing work on understanding the abilities of pre-
trained language models (PLMs) beyond what they
can memorize. Having been trained on billions
of words, BERT (Devlin et al., 2019) has shown
impressive language representation abilities. How-
ever, there has not been much work on the degree
of knowledge that BERT could infer about different
topics from just the lexical information that they
are trained on. Therefore, there has been a growing
interest in probing PLMs on all kinds of linguistic,
syntactic and semantic features (Huang et al., 2021;
Beloucif and Biemann, 2021; Huang et al., 2021;
Mosbach et al., 2020; Tenney et al., 2019; Peters
et al., 2018b,a; Devlin et al., 2019; Radford and
Narasimhan, 2018; Broscheit et al., 2022).

Figure 1: Multiple inferences are systematic for hu-
mans; however, they are much harder for NLP models
to capture.

Figure 1 shows a few examples of high-level se-
mantics relating to compositionality. For instance,
when asked questions such as “What’s higher Mt.
Everest or Mt. Fuji?´´ or “How tall is Bill Clin-
ton?´´, a person would most likely, and naturally
think about altitude and height respectively, to accu-
rately answer this question. When it comes to rea-
soning and inferences between semantic attributes
(net worth) and their values (rich), humans can
systematically infer between these concepts. The
closer semantics in NLP that fits this case is com-
positional semantics since we investigate how dif-
ferent words in a sentence are linked to other words
i.e. net worth being linked to wealth, and altitude
is linked to the height of a mountain.

In this paper, we create a large dataset from Wiki-
data (Vrandečić and Krötzsch, 2014), where each
sentence contains two words that are semantically
related. We then fine-tune three pre-trained lan-
guage models, namely BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and DistilBERT (Sanh
et al., 2019), using this data. We create test data
that has the same style as the training data, but with
different objects and inferences. We obtained a re-
markable boost in the quality on the test data. Fur-
thermore, we also report a consistent improvement
over the GLUE benchmark for natural language
understanding (Wang et al., 2018).

Our main contributions are:
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Figure 2: The hierarchical structure of Wiki-
data(Vrandečić and Krötzsch, 2014) allows us to have
access to semantically sound data using different Wiki-
data entities as objects.

• a large dataset containing high-level semantics
inferences,

• fine-tuning BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and DistilBERT
(Sanh et al., 2019) on a more semantically
sensitive dataset using the masked language
model predictions,

• improvements over the test data as well as
the GLUE benchmark for natural language
understanding.

2 Probing Pre-trained Language Models

Using probes has become a common way to inves-
tigate the knowledge encoded in transformer-based
(Vaswani et al., 2017) pre-trained language models
such as BERT. These investigations have varied
from linguistic features to include commonsense
knowledge and social biases that PLMs might have
learned during the training. Wallace et al. (2019)
used question answering to show that PLMs fail at
rational reasoning when it comes to capturing the
numerical commonsense. More work has focused
on studying different linguistic features and the
level of linguistic competence in different PLMs
(Mosbach et al., 2020; Tenney et al., 2019; Peters
et al., 2018b) by making use of fine-tuning and
sentence-level semantics. Probes were also used to
identify social toxicity and bias towards different
interest groups as we as gender bias (Ousidhoum
et al., 2021; Stanczak et al., 2021). Other prob-
ing experiments have been proposed to study the
drawbacks of PLMs in areas such as the biomed-
ical domain (Jin et al., 2019), syntax (Hewitt and
Manning, 2019), semantic and syntactic sentence
structures (Yenicelik et al., 2020; Tenney et al.,

2019; Peters et al., 2018b), linguistics (Belinkov
et al., 2017; Clark et al., 2020; Tenney et al., 2019)
and commonsense knowledge (Petroni et al., 2019;
Davison et al., 2019; Talmor et al., 2020). When it
comes to language understanding, Yenicelik et al.
(2020) showed that when it comes to polysemy,
BERT creates closed semantic regions that are not
clearly distinguishable from each other. Another
finding relating to semantics (Beloucif and Bie-
mann, 2021) conveys that, unlike syntax, semantics
and general world knowledge are not inherently
learned, and thus not brought to the surface by the
representations obtained from pre-trained language
models.

3 Data Creation

We use the knowledge graph extracted from Wiki-
data to construct the dataset. Wikidata (Vrandečić
and Krötzsch, 2014) is a collaborative knowledge
base, containing triples (entity id, property id, value
id) that define a type of relation holding between
an entity and a value. Wikidata also contains labels
and aliases for the properties, entities, and values,
which makes it the perfect resource for extract-
ing similar objects that are likely to have similar
values. We then investigate the ability of PLMs
to capture the semantic relationship between the
attribute-value pairs and further fine-tune PLMs to
capture this relation effectively. 1

Algorithm 1: Creating fine-tuning data
from Wikidata objects.

Result: fine-tuning dataset
fine-tuning-data=; while keyword in (food,
furniture, city, tool) do

AllData=extract all subclasses of keyword from
Wikidata,

end
while i=0, i<size(alldata), i++ do

BERT − sent(i)= BERT prediction on
sentence i, extract all subclasses of keyword
from Wikidata,

if BERT-sent(prediction) == accurate-prediction
then

fine-tuning-data=fine-tuning-data +
BERT-sent(i)

else
end

In the knowledge graph, we focused on entities
that were labeled food, furniture, city and tool, with
nutritious-healthy, wider-width, rainfall-humidity
and longer-length as entity-value pair respectively.

1The final dataset and the code are avail-
able here: https://github.com/mihir86/
Fine-Tuning-BERT-with-Wikidata

 https://github.com/mihir86/Fine-Tuning-BERT-with-Wikidata
 https://github.com/mihir86/Fine-Tuning-BERT-with-Wikidata
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Model
Top Prediction Accuracy Top 5 Prediction Accuracy

PTLM
one-word-
fine-tuned

two-word-
fine-tuned

all-words-
fine-tuned PTLM

one-word-
fine-tuned

two-word-
fine-tuned

all-words-
fine-tuned

DistilBERT-base 24% 62% 56% 66% 46% 96% 94% 92%

RoBERTa-large 20% 38% 38% 8% 44% 78% 70% 42%

BERT-Large 0% 26% 24% 22% 0% 42% 36% 40%

Table 1: The Performance of BERT on the test data.

Food is selected as the key because food items ex-
hibit the attribute of nutrition, and thus comparing
the subclasses of food, in terms of their nutrition
can enable us to compare which food item is more
healthy. For city, different cities have different
rainfall and thus comparing the rainfall between
different subclasses and instances of city can en-
able us to compare which city has more humidity.
We applied the same analysis to furniture and tool.

In order to capture the semantic relationship be-
tween the attribute-value pairs, we create a dataset
from the sentences where the value in the attribute-
value relationship had been accurately predicted by
BERT. The subclasses and instances of the keys
food, furniture, city and tool were extracted from
the knowledge graph and then used in combina-
tion with each other to create sentences of the form
“Which is [attribute], and thus has more [value],
[object 1] or [object 2]´´ where the objects repre-
sent the words used for comparing the attribute-
value pair. For example, to analyze the ability
of PLMs to capture the semantic relationship be-
tween wider(attribute) and width(value), we con-
sider bed(Object 1) and chair(Object 2) to be the
chosen subclass combinations of the key furniture.
Therefore, the sentence “Which is wider, and thus
has more width, bed or chair?´´, is constructed
with width(value) being masked.

Our final dataset contains around 8,000 fine-
tuning samples, using five distinct attribute-value
pairs. We divided our data into three categories, a
dataset containing: (1) one-word objects, such as
chairs, and couscous; (2) one-word objects and two-
word compounds, such as folding chairs and bean
sprout; and (3) all possibilities, including three-
word compounds, such as aged cheddar cheese and
slip joint plier. The purpose is to check how com-
pound words affect the accuracy of the fine-tuned
model, or in other words, does it matter to the PLM
whether a noun is a compound or not?

4 Fine-Tuning PLMs for High-level
Semantics

We used Huggingface(Wolf et al., 2019, 2020)
for fine-tuning BERT (Devlin et al., 2019),
RoBERTa(Liu et al., 2019) and DistilBERT(Sanh
et al., 2019) 2. For the fine-tuning, 15% of the
tokens were masked randomly and the PLMs are
fine-tuned with a masked language model objective
by minimizing the loss based on the gold standard.
The fine-tuned model is then evaluated on the test
dataset, which consists of 50 different sentences
with different semantic relationships.

5 Experimental Setup

Test data When finetuning the PLMs, one of the
most challenging tasks is to prove that model could
learn from the finetuning and is not just overfitting
to the specific task. For that reason, we are testing
on two different datasets: A Wikidata-based test
set and the GLUE benchmark for natural language
understanding (Wang et al., 2018). BERT-based
models have significantly increased state-of-the-
art over the GLUE benchmark, and most of the
best scoring models for this benchmark include or
elaborate on BERT.

We train our model on five topics, with different
objects, but we test on 50 different attribute-value
pairs. In order to show a certain generalization over
the training data, we made sure that no attribute-
value pair from the training is part of the test data.
The masked word is then predicted by different
PLMs. The accuracy of the top one and top five
predictions is calculated. We purposefully diver-
sify our test set from our training set to show that
the improvement is not mere memorization. Our
test data contains different objects such the Eiffel
Tower or Burj Khalifa, which are both instances

2https://huggingface.co/models

https://huggingface.co/models
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Model Score CoLA MNLI (M/MM) MRPC QNLI QQP RTE SST-2 STS-B WNLI

DistilBERT 75.3 47.2 80.8 / 82.0 85.6 88.2 85.6 52.7 90.4 84.1 56.3

DistilBERT-FT 76.0 49.9 80.8 / 81.8 87.1 88.4 85.5 56.3 90.1 85.0 54.9

RoBERTa 83.5 63.6 90.2 / 90.2 91.4 93.8 92.2 71.2 95.3 91.7 55.3

RoBERTa-FT 83.6 64.7 89.4 / 89.2 91.5 94.1 92.4 72.6 95.0 92.6 54.9

BERT 79.5 60.5 86.7 / 85.9 89.3 92.7 72.1 70.1 94.9 86.5 56.3

BERT-FT 80.3 61.1 86.6 / 86.5 90.9 93.6 72.4 72.9 92.4 90.2 56.3

Table 2: The Performance of all three models on the GLUE benchmark.

Figure 3: BERT cannot predict the correct predictions
when it comes to the mountain context. After fine-
tuning, the predictions are more relevant to the context,
even though altitude was not part of the fine-tuning data.

of the subclasses observation tower and tourist at-
tractions. We report the accuracy (Table 1) in two
distinct cases: (1) is the top one prediction correct?;
and (2) is the correct prediction within the top five
predictions?

Results Table 1 shows the prediction accuracy
for all three models, before and after fine-tuning.
The performance gain is consistent across the top
one prediction and the top five predictions. We
note from Table 1 that DistilBERT has the highest
improvement compared to RoBERTa and BERT
large. RoBERTa and BERT large are more sensitive
to compound words, and they perform best with
the one-word object and two words object. For
the top five prediction accuracy, all three models
perform best without compound words. In Figure
3 we show a concrete example from DistilBERT
fine-tuning. We note from the example that, even
though altitude is not part of the fine-tuning dataset,
PLMs are now able to generalize from the concepts,
rather than just memorize the words.

Testing on the GLUE benchmark corroborates
this finding even further. Table 3 shows a sig-
nificant improvement for some tasks and a slight
improvement on other tasks. More specifically,

we note that for the single task datasets, such
as the Corpus of Linguistic Acceptability, CoLa
(Warstadt et al., 2019), and for The Stanford Senti-
ment Treebank, SST-2 (Socher et al., 2013) there
is a significant gain for the fine-tuned models.
The same applies to inference tasks; Microsoft
Research Paraphrase Corpus, MRPC, the Quora
Question Pairs datasets, and the Semantic Textual
Similarity Benchmark, STS-B (Cer et al., 2017),
achieve a similar improvement. The consistent
improvement over the semantically driven tasks
shows that our fine-tuning helps PLMs capture
more high-level semantics.

6 Conclusion

In this paper, we investigate how PLMs capture
a very specific type of compositionality between
different concepts. We also finetune two different
PLMs on five different attribute-value pairs and test
the model on 50 annotated themes. The training
data and the test data have different topics and
wording. Additionally, we purposefully limited the
fine-tuning data for the scope of this short paper,
since we did not want to make PLMs memorize
all possible concepts. Our results show that, by
having a resource that contains a basic level of
lexical compositionality, we indeed help improve
PLMs accuracy. However, we also show that there
is more improvement in the GLUE tasks that are
more semantically sensitive.

7 Limitations

Compositionality is a strong human characteris-
tic when it comes to languages. In this paper, we
created a synthetic dataset in order to help PLMs
learn high-level semantics compositionality. The
main limitation is the difficulty to test all possible
cases. Compositionality is a challenging task, we
show that we are able to generalize over limited test
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data, however, given their complex architecture, it
is challenging to make test generalizations in the
human sense. The second point is related to the
created dataset, although widely accepted in the
field, synthetic data suffers from human authentic-
ity. More specifically, in an everyday conversation,
when a person is asked about their age, the deduc-
tion in the human brain is automatic. It is chal-
lenging to present that concept through a sentence,
which is what we tried to do here for testing and
enabling the finetune.
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A Appendix A

We use the AdamW optimizer along with a learn-
ing rate of 1e-4 and a batch size of 16 for fine-
tuning. We perform the fine-tuning experiment
with 2,3 and 4 epochs and with different varieties
of datasets ranging from ‘one-word’, ‘two-word’
and ‘all-words’ cuts inside the dataset created.
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Sentence PTLM Predictions Fine tuned Predictions

We need the altitude to determine which
is [MASK], Mt. Everest or Mt. Fuji. summit, Mt, Mount, highest, peak higher, humid, nearby, hotter, warmer

Which is taller and thus has more
[MASK], Eiffel Tower or Burj Khalifa? seats, windows, rooms, room, wings rainfall, width, height, weight, mass

We need the height to determine who is
[MASK], Dwight D. Eisenhower or Bill
Clinton

tallest, taller, tall, seated, correct taller, tall, seated, correct, next

Rock is heavier, thus has a higher
[MASK]. density, weight, yield, hardness, content weight, rainfall, density, mass, temperature

This road is wider, thus it has more
[MASK]. lanes, traffic, curves, bends, access width, length, traffic, rainfall, weight

Which is deeper, and thus has more
[MASK], swimming pool or ocean? water, pool, pools, depth, amenities depth, rainfall, width, length, depths

Which is deeper, and thus has more
[MASK], oil well or water well? wells, water, depth, well, reservoirs depth, rainfall, width, depths, deeper

Who was born earlier, and is thus
[MASK], Narendra Modi or Rahul
Gandhi?

named, called, unknown, mentioned, identified older, younger, more, healthy, born

Table 3: Examples of Semantic Improvement through fine-tuning. The examples are extracted from the test set.

Model Iterations Training loss Top Prediction Accuracy Top 5 Prediction Accuracy

DistilBERT-base-cased 2 0.015 58% 96%

RoBERTa-large 2 0.107 24% 70%

BERT-Large 2 0.397 22% 36%

DistilBERT-base-cased 3 0.0237 62% 96%

RoBERTa-large 3 0.114 38% 78%

BERT-Large 3 0.171 28% 36%

DistilBERT-base-cased 4 0.01 56% 90%

RoBERTa-large 4 0.124 34% 64%

BERT-Large 4 0.171 26% 42%
Table 4: Performance of BERT Fine-tuned with single word combinations in Wikidata on Test Dataset.
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Model Iterations Training loss Top Prediction Accuracy Top 5 Prediction Accuracy

DistilBERT-base-cased 2 0.0644 56% 94%

RoBERTa-large 2 0.00407 38% 70%

BERT-Large 2 0.365 24% 36%

DistilBERT-base-cased 3 0.012 44% 86%

RoBERTa-large 3 0.165 30% 64%

BERT-Large 3 0.17 24% 36%

DistilBERT-base-cased 4 0.0382 46% 84%

RoBERTa-large 4 0.0447 32% 54%

BERT-Large 4 3.35 0% 0%
Table 5: Performance of BERT Fine-tuned with single and two word combinations in Wikidata on Test Dataset.

Model Iterations Training loss Top Prediction Accuracy Top 5 Prediction Accuracy

DistilBERT-base-cased 2 0.0628 66% 92%

RoBERTa-large 2 0.154 8% 42%

BERT-Large 2 0.394 22% 40%

DistilBERT-base-cased 3 0.0261 70% 88%

RoBERTa-large 3 3.24 0% 0%

BERT-Large 3 0.13 18% 38%

DistilBERT-base-cased 4 0.0604 68% 86%

RoBERTa-large 4 3.12 0% 0%

BERT-Large 4 0.0404 18% 40%
Table 6: Performance of BERT Fine-tuned with all combinations in Wikidata on Test Dataset.


