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Abstract

Multi-document summarization (MDS) is a
difficult task in Natural Language Processing,
aiming to summarize information from sev-
eral documents. However, the source docu-
ments are often insufficient to obtain a qualita-
tive summary. We propose a retriever-guided
model combined with non-parametric memory
for summary generation. This model retrieves
relevant candidates from a database and then
generates the summary considering the candi-
dates with a copy mechanism and the source
documents. The retriever is implemented with
Approximate Nearest Neighbor Search (ANN)
to search large databases. Our method is eval-
uated on the MultiXScience dataset which in-
cludes scientific articles. Finally, we discuss
our results and possible directions for future
work.

1 Introduction

Multi-document summarization is performed using
two methods: extractive (Wang et al., 2020; Liu
et al., 2021) or abstractive (Jin et al., 2020; Xiao
et al., 2022). So-called extractive methods rank sen-
tences from source documents that best summarize
them. These methods reuse important information
well to construct a good summary but they lack
coherence between sentences. To overcome this
issue, abstractive methods are studied to imitate
human writing behavior. They show great perfor-
mance in human writing style but they often miss
key information.

To make abstractive models aware of essential
information, (Dou et al., 2021) guides their model
with additional information like a set of keywords,
graph triples, highlighted sentences of source doc-
uments, or retrieved similar summaries. Their
method, which uses every guidance previously
mentioned, improves summary quality and control-
lability compared with unguided models. However,

guidances require specific training data, especially
for keywords, graph triples, and highlighted sen-
tences.

Our proposal is that by guiding with pre-existing
summaries, the model can draw inspiration from
the summary as a whole. But also be able to ex-
tract keywords and phrases using a copy mecha-
nism. Consequently, this work focuses on guidance
by similar summaries extracted from a knowledge
base using a similarity metric between source doc-
uments and pre-existing summaries. The model,
inspired by RAG (Lewis et al., 2020), is fully dif-
ferentiable. In addition, the model generator uses a
copy mechanism on the candidates returned from
the knowledge base, inspired by (Cai et al., 2021).
The findings of these two studies motivated the de-
velopment of our model for the multi-document
text summarization task.

We demonstrate the potential of our method on
MultiXScience (Lu et al., 2020). This dataset gath-
ers scientific articles where we have to generate
the ”related work” part with the ”abstract” of the
source article and the ”abstracts” of the citations.
In the case of scientific articles, we believe that the
source documents are insufficient to generate the

”related work” part because external knowledge is
necessary to write such a paragraph.

In this work, we investigate a sequence-to-
sequence model guided by a memory retriever of
similar summaries. Specifically, source documents
are the input of the memory retriever, which returns
the top k similar summaries from a potentially large
database using an approximate nearest neighbor
search. Then, the decoder generates the summary
taking into account the source and retrieved sum-
maries and is trained to identify interesting texts
for the targeted summary. The code of our work is
available on GitHub1.

1https://github.com/florianbaud/retrieval-augmented-mds
(visited on 11/08/2023)

https://github.com/florianbaud/retrieval-augmented-mds
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Figure 1: In the first step, the knowledge base is built by encoding all documents with the memory encoder. Then
the source documents are transformed with a query encoder and with a source encoder, the query encoder is used to
search the knowledge base. The encoded source is used to represent the source documents for the generation of
the summary. After retrieving the top-k of the search, they are encoded with the retrieved encoder and again with
the memory encoder to recalculate the relevance score for back-propagation. Then, the decoder takes as input the
source documents and the relevant documents for the generation of the summary.

Our contribution is twofold: firstly, we integrate
a retriever to retrieve candidates for the generation
of the summary, and secondly, we make use of a
copy mechanism to incorporate these candidates
into the generation procedure.

2 Related Work

We start with a brief review of related work. (Co-
han et al., 2018) proposes to capture the structure
of the document to better represent the information
of the source document. Their method is applied
to scientific articles from Arvix and Pubmed which
are long documents. For the same purpose, (Co-
han and Goharian, 2018; Yasunaga et al., 2019)
propose to generate a summary from the articles
that cite the article to be summarised. The disad-
vantage of these methods is that they cannot be
used when writing an article. In this work, we
use references and not the papers that cite the doc-
uments to be summarised. More recently, (Xiao
et al., 2022) proposed a pre-training strategy dedi-
cated to multi-document text summarisation, their
masking strategy showed significant improvement
for the MDS task. They applied their method to the
MultiXScience dataset.

The models using guidances are close to our
work, indeed (Cao et al., 2018; Dou et al., 2021)
use retrieved summaries to better control the sum-
mary generation. However, they use information
retrieval systems such as ElasticSearch to find can-
didates for summary generation. Also, (An et al.,
2021) has introduced dense search systems for text
summarization, but they do not train the retriever
with the summary generator. In our case, the re-

triever is dense and trainable to find the most rele-
vant candidates for the generation of the summary.

In addition, retrieval-augmented models share
commonalities with our work. RAG, (Lewis et al.,
2020) which introduced this type of model, is used
for the question-answering task, where a context
is given to answer the question. The model re-
trieves several contexts with a retriever and then
answers the question using each of the retrieved
candidates. These types of models are also used in
the translation task, where (Cai et al., 2021) trans-
lates a sentence with a pre-established translation
base. Their model searches this base for transla-
tions close to the sentence to be translated and then
incorporates them into the generation of the trans-
lation through a copy mechanism. This approach
shares some similar intuition with our proposed
approach because our architecture is based on an
augmented retriever that incorporates the memory
by means of a copy mechanism. It is interesting to
investigate whether the encouraging success of the
copy mechanism recently obtained in translation
carries over to the MDS task.

3 Proposed Method

Inspired by (Cai et al., 2021), we propose a model
composed of a memory retriever and a copy gener-
ator. Figure 1 illustrates our framework, where we
start by encoding the entire knowledge base. After
an arbitrary number of steps during the training, the
encoded knowledge base is updated. Then, the for-
ward pass encodes source documents and finds sim-
ilar documents. Retrieved documents are encoded
and fed to the generator with the source documents.
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Our memory retriever has multiple encoders, one
for encoding the query, one for the knowledge base,
one for the sources documents, and one for the
retrieved candidates. Our copy generator is a de-
coder with a cross-attention mechanism on source
document embeddings and a copy mechanism on
retrieved candidates, which is placed at the top of
the decoder. We begin describing the retriever and
then show how our generator works.

3.1 Memory Retriever
The retrieval approach consists of source docu-
ments as query and documents from a knowledge
base denoted respectively by q and c. Documents
are often too long to be encoded with a Transformer
(Vaswani et al., 2017), so we used a LongFormer
(Beltagy et al., 2020) model. LongFormer has a
Transformer-like architecture that can deal with
long input sequences by attending tokens with win-
dowed attention and global attention on a few to-
kens. We encode source documents and candidates
documents with a pretrained LongFormer model
separated by a special token ([DOC]) :

hq = LEDq
enc(q)

hm = LEDm
enc(m)

where the LongFormer encoder is denoted by
LEDenc. All documents in the knowledge base
are encoded and stored in an index. For retrieving
candidates, we take the [CLS] token of encoders
output that we normalize and we define a relevance
function :

hqcls = norm(hqcls)

hmcls = norm(hmcls)

score(x, y) = x⊤ · y

We then calculate the relevance score on normal-
ized tokens, which represents the cosine similarity
between source documents q and candidate docu-
ments m that fall in the interval [−1, 1].

For fast retrieval, we retrieve the top-k candi-
dates mtopk = (m1, . . . ,mk) using the maximum
inner product search (MIPS) implemented with
FAISS (Johnson et al., 2021). At each training step,
we calculate the actual embedding of candidates
{hmcls,i}ki=1 and compute their relevance scores
{si = score(hmcls,i, h

q
cls)}

k
i=1 for back-propagation

as in (Cai et al., 2021; Lewis et al., 2020). The
recalculated score biases the decoder copy mecha-
nism , which we detail in section 3.2.

The memory encoder does not re-encode all
the knowledge base at each training step because
this would be expensive computation. Instead, the
knowledge base and the MIPS index are updated
at regular intervals defined arbitrarily. On the other
hand, we encode the retrieved top-k candidates and
the source documents with two encoders, LEDr

enc

and LEDs
enc, as shown below:

hs = LEDs
enc(q)

hrtopk = LEDr
enc(mtopk)

These two results are forwarded to the copy gen-
erator, which we detail in the next section.

3.2 Copy Generator
In the generation part of our model, we use the
decoder from LongFormer and apply a copy mech-
anism to previously retrieved candidates. Formally,
we have :

hd = LEDdec(y, h
s)

where LEDdec corresponds to the decoder part of
the LongFormer model, and y is the targeted sum-
mary. The decoder attends over source documents
hs and previous tokens y1:t−1, producing a hidden
state hdt at each time step t. The probability of the
next token is calculated with a softmax function:

Pdec(yt) = softmax(Wd · hdt + bd) (1)

where Wd is a hiddenssize× vocabsize matrix and
bd is the bias; both are trainable parameters.

Then, we incorporate the top-k candidates mtopk

with a copy mechanism by calculating a cross atten-
tion between hdt and hrtopk. To this end, we reuse
the cross-attention part of LongFormer to add it af-
ter its original decoder. This new layer has only one
attention head in order to use the attention weights
as the probability to copy a word from top-k candi-
dates.

Given k documents encoded in hrtopk, then we
can construct a set of token embedding {ri,j}Li

j=1

where i ∈ [1, k], j ∈ [1, Li] and Li is the length of
document i. Formally, the attention weight of the
jth token in the ith relevant document is expressed
as,

αij =
exp(hd⊤t Wari,j + βsi)∑k

i=1

∑Li
j=1 exp(h

d⊤
t Wari,j + βsi)

ct = Wc

k∑
i=1

Li∑
j=1

αijri,j
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where αij is the attention weight of the jth token
in the ith relevant document, Wa and Wc are learn-
able parameters, ct is a weighted representation of
top-k candidates and β is a learnable scalar that
controls the relevance score between the retrieved
candidates and the decoder hidden state, enabling
the gradient flow to the candidates encoders as in
(Cai et al., 2021; Lewis et al., 2020). Equation 1
may be rewritten to include the memory:

Pdec(yt) = softmax(Wd · (hdt + ct) + bd) (2)

Thus the next token probability takes into ac-
count the attention weights of the top-k candidates.
The final next token probability is given by:

P (yt) = (1− λt)Pdec(yt) + λt

k∑
i=1

Li∑
j=1

αij1rij=yt

where λt is a gating scalar computed by a feed-
forward network λt = g(hd, ct). The model
is trained with the log-likelihood loss L =
− logP (y∗) where y∗ is the target summary.

3.3 Training Details
Our model is composed of several encoders and
one decoder based on the LongFormer (Beltagy
et al., 2020) large model. Therefore, the size of our
model attains 1.9B of trainable parameters. Then
we used the DeepSpeed (Rasley et al., 2020) library
for the training. Our model uses the LongFormer
pretrained models available on HuggingFace2.

The training of the model makes use of MultiX-
Science data comprising 30,369 scientific articles
for training, 5,066 validation, and 5,093 test arti-
cles. The objective is to generate the related work
using the abstract of the article and the abstracts
of the cited articles. This is an interesting dataset
to experiment with because writing a related work
part requires knowledge beyond the scope of the
source documents.

Cold start problem At the beginning of the train-
ing, the weights are randomly initialized. There-
fore the retriever selects low-quality candidates that
don’t send out a good signal for training. Under
these conditions, the retriever cannot improve, and
the model will ignore the retriever’s candidates. To
overcome this cold start problem, we pre-trained
the retriever on the MultiXScience data to improve
the quality of the retriever. The objective is to

2https://huggingface.co/allenai (visited on 11/08/2023)

maximize the similarity between the abstract and
the related work section. These two sections are
encoded with the two encoders of the retriever to
calculate the cosine similarity.

In concrete terms, pre-training works as follows.
For a batch size equal to N , we have N ”abstract”
sections encoded with A = {LEDq

enc(ai)}Ni=1

and N ”related work” sections encoded with B =
{LEDm

enc(bj)}Nj=1, in order to obtain a cosine simi-
larity equal to 1 when j = i corresponds to positive
examples and -1 otherwise for negative examples.
We calculate for each element in A, the following
errors:

Li(A,B) = − log
exp (score(Ai, Bi)/τ)∑N
j=1 exp (score(Ai, Bj)/τ)

where τ is an arbitrarily chosen temperature pa-
rameter. The final error is L =

∑N
i=1 Li back-

propagated in the two encoders of the retriever.

4 Experiments

In this section, we report on the experiments per-
formed on the MultiXScience dataset to evaluate
our model. Training the full model is more difficult
due to its size but also due to the cold start problem.
The latter corresponds to the fact that the similar
summaries retrieved are not sufficiently relevant
to help the model. In addition, we have trained
two other methods adapted to text summarisation
as a comparison, Bart (Lewis et al., 2019) and T5
(Raffel et al., 2020). We detail the training proce-
dure for each of them. All models use the beam
search method to generate summaries. We chose a
beam size of 4, a length penalty of 1.0, and limited
the repetition of tri-grams. The rouge scores (Lin,
2004) on the MultiXScience dataset are reported in
table 1.

Method R-1 R-2 R-L
Ours 30.6 6.5 17.7
Bart (Our run) 32.4 7.2 17.3
T5 (Our run) 29.6 6.3 17.0
Primera* 31.9 7.4 18.0
PointerGenerator* 33.9 6.8 18.2

Table 1: The ROUGE score (R-1/R-2/R-L) of our pre-
liminary results on the MultiXScience test dataset. The *
symbol means that the results have been borrowed from
(Xiao et al., 2022).

https://huggingface.co/allenai
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Reduced model To reduce the computational
burden, we used a reduced model where the knowl-
edge base is not reconstructed. In addition, the
memory encoder parameters were frozen in order
to reduce the complexity of the training. These
two modifications reduced the training time con-
siderably. Indeed, the burden of reconstructing the
knowledge base was overwhelming. The reduced
model has fewer trainable parameters (1.4B). The
model was trained for 12.000 steps on four v100
GPUs with Adam optimizer and a learning rate
of 3e − 5, a batch size of 64, a top-k of 5 for the
retriever, and with 2.000 warmup steps and linear
decay. Despite its reduction in size, we observe
that the model is competitive with the state of the
art.

Bart We fine-tuned a Bart-large model on the
MultiXScience dataset using a single v100 GPU
over two days. The model weights were updated for
20,000 steps with a learning rate of 3.0e-5. A linear
warmup for 2,000 steps was applied to the learning
rate. We also limited the norm of the gradient to
0.1. The training aims to minimize cross-entropy
with a smoothing label of 0.1. The MultiXScience
articles have been concatenated using the ’\n\n’
separator. The results show that Bart is competitive
with the state of the art.

T5 The T5-large model was fine-tuned on the
same dataset as before. The training lasted 4 days
on a single v100 GPU, this model is slightly larger
and was trained in fp32 precision. As T5 is a text-
to-text model, we have used the prefix ’summarize:’
for the input documents, which are separated by the
separator ’\n\n’. The model was trained for 7,000
steps with a learning rate of 1.0e-4 and a batch size
of 64. A linear warm-up of up to 2000 steps and a
gradient norm limitation of 0.1 was applied. The
error to be minimized is the cross-entropy with a
label smoothing of 0.1.

5 Conclusion and Future Work

This paper presents an architecture for multi-
document text summarization inspired by retrieval-
augmented models. This architecture includes a
retriever that searches a knowledge base to find rel-
evant documents for the generation of a summary.
These documents are integrated in the generation
by means of a copy mechanism. A reduced version
of the model was evaluated on the MultiXScience
dataset. The preliminary results are already com-

petitive with the state of the art however we expect
to improve our results further by: 1) properly fix-
ing the cold start problem, and 2) training the full
model. In the future, we also plan to increase the
size of the knowledge base with new data and apply
our method to other MDS benchmark datasets.
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